|
@@ -719,16 +719,38 @@ void luaH_newkey (lua_State *L, Table *t, const TValue *key, TValue *value) {
|
|
|
}
|
|
|
|
|
|
|
|
|
-static const TValue *getintfromarray (Table *t, lua_Integer key) {
|
|
|
- if (l_castS2U(key) - 1u < t->alimit) /* 'key' in [1, t->alimit]? */
|
|
|
- return &t->array[key - 1];
|
|
|
- else if (!limitequalsasize(t) && /* key still may be in the array part? */
|
|
|
- (l_castS2U(key) == t->alimit + 1 ||
|
|
|
- l_castS2U(key) - 1u < luaH_realasize(t))) {
|
|
|
+/*
|
|
|
+** Check whether key is in the array part. If 'alimit' is not the real
|
|
|
+** size of the array, the key still can be in the array part. In this
|
|
|
+** case, do the "Xmilia trick" to check whether 'key-1' is smaller than
|
|
|
+** the real size.
|
|
|
+** The trick works as follow: let 'p' be an integer such that
|
|
|
+** '2^(p+1) >= alimit > 2^p', or '2^(p+1) > alimit-1 >= 2^p'.
|
|
|
+** That is, 2^(p+1) is the real size of the array, and 'p' is the highest
|
|
|
+** bit on in 'alimit-1'. What we have to check becomes 'key-1 < 2^(p+1)'.
|
|
|
+** We compute '(key-1) & ~(alimit-1)', which we call 'res'; it will
|
|
|
+** have the 'p' bit cleared. If the key is outside the array, that is,
|
|
|
+** 'key-1 >= 2^(p+1)', then 'res' will have some 1-bit higher than 'p',
|
|
|
+** therefore it will be larger or equal to 'alimit', and the check
|
|
|
+** will fail. If 'key-1 < 2^(p+1)', then 'res' has no 1-bit higher than
|
|
|
+** 'p', and as the bit 'p' itself was cleared, 'res' will be smaller
|
|
|
+** than 2^p, therefore smaller than 'alimit', and the check succeeds.
|
|
|
+** As special cases, when 'alimit' is 0 the condition is trivially false,
|
|
|
+** and when 'alimit' is 1 the condition simplifies to 'key-1 < alimit'.
|
|
|
+** If key is 0 or negative, 'res' will have its higher bit on, so that
|
|
|
+** if cannot be smaller than alimit.
|
|
|
+*/
|
|
|
+static int keyinarray (Table *t, lua_Integer key) {
|
|
|
+ lua_Unsigned alimit = t->alimit;
|
|
|
+ if (l_castS2U(key) - 1u < alimit) /* 'key' in [1, t->alimit]? */
|
|
|
+ return 1;
|
|
|
+ else if (!isrealasize(t) && /* key still may be in the array part? */
|
|
|
+ (((l_castS2U(key) - 1u) & ~(alimit - 1u)) < alimit)) {
|
|
|
t->alimit = cast_uint(key); /* probably '#t' is here now */
|
|
|
- return &t->array[key - 1];
|
|
|
+ return 1;
|
|
|
}
|
|
|
- else return NULL; /* key is not in the array part */
|
|
|
+ else
|
|
|
+ return 0;
|
|
|
}
|
|
|
|
|
|
|
|
@@ -748,20 +770,16 @@ static const TValue *getintfromhash (Table *t, lua_Integer key) {
|
|
|
}
|
|
|
|
|
|
|
|
|
-/*
|
|
|
-** Search function for integers. If integer is inside 'alimit', get it
|
|
|
-** directly from the array part. Otherwise, if 'alimit' is not equal to
|
|
|
-** the real size of the array, key still can be in the array part. In
|
|
|
-** this case, try to avoid a call to 'luaH_realasize' when key is just
|
|
|
-** one more than the limit (so that it can be incremented without
|
|
|
-** changing the real size of the array).
|
|
|
-*/
|
|
|
-static const TValue *Hgetint (Table *t, lua_Integer key) {
|
|
|
- const TValue *slot = getintfromarray(t, key);
|
|
|
- if (slot != NULL)
|
|
|
- return slot;
|
|
|
- else
|
|
|
- return getintfromhash(t, key);
|
|
|
+l_sinline int arraykeyisempty (Table *t, lua_Integer key) {
|
|
|
+ int tag = *getArrTag(t, key);
|
|
|
+ return tagisempty(tag);
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+static int hashkeyisempty (Table *t, lua_Integer key) {
|
|
|
+ const TValue *val = getintfromhash(t, key);
|
|
|
+ lua_assert(!keyinarray(t, key));
|
|
|
+ return isempty(val);
|
|
|
}
|
|
|
|
|
|
|
|
@@ -776,7 +794,17 @@ static int finishnodeget (const TValue *val, TValue *res) {
|
|
|
|
|
|
|
|
|
int luaH_getint (Table *t, lua_Integer key, TValue *res) {
|
|
|
- return finishnodeget(Hgetint(t, key), res);
|
|
|
+ if (keyinarray(t, key)) {
|
|
|
+ int tag = *getArrTag(t, key);
|
|
|
+ if (!tagisempty(tag)) {
|
|
|
+ arr2val(t, key, tag, res);
|
|
|
+ return HOK; /* success */
|
|
|
+ }
|
|
|
+ else
|
|
|
+ return ~cast_int(key); /* empty slot in the array part */
|
|
|
+ }
|
|
|
+ else
|
|
|
+ return finishnodeget(getintfromhash(t, key), res);
|
|
|
}
|
|
|
|
|
|
|
|
@@ -832,25 +860,28 @@ TString *luaH_getstrkey (Table *t, TString *key) {
|
|
|
/*
|
|
|
** main search function
|
|
|
*/
|
|
|
-static const TValue *Hget (Table *t, const TValue *key) {
|
|
|
+int luaH_get (Table *t, const TValue *key, TValue *res) {
|
|
|
+ const TValue *slot;
|
|
|
switch (ttypetag(key)) {
|
|
|
- case LUA_VSHRSTR: return luaH_Hgetshortstr(t, tsvalue(key));
|
|
|
- case LUA_VNUMINT: return Hgetint(t, ivalue(key));
|
|
|
- case LUA_VNIL: return &absentkey;
|
|
|
+ case LUA_VSHRSTR:
|
|
|
+ slot = luaH_Hgetshortstr(t, tsvalue(key));
|
|
|
+ break;
|
|
|
+ case LUA_VNUMINT:
|
|
|
+ return luaH_getint(t, ivalue(key), res);
|
|
|
+ case LUA_VNIL:
|
|
|
+ slot = &absentkey;
|
|
|
+ break;
|
|
|
case LUA_VNUMFLT: {
|
|
|
lua_Integer k;
|
|
|
if (luaV_flttointeger(fltvalue(key), &k, F2Ieq)) /* integral index? */
|
|
|
- return Hgetint(t, k); /* use specialized version */
|
|
|
+ return luaH_getint(t, k, res); /* use specialized version */
|
|
|
/* else... */
|
|
|
} /* FALLTHROUGH */
|
|
|
default:
|
|
|
- return getgeneric(t, key, 0);
|
|
|
+ slot = getgeneric(t, key, 0);
|
|
|
+ break;
|
|
|
}
|
|
|
-}
|
|
|
-
|
|
|
-
|
|
|
-int luaH_get (Table *t, const TValue *key, TValue *res) {
|
|
|
- return finishnodeget(Hget(t, key), res);
|
|
|
+ return finishnodeget(slot, res);
|
|
|
}
|
|
|
|
|
|
|
|
@@ -866,10 +897,10 @@ static int finishnodeset (Table *t, const TValue *slot, TValue *val) {
|
|
|
|
|
|
|
|
|
int luaH_psetint (Table *t, lua_Integer key, TValue *val) {
|
|
|
- const TValue *slot = getintfromarray(t, key);
|
|
|
- if (slot != NULL) {
|
|
|
- if (!ttisnil(slot)) {
|
|
|
- setobj(((lua_State*)NULL), cast(TValue*, slot), val);
|
|
|
+ if (keyinarray(t, key)) {
|
|
|
+ lu_byte *tag = getArrTag(t, key);
|
|
|
+ if (!tagisempty(*tag)) {
|
|
|
+ val2arr(t, key, tag, val);
|
|
|
return HOK; /* success */
|
|
|
}
|
|
|
else
|
|
@@ -973,27 +1004,26 @@ static lua_Unsigned hash_search (Table *t, lua_Unsigned j) {
|
|
|
j *= 2;
|
|
|
else {
|
|
|
j = LUA_MAXINTEGER;
|
|
|
- if (isempty(Hgetint(t, j))) /* t[j] not present? */
|
|
|
+ if (hashkeyisempty(t, j)) /* t[j] not present? */
|
|
|
break; /* 'j' now is an absent index */
|
|
|
else /* weird case */
|
|
|
return j; /* well, max integer is a boundary... */
|
|
|
}
|
|
|
- } while (!isempty(Hgetint(t, j))); /* repeat until an absent t[j] */
|
|
|
+ } while (!hashkeyisempty(t, j)); /* repeat until an absent t[j] */
|
|
|
/* i < j && t[i] present && t[j] absent */
|
|
|
while (j - i > 1u) { /* do a binary search between them */
|
|
|
lua_Unsigned m = (i + j) / 2;
|
|
|
- if (isempty(Hgetint(t, m))) j = m;
|
|
|
+ if (hashkeyisempty(t, m)) j = m;
|
|
|
else i = m;
|
|
|
}
|
|
|
return i;
|
|
|
}
|
|
|
|
|
|
|
|
|
-static unsigned int binsearch (const TValue *array, unsigned int i,
|
|
|
- unsigned int j) {
|
|
|
+static unsigned int binsearch (Table *array, unsigned int i, unsigned int j) {
|
|
|
while (j - i > 1u) { /* binary search */
|
|
|
unsigned int m = (i + j) / 2;
|
|
|
- if (isempty(&array[m - 1])) j = m;
|
|
|
+ if (arraykeyisempty(array, m)) j = m;
|
|
|
else i = m;
|
|
|
}
|
|
|
return i;
|
|
@@ -1034,9 +1064,9 @@ static unsigned int binsearch (const TValue *array, unsigned int i,
|
|
|
*/
|
|
|
lua_Unsigned luaH_getn (Table *t) {
|
|
|
unsigned int limit = t->alimit;
|
|
|
- if (limit > 0 && isempty(&t->array[limit - 1])) { /* (1)? */
|
|
|
+ if (limit > 0 && arraykeyisempty(t, limit)) { /* (1)? */
|
|
|
/* there must be a boundary before 'limit' */
|
|
|
- if (limit >= 2 && !isempty(&t->array[limit - 2])) {
|
|
|
+ if (limit >= 2 && !arraykeyisempty(t, limit - 1)) {
|
|
|
/* 'limit - 1' is a boundary; can it be a new limit? */
|
|
|
if (ispow2realasize(t) && !ispow2(limit - 1)) {
|
|
|
t->alimit = limit - 1;
|
|
@@ -1045,7 +1075,7 @@ lua_Unsigned luaH_getn (Table *t) {
|
|
|
return limit - 1;
|
|
|
}
|
|
|
else { /* must search for a boundary in [0, limit] */
|
|
|
- unsigned int boundary = binsearch(t->array, 0, limit);
|
|
|
+ unsigned int boundary = binsearch(t, 0, limit);
|
|
|
/* can this boundary represent the real size of the array? */
|
|
|
if (ispow2realasize(t) && boundary > luaH_realasize(t) / 2) {
|
|
|
t->alimit = boundary; /* use it as the new limit */
|
|
@@ -1064,7 +1094,7 @@ lua_Unsigned luaH_getn (Table *t) {
|
|
|
if (isempty(&t->array[limit - 1])) { /* empty? */
|
|
|
/* there must be a boundary in the array after old limit,
|
|
|
and it must be a valid new limit */
|
|
|
- unsigned int boundary = binsearch(t->array, t->alimit, limit);
|
|
|
+ unsigned int boundary = binsearch(t, t->alimit, limit);
|
|
|
t->alimit = boundary;
|
|
|
return boundary;
|
|
|
}
|
|
@@ -1073,7 +1103,7 @@ lua_Unsigned luaH_getn (Table *t) {
|
|
|
/* (3) 'limit' is the last element and either is zero or present in table */
|
|
|
lua_assert(limit == luaH_realasize(t) &&
|
|
|
(limit == 0 || !isempty(&t->array[limit - 1])));
|
|
|
- if (isdummy(t) || isempty(Hgetint(t, cast(lua_Integer, limit + 1))))
|
|
|
+ if (isdummy(t) || hashkeyisempty(t, cast(lua_Integer, limit + 1)))
|
|
|
return limit; /* 'limit + 1' is absent */
|
|
|
else /* 'limit + 1' is also present */
|
|
|
return hash_search(t, limit);
|