|
@@ -33,7 +33,7 @@
|
|
|
** Computes ceil(log2(x))
|
|
|
*/
|
|
|
int luaO_ceillog2 (unsigned int x) {
|
|
|
- static const lu_byte log_2[256] = { /* log_2[i] = ceil(log2(i - 1)) */
|
|
|
+ static const lu_byte log_2[256] = { /* log_2[i - 1] = ceil(log2(i)) */
|
|
|
0,1,2,2,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
|
|
|
6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
|
|
|
7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
|
|
@@ -49,6 +49,57 @@ int luaO_ceillog2 (unsigned int x) {
|
|
|
return l + log_2[x];
|
|
|
}
|
|
|
|
|
|
+/*
|
|
|
+** Encodes 'p'% as a floating-point byte, represented as (eeeeexxx).
|
|
|
+** The exponent is represented using excess-7. Mimicking IEEE 754, the
|
|
|
+** representation normalizes the number when possible, assuming an extra
|
|
|
+** 1 before the mantissa (xxx) and adding one to the exponent (eeeeexxx)
|
|
|
+** to signal that. So, the real value is (1xxx) * 2^(eeeee - 8) if
|
|
|
+** eeeee != 0, and (xxx) * 2^-7 otherwise.
|
|
|
+*/
|
|
|
+unsigned int luaO_codeparam (unsigned int p) {
|
|
|
+ if (p >= (cast(lu_mem, 0xF) << 0xF) / 128 * 100) /* overflow? */
|
|
|
+ return 0xFF; /* return maximum value */
|
|
|
+ else {
|
|
|
+ p = (p * 128u) / 100;
|
|
|
+ if (p <= 0xF)
|
|
|
+ return p;
|
|
|
+ else {
|
|
|
+ int log = luaO_ceillog2(p + 1) - 5;
|
|
|
+ return ((p >> log) - 0x10) | ((log + 1) << 4);
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+/*
|
|
|
+** Computes 'p' times 'x', where 'p' is a floating-point byte.
|
|
|
+*/
|
|
|
+l_obj luaO_applyparam (unsigned int p, l_obj x) {
|
|
|
+ unsigned int m = p & 0xF; /* mantissa */
|
|
|
+ int e = (p >> 4); /* exponent */
|
|
|
+ if (e > 0) { /* normalized? */
|
|
|
+ e--;
|
|
|
+ m += 0x10; /* maximum 'm' is 0x1F */
|
|
|
+ }
|
|
|
+ e -= 7; /* correct excess-7 */
|
|
|
+ if (e < 0) {
|
|
|
+ e = -e;
|
|
|
+ if (x < MAX_LOBJ / 0x1F) /* multiplication cannot overflow? */
|
|
|
+ return (x * m) >> e; /* multiplying first gives more precision */
|
|
|
+ else if ((x >> e) < MAX_LOBJ / 0x1F) /* cannot overflow after shift? */
|
|
|
+ return (x >> e) * m;
|
|
|
+ else /* real overflow */
|
|
|
+ return MAX_LOBJ;
|
|
|
+ }
|
|
|
+ else {
|
|
|
+ if (x < (MAX_LOBJ / 0x1F) >> e) /* no overflow? */
|
|
|
+ return (x * m) << e; /* order doesn't matter here */
|
|
|
+ else /* real overflow */
|
|
|
+ return MAX_LOBJ;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
|
|
|
static lua_Integer intarith (lua_State *L, int op, lua_Integer v1,
|
|
|
lua_Integer v2) {
|