lcode.c 43 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554
  1. /*
  2. ** $Id: lcode.c,v 2.140 2017/11/30 13:17:06 roberto Exp roberto $
  3. ** Code generator for Lua
  4. ** See Copyright Notice in lua.h
  5. */
  6. #define lcode_c
  7. #define LUA_CORE
  8. #include "lprefix.h"
  9. #include <limits.h>
  10. #include <math.h>
  11. #include <stdlib.h>
  12. #include "lua.h"
  13. #include "lcode.h"
  14. #include "ldebug.h"
  15. #include "ldo.h"
  16. #include "lgc.h"
  17. #include "llex.h"
  18. #include "lmem.h"
  19. #include "lobject.h"
  20. #include "lopcodes.h"
  21. #include "lparser.h"
  22. #include "lstring.h"
  23. #include "ltable.h"
  24. #include "lvm.h"
  25. /* Maximum number of registers in a Lua function (must fit in 8 bits) */
  26. #define MAXREGS 255
  27. #define hasjumps(e) ((e)->t != (e)->f)
  28. static int codesJ (FuncState *fs, OpCode o, int sj, int k);
  29. /*
  30. ** If expression is a numeric constant, fills 'v' with its value
  31. ** and returns 1. Otherwise, returns 0.
  32. */
  33. static int tonumeral(const expdesc *e, TValue *v) {
  34. if (hasjumps(e))
  35. return 0; /* not a numeral */
  36. switch (e->k) {
  37. case VKINT:
  38. if (v) setivalue(v, e->u.ival);
  39. return 1;
  40. case VKFLT:
  41. if (v) setfltvalue(v, e->u.nval);
  42. return 1;
  43. default: return 0;
  44. }
  45. }
  46. /*
  47. ** Create a OP_LOADNIL instruction, but try to optimize: if the previous
  48. ** instruction is also OP_LOADNIL and ranges are compatible, adjust
  49. ** range of previous instruction instead of emitting a new one. (For
  50. ** instance, 'local a; local b' will generate a single opcode.)
  51. */
  52. void luaK_nil (FuncState *fs, int from, int n) {
  53. Instruction *previous;
  54. int l = from + n - 1; /* last register to set nil */
  55. if (fs->pc > fs->lasttarget) { /* no jumps to current position? */
  56. previous = &fs->f->code[fs->pc-1];
  57. if (GET_OPCODE(*previous) == OP_LOADNIL) { /* previous is LOADNIL? */
  58. int pfrom = GETARG_A(*previous); /* get previous range */
  59. int pl = pfrom + GETARG_B(*previous);
  60. if ((pfrom <= from && from <= pl + 1) ||
  61. (from <= pfrom && pfrom <= l + 1)) { /* can connect both? */
  62. if (pfrom < from) from = pfrom; /* from = min(from, pfrom) */
  63. if (pl > l) l = pl; /* l = max(l, pl) */
  64. SETARG_A(*previous, from);
  65. SETARG_B(*previous, l - from);
  66. return;
  67. }
  68. } /* else go through */
  69. }
  70. luaK_codeABC(fs, OP_LOADNIL, from, n - 1, 0); /* else no optimization */
  71. }
  72. /*
  73. ** Gets the destination address of a jump instruction. Used to traverse
  74. ** a list of jumps.
  75. */
  76. static int getjump (FuncState *fs, int pc) {
  77. int offset = GETARG_sJ(fs->f->code[pc]);
  78. if (offset == NO_JUMP) /* point to itself represents end of list */
  79. return NO_JUMP; /* end of list */
  80. else
  81. return (pc+1)+offset; /* turn offset into absolute position */
  82. }
  83. /*
  84. ** Fix jump instruction at position 'pc' to jump to 'dest'.
  85. ** (Jump addresses are relative in Lua)
  86. */
  87. static void fixjump (FuncState *fs, int pc, int dest) {
  88. Instruction *jmp = &fs->f->code[pc];
  89. int offset = dest - (pc + 1);
  90. lua_assert(dest != NO_JUMP);
  91. if (abs(offset) > MAXARG_sJ)
  92. luaX_syntaxerror(fs->ls, "control structure too long");
  93. lua_assert(GET_OPCODE(*jmp) == OP_JMP);
  94. SETARG_sJ(*jmp, offset);
  95. }
  96. /*
  97. ** Concatenate jump-list 'l2' into jump-list 'l1'
  98. */
  99. void luaK_concat (FuncState *fs, int *l1, int l2) {
  100. if (l2 == NO_JUMP) return; /* nothing to concatenate? */
  101. else if (*l1 == NO_JUMP) /* no original list? */
  102. *l1 = l2; /* 'l1' points to 'l2' */
  103. else {
  104. int list = *l1;
  105. int next;
  106. while ((next = getjump(fs, list)) != NO_JUMP) /* find last element */
  107. list = next;
  108. fixjump(fs, list, l2); /* last element links to 'l2' */
  109. }
  110. }
  111. /*
  112. ** Create a jump instruction and return its position, so its destination
  113. ** can be fixed later (with 'fixjump').
  114. */
  115. int luaK_jump (FuncState *fs) {
  116. return codesJ(fs, OP_JMP, NO_JUMP, 0);
  117. }
  118. /*
  119. ** Code a 'return' instruction
  120. */
  121. void luaK_ret (FuncState *fs, int first, int nret) {
  122. switch (nret) {
  123. case 0:
  124. luaK_codeABC(fs, OP_RETURN0, 0, 0, 0);
  125. break;
  126. case 1:
  127. luaK_codeABC(fs, OP_RETURN1, first, 0, 0);
  128. break;
  129. default:
  130. luaK_codeABC(fs, OP_RETURN, first, nret + 1, 0);
  131. break;
  132. }
  133. }
  134. /*
  135. ** Code a "conditional jump", that is, a test or comparison opcode
  136. ** followed by a jump. Return jump position.
  137. */
  138. static int condjump (FuncState *fs, OpCode op, int A, int B, int C, int k) {
  139. luaK_codeABCk(fs, op, A, B, C, k);
  140. return luaK_jump(fs);
  141. }
  142. /*
  143. ** returns current 'pc' and marks it as a jump target (to avoid wrong
  144. ** optimizations with consecutive instructions not in the same basic block).
  145. */
  146. int luaK_getlabel (FuncState *fs) {
  147. fs->lasttarget = fs->pc;
  148. return fs->pc;
  149. }
  150. /*
  151. ** Returns the position of the instruction "controlling" a given
  152. ** jump (that is, its condition), or the jump itself if it is
  153. ** unconditional.
  154. */
  155. static Instruction *getjumpcontrol (FuncState *fs, int pc) {
  156. Instruction *pi = &fs->f->code[pc];
  157. if (pc >= 1 && testTMode(GET_OPCODE(*(pi-1))))
  158. return pi-1;
  159. else
  160. return pi;
  161. }
  162. /*
  163. ** Patch destination register for a TESTSET instruction.
  164. ** If instruction in position 'node' is not a TESTSET, return 0 ("fails").
  165. ** Otherwise, if 'reg' is not 'NO_REG', set it as the destination
  166. ** register. Otherwise, change instruction to a simple 'TEST' (produces
  167. ** no register value)
  168. */
  169. static int patchtestreg (FuncState *fs, int node, int reg) {
  170. Instruction *i = getjumpcontrol(fs, node);
  171. if (GET_OPCODE(*i) != OP_TESTSET)
  172. return 0; /* cannot patch other instructions */
  173. if (reg != NO_REG && reg != GETARG_B(*i))
  174. SETARG_A(*i, reg);
  175. else {
  176. /* no register to put value or register already has the value;
  177. change instruction to simple test */
  178. *i = CREATE_ABCk(OP_TEST, GETARG_B(*i), 0, 0, GETARG_k(*i));
  179. }
  180. return 1;
  181. }
  182. /*
  183. ** Traverse a list of tests ensuring no one produces a value
  184. */
  185. static void removevalues (FuncState *fs, int list) {
  186. for (; list != NO_JUMP; list = getjump(fs, list))
  187. patchtestreg(fs, list, NO_REG);
  188. }
  189. /*
  190. ** Traverse a list of tests, patching their destination address and
  191. ** registers: tests producing values jump to 'vtarget' (and put their
  192. ** values in 'reg'), other tests jump to 'dtarget'.
  193. */
  194. static void patchlistaux (FuncState *fs, int list, int vtarget, int reg,
  195. int dtarget) {
  196. while (list != NO_JUMP) {
  197. int next = getjump(fs, list);
  198. if (patchtestreg(fs, list, reg))
  199. fixjump(fs, list, vtarget);
  200. else
  201. fixjump(fs, list, dtarget); /* jump to default target */
  202. list = next;
  203. }
  204. }
  205. /*
  206. ** Path all jumps in 'list' to jump to 'target'.
  207. ** (The assert means that we cannot fix a jump to a forward address
  208. ** because we only know addresses once code is generated.)
  209. */
  210. void luaK_patchlist (FuncState *fs, int list, int target) {
  211. lua_assert(target <= fs->pc);
  212. patchlistaux(fs, list, target, NO_REG, target);
  213. }
  214. void luaK_patchtohere (FuncState *fs, int list) {
  215. int hr = luaK_getlabel(fs); /* mark "here" as a jump target */
  216. luaK_patchlist(fs, list, hr);
  217. }
  218. /*
  219. ** Check whether some jump in given list needs a close instruction.
  220. */
  221. int luaK_needclose (FuncState *fs, int list) {
  222. for (; list != NO_JUMP; list = getjump(fs, list)) {
  223. if (GETARG_A(fs->f->code[list])) /* needs close? */
  224. return 1;
  225. }
  226. return 0;
  227. }
  228. /*
  229. ** Correct a jump list to jump to 'target'. If 'hasclose' is true,
  230. ** 'target' contains an OP_CLOSE instruction (see first assert).
  231. ** Only jumps with the 'k' arg true need that close; other jumps
  232. ** avoid it jumping to the next instruction.
  233. */
  234. void luaK_patchgoto (FuncState *fs, int list, int target, int hasclose) {
  235. lua_assert(!hasclose || GET_OPCODE(fs->f->code[target]) == OP_CLOSE);
  236. while (list != NO_JUMP) {
  237. int next = getjump(fs, list);
  238. lua_assert(!GETARG_k(fs->f->code[list]) || hasclose);
  239. patchtestreg(fs, list, NO_REG); /* do not generate values */
  240. if (!hasclose || GETARG_k(fs->f->code[list]))
  241. fixjump(fs, list, target);
  242. else /* there is a CLOSE instruction but jump does not need it */
  243. fixjump(fs, list, target + 1); /* avoid CLOSE instruction */
  244. list = next;
  245. }
  246. }
  247. /*
  248. ** Mark (using the 'k' arg) all jumps in 'list' to close upvalues. Mark
  249. ** will instruct 'luaK_patchgoto' to make these jumps go to OP_CLOSE
  250. ** instructions.
  251. */
  252. void luaK_patchclose (FuncState *fs, int list) {
  253. for (; list != NO_JUMP; list = getjump(fs, list)) {
  254. lua_assert(GET_OPCODE(fs->f->code[list]) == OP_JMP);
  255. SETARG_k(fs->f->code[list], 1);
  256. }
  257. }
  258. #if !defined(MAXIWTHABS)
  259. #define MAXIWTHABS 120
  260. #endif
  261. /*
  262. ** Save line info for a new instruction. If difference from last line
  263. ** does not fit in a byte, of after that many instructions, save a new
  264. ** absolute line info; (in that case, the special value 'ABSLINEINFO'
  265. ** in 'lineinfo' signals the existence of this absolute information.)
  266. ** Otherwise, store the difference from last line in 'lineinfo'.
  267. */
  268. static void savelineinfo (FuncState *fs, Proto *f, int pc, int line) {
  269. int linedif = line - fs->previousline;
  270. if (abs(linedif) >= 0x80 || fs->iwthabs++ > MAXIWTHABS) {
  271. luaM_growvector(fs->ls->L, f->abslineinfo, fs->nabslineinfo,
  272. f->sizeabslineinfo, AbsLineInfo, MAX_INT, "lines");
  273. f->abslineinfo[fs->nabslineinfo].pc = pc;
  274. f->abslineinfo[fs->nabslineinfo++].line = line;
  275. linedif = ABSLINEINFO; /* signal there is absolute information */
  276. fs->iwthabs = 0; /* restart counter */
  277. }
  278. luaM_growvector(fs->ls->L, f->lineinfo, pc, f->sizelineinfo, ls_byte,
  279. MAX_INT, "opcodes");
  280. f->lineinfo[pc] = linedif;
  281. fs->previousline = line; /* last line saved */
  282. }
  283. /*
  284. ** Emit instruction 'i', checking for array sizes and saving also its
  285. ** line information. Return 'i' position.
  286. */
  287. static int luaK_code (FuncState *fs, Instruction i) {
  288. Proto *f = fs->f;
  289. /* put new instruction in code array */
  290. luaM_growvector(fs->ls->L, f->code, fs->pc, f->sizecode, Instruction,
  291. MAX_INT, "opcodes");
  292. f->code[fs->pc] = i;
  293. savelineinfo(fs, f, fs->pc, fs->ls->lastline);
  294. return fs->pc++;
  295. }
  296. /*
  297. ** Format and emit an 'iABC' instruction. (Assertions check consistency
  298. ** of parameters versus opcode.)
  299. */
  300. int luaK_codeABCk (FuncState *fs, OpCode o, int a, int b, int c, int k) {
  301. lua_assert(getOpMode(o) == iABC);
  302. lua_assert(a <= MAXARG_A && b <= MAXARG_B &&
  303. c <= MAXARG_C && (k & ~1) == 0);
  304. return luaK_code(fs, CREATE_ABCk(o, a, b, c, k));
  305. }
  306. #define codeABsC(fs,o,a,b,c,k) luaK_codeABCk(fs,o,a,b,((c) + MAXARG_sC),k)
  307. /*
  308. ** Format and emit an 'iABx' instruction.
  309. */
  310. int luaK_codeABx (FuncState *fs, OpCode o, int a, unsigned int bc) {
  311. lua_assert(getOpMode(o) == iABx);
  312. lua_assert(a <= MAXARG_A && bc <= MAXARG_Bx);
  313. return luaK_code(fs, CREATE_ABx(o, a, bc));
  314. }
  315. /*
  316. ** Format and emit an 'iAsBx' instruction.
  317. */
  318. int luaK_codeAsBx (FuncState *fs, OpCode o, int a, int bc) {
  319. unsigned int b = bc + MAXARG_sBx;
  320. lua_assert(getOpMode(o) == iAsBx);
  321. lua_assert(a <= MAXARG_A && b <= MAXARG_Bx);
  322. return luaK_code(fs, CREATE_ABx(o, a, b));
  323. }
  324. /*
  325. ** Format and emit an 'isJ' instruction.
  326. */
  327. static int codesJ (FuncState *fs, OpCode o, int sj, int k) {
  328. unsigned int j = sj + MAXARG_sJ;
  329. lua_assert(getOpMode(o) == isJ);
  330. lua_assert(j <= MAXARG_sJ && (k & ~1) == 0);
  331. return luaK_code(fs, CREATE_sJ(o, j, k));
  332. }
  333. /*
  334. ** Emit an "extra argument" instruction (format 'iAx')
  335. */
  336. static int codeextraarg (FuncState *fs, int a) {
  337. lua_assert(a <= MAXARG_Ax);
  338. return luaK_code(fs, CREATE_Ax(OP_EXTRAARG, a));
  339. }
  340. /*
  341. ** Emit a "load constant" instruction, using either 'OP_LOADK'
  342. ** (if constant index 'k' fits in 18 bits) or an 'OP_LOADKX'
  343. ** instruction with "extra argument".
  344. */
  345. static int luaK_codek (FuncState *fs, int reg, int k) {
  346. if (k <= MAXARG_Bx)
  347. return luaK_codeABx(fs, OP_LOADK, reg, k);
  348. else {
  349. int p = luaK_codeABx(fs, OP_LOADKX, reg, 0);
  350. codeextraarg(fs, k);
  351. return p;
  352. }
  353. }
  354. /*
  355. ** Check register-stack level, keeping track of its maximum size
  356. ** in field 'maxstacksize'
  357. */
  358. void luaK_checkstack (FuncState *fs, int n) {
  359. int newstack = fs->freereg + n;
  360. if (newstack > fs->f->maxstacksize) {
  361. if (newstack >= MAXREGS)
  362. luaX_syntaxerror(fs->ls,
  363. "function or expression needs too many registers");
  364. fs->f->maxstacksize = cast_byte(newstack);
  365. }
  366. }
  367. /*
  368. ** Reserve 'n' registers in register stack
  369. */
  370. void luaK_reserveregs (FuncState *fs, int n) {
  371. luaK_checkstack(fs, n);
  372. fs->freereg += n;
  373. }
  374. /*
  375. ** Free register 'reg', if it is neither a constant index nor
  376. ** a local variable.
  377. )
  378. */
  379. static void freereg (FuncState *fs, int reg) {
  380. if (reg >= fs->nactvar) {
  381. fs->freereg--;
  382. lua_assert(reg == fs->freereg);
  383. }
  384. }
  385. /*
  386. ** Free two registers in proper order
  387. */
  388. static void freeregs (FuncState *fs, int r1, int r2) {
  389. if (r1 > r2) {
  390. freereg(fs, r1);
  391. freereg(fs, r2);
  392. }
  393. else {
  394. freereg(fs, r2);
  395. freereg(fs, r1);
  396. }
  397. }
  398. /*
  399. ** Free register used by expression 'e' (if any)
  400. */
  401. static void freeexp (FuncState *fs, expdesc *e) {
  402. if (e->k == VNONRELOC)
  403. freereg(fs, e->u.info);
  404. }
  405. /*
  406. ** Free registers used by expressions 'e1' and 'e2' (if any) in proper
  407. ** order.
  408. */
  409. static void freeexps (FuncState *fs, expdesc *e1, expdesc *e2) {
  410. int r1 = (e1->k == VNONRELOC) ? e1->u.info : -1;
  411. int r2 = (e2->k == VNONRELOC) ? e2->u.info : -1;
  412. freeregs(fs, r1, r2);
  413. }
  414. /*
  415. ** Add constant 'v' to prototype's list of constants (field 'k').
  416. ** Use scanner's table to cache position of constants in constant list
  417. ** and try to reuse constants. Because some values should not be used
  418. ** as keys (nil cannot be a key, integer keys can collapse with float
  419. ** keys), the caller must provide a useful 'key' for indexing the cache.
  420. */
  421. static int addk (FuncState *fs, TValue *key, TValue *v) {
  422. lua_State *L = fs->ls->L;
  423. Proto *f = fs->f;
  424. TValue *idx = luaH_set(L, fs->ls->h, key); /* index scanner table */
  425. int k, oldsize;
  426. if (ttisinteger(idx)) { /* is there an index there? */
  427. k = cast_int(ivalue(idx));
  428. /* correct value? (warning: must distinguish floats from integers!) */
  429. if (k < fs->nk && ttype(&f->k[k]) == ttype(v) &&
  430. luaV_rawequalobj(&f->k[k], v))
  431. return k; /* reuse index */
  432. }
  433. /* constant not found; create a new entry */
  434. oldsize = f->sizek;
  435. k = fs->nk;
  436. /* numerical value does not need GC barrier;
  437. table has no metatable, so it does not need to invalidate cache */
  438. setivalue(idx, k);
  439. luaM_growvector(L, f->k, k, f->sizek, TValue, MAXARG_Ax, "constants");
  440. while (oldsize < f->sizek) setnilvalue(&f->k[oldsize++]);
  441. setobj(L, &f->k[k], v);
  442. fs->nk++;
  443. luaC_barrier(L, f, v);
  444. return k;
  445. }
  446. /*
  447. ** Add a string to list of constants and return its index.
  448. */
  449. int luaK_stringK (FuncState *fs, TString *s) {
  450. TValue o;
  451. setsvalue(fs->ls->L, &o, s);
  452. return addk(fs, &o, &o); /* use string itself as key */
  453. }
  454. /*
  455. ** Add an integer to list of constants and return its index.
  456. ** Integers use userdata as keys to avoid collision with floats with
  457. ** same value; conversion to 'void*' is used only for hashing, so there
  458. ** are no "precision" problems.
  459. */
  460. static int luaK_intK (FuncState *fs, lua_Integer n) {
  461. TValue k, o;
  462. setpvalue(&k, cast(void*, cast(size_t, n)));
  463. setivalue(&o, n);
  464. return addk(fs, &k, &o);
  465. }
  466. /*
  467. ** Add a float to list of constants and return its index.
  468. */
  469. static int luaK_numberK (FuncState *fs, lua_Number r) {
  470. TValue o;
  471. setfltvalue(&o, r);
  472. return addk(fs, &o, &o); /* use number itself as key */
  473. }
  474. /*
  475. ** Add a boolean to list of constants and return its index.
  476. */
  477. static int boolK (FuncState *fs, int b) {
  478. TValue o;
  479. setbvalue(&o, b);
  480. return addk(fs, &o, &o); /* use boolean itself as key */
  481. }
  482. /*
  483. ** Add nil to list of constants and return its index.
  484. */
  485. static int nilK (FuncState *fs) {
  486. TValue k, v;
  487. setnilvalue(&v);
  488. /* cannot use nil as key; instead use table itself to represent nil */
  489. sethvalue(fs->ls->L, &k, fs->ls->h);
  490. return addk(fs, &k, &v);
  491. }
  492. void luaK_int (FuncState *fs, int reg, lua_Integer i) {
  493. if (l_castS2U(i) + MAXARG_sBx <= l_castS2U(MAXARG_Bx))
  494. luaK_codeAsBx(fs, OP_LOADI, reg, cast_int(i));
  495. else
  496. luaK_codek(fs, reg, luaK_intK(fs, i));
  497. }
  498. static int floatI (lua_Number f, lua_Integer *fi) {
  499. TValue v;
  500. setfltvalue(&v, f);
  501. return (luaV_flttointeger(&v, fi, 0) &&
  502. l_castS2U(*fi) + MAXARG_sBx <= l_castS2U(MAXARG_Bx));
  503. }
  504. static void luaK_float (FuncState *fs, int reg, lua_Number f) {
  505. lua_Integer fi;
  506. if (floatI(f, &fi))
  507. luaK_codeAsBx(fs, OP_LOADF, reg, cast_int(fi));
  508. else
  509. luaK_codek(fs, reg, luaK_numberK(fs, f));
  510. }
  511. /*
  512. ** Fix an expression to return the number of results 'nresults'.
  513. ** Either 'e' is a multi-ret expression (function call or vararg)
  514. ** or 'nresults' is LUA_MULTRET (as any expression can satisfy that).
  515. */
  516. void luaK_setreturns (FuncState *fs, expdesc *e, int nresults) {
  517. if (e->k == VCALL) { /* expression is an open function call? */
  518. SETARG_C(getinstruction(fs, e), nresults + 1);
  519. }
  520. else if (e->k == VVARARG) {
  521. Instruction *pc = &getinstruction(fs, e);
  522. SETARG_B(*pc, nresults + 1);
  523. SETARG_A(*pc, fs->freereg);
  524. luaK_reserveregs(fs, 1);
  525. }
  526. else lua_assert(nresults == LUA_MULTRET);
  527. }
  528. /*
  529. ** Fix an expression to return one result.
  530. ** If expression is not a multi-ret expression (function call or
  531. ** vararg), it already returns one result, so nothing needs to be done.
  532. ** Function calls become VNONRELOC expressions (as its result comes
  533. ** fixed in the base register of the call), while vararg expressions
  534. ** become VRELOCABLE (as OP_VARARG puts its results where it wants).
  535. ** (Calls are created returning one result, so that does not need
  536. ** to be fixed.)
  537. */
  538. void luaK_setoneret (FuncState *fs, expdesc *e) {
  539. if (e->k == VCALL) { /* expression is an open function call? */
  540. /* already returns 1 value */
  541. lua_assert(GETARG_C(getinstruction(fs, e)) == 2);
  542. e->k = VNONRELOC; /* result has fixed position */
  543. e->u.info = GETARG_A(getinstruction(fs, e));
  544. }
  545. else if (e->k == VVARARG) {
  546. SETARG_B(getinstruction(fs, e), 2);
  547. e->k = VRELOCABLE; /* can relocate its simple result */
  548. }
  549. }
  550. /*
  551. ** Ensure that expression 'e' is not a variable.
  552. */
  553. void luaK_dischargevars (FuncState *fs, expdesc *e) {
  554. switch (e->k) {
  555. case VLOCAL: { /* already in a register */
  556. e->k = VNONRELOC; /* becomes a non-relocatable value */
  557. break;
  558. }
  559. case VUPVAL: { /* move value to some (pending) register */
  560. e->u.info = luaK_codeABC(fs, OP_GETUPVAL, 0, e->u.info, 0);
  561. e->k = VRELOCABLE;
  562. break;
  563. }
  564. case VINDEXUP: {
  565. e->u.info = luaK_codeABC(fs, OP_GETTABUP, 0, e->u.ind.t, e->u.ind.idx);
  566. e->k = VRELOCABLE;
  567. break;
  568. }
  569. case VINDEXI: {
  570. freereg(fs, e->u.ind.t);
  571. e->u.info = luaK_codeABC(fs, OP_GETI, 0, e->u.ind.t, e->u.ind.idx);
  572. e->k = VRELOCABLE;
  573. break;
  574. }
  575. case VINDEXSTR: {
  576. freereg(fs, e->u.ind.t);
  577. e->u.info = luaK_codeABC(fs, OP_GETFIELD, 0, e->u.ind.t, e->u.ind.idx);
  578. e->k = VRELOCABLE;
  579. break;
  580. }
  581. case VINDEXED: {
  582. freeregs(fs, e->u.ind.t, e->u.ind.idx);
  583. e->u.info = luaK_codeABC(fs, OP_GETTABLE, 0, e->u.ind.t, e->u.ind.idx);
  584. e->k = VRELOCABLE;
  585. break;
  586. }
  587. case VVARARG: case VCALL: {
  588. luaK_setoneret(fs, e);
  589. break;
  590. }
  591. default: break; /* there is one value available (somewhere) */
  592. }
  593. }
  594. /*
  595. ** Ensures expression value is in register 'reg' (and therefore
  596. ** 'e' will become a non-relocatable expression).
  597. */
  598. static void discharge2reg (FuncState *fs, expdesc *e, int reg) {
  599. luaK_dischargevars(fs, e);
  600. switch (e->k) {
  601. case VNIL: {
  602. luaK_nil(fs, reg, 1);
  603. break;
  604. }
  605. case VFALSE: case VTRUE: {
  606. luaK_codeABC(fs, OP_LOADBOOL, reg, e->k == VTRUE, 0);
  607. break;
  608. }
  609. case VK: {
  610. luaK_codek(fs, reg, e->u.info);
  611. break;
  612. }
  613. case VKFLT: {
  614. luaK_float(fs, reg, e->u.nval);
  615. break;
  616. }
  617. case VKINT: {
  618. luaK_int(fs, reg, e->u.ival);
  619. break;
  620. }
  621. case VRELOCABLE: {
  622. Instruction *pc = &getinstruction(fs, e);
  623. SETARG_A(*pc, reg); /* instruction will put result in 'reg' */
  624. break;
  625. }
  626. case VNONRELOC: {
  627. if (reg != e->u.info)
  628. luaK_codeABC(fs, OP_MOVE, reg, e->u.info, 0);
  629. break;
  630. }
  631. default: {
  632. lua_assert(e->k == VJMP);
  633. return; /* nothing to do... */
  634. }
  635. }
  636. e->u.info = reg;
  637. e->k = VNONRELOC;
  638. }
  639. /*
  640. ** Ensures expression value is in any register.
  641. */
  642. static void discharge2anyreg (FuncState *fs, expdesc *e) {
  643. if (e->k != VNONRELOC) { /* no fixed register yet? */
  644. luaK_reserveregs(fs, 1); /* get a register */
  645. discharge2reg(fs, e, fs->freereg-1); /* put value there */
  646. }
  647. }
  648. static int code_loadbool (FuncState *fs, int A, int b, int jump) {
  649. luaK_getlabel(fs); /* those instructions may be jump targets */
  650. return luaK_codeABC(fs, OP_LOADBOOL, A, b, jump);
  651. }
  652. /*
  653. ** check whether list has any jump that do not produce a value
  654. ** or produce an inverted value
  655. */
  656. static int need_value (FuncState *fs, int list) {
  657. for (; list != NO_JUMP; list = getjump(fs, list)) {
  658. Instruction i = *getjumpcontrol(fs, list);
  659. if (GET_OPCODE(i) != OP_TESTSET) return 1;
  660. }
  661. return 0; /* not found */
  662. }
  663. /*
  664. ** Ensures final expression result (including results from its jump
  665. ** lists) is in register 'reg'.
  666. ** If expression has jumps, need to patch these jumps either to
  667. ** its final position or to "load" instructions (for those tests
  668. ** that do not produce values).
  669. */
  670. static void exp2reg (FuncState *fs, expdesc *e, int reg) {
  671. discharge2reg(fs, e, reg);
  672. if (e->k == VJMP) /* expression itself is a test? */
  673. luaK_concat(fs, &e->t, e->u.info); /* put this jump in 't' list */
  674. if (hasjumps(e)) {
  675. int final; /* position after whole expression */
  676. int p_f = NO_JUMP; /* position of an eventual LOAD false */
  677. int p_t = NO_JUMP; /* position of an eventual LOAD true */
  678. if (need_value(fs, e->t) || need_value(fs, e->f)) {
  679. int fj = (e->k == VJMP) ? NO_JUMP : luaK_jump(fs);
  680. p_f = code_loadbool(fs, reg, 0, 1);
  681. p_t = code_loadbool(fs, reg, 1, 0);
  682. luaK_patchtohere(fs, fj);
  683. }
  684. final = luaK_getlabel(fs);
  685. patchlistaux(fs, e->f, final, reg, p_f);
  686. patchlistaux(fs, e->t, final, reg, p_t);
  687. }
  688. e->f = e->t = NO_JUMP;
  689. e->u.info = reg;
  690. e->k = VNONRELOC;
  691. }
  692. /*
  693. ** Ensures final expression result (including results from its jump
  694. ** lists) is in next available register.
  695. */
  696. void luaK_exp2nextreg (FuncState *fs, expdesc *e) {
  697. luaK_dischargevars(fs, e);
  698. freeexp(fs, e);
  699. luaK_reserveregs(fs, 1);
  700. exp2reg(fs, e, fs->freereg - 1);
  701. }
  702. /*
  703. ** Ensures final expression result (including results from its jump
  704. ** lists) is in some (any) register and return that register.
  705. */
  706. int luaK_exp2anyreg (FuncState *fs, expdesc *e) {
  707. luaK_dischargevars(fs, e);
  708. if (e->k == VNONRELOC) { /* expression already has a register? */
  709. if (!hasjumps(e)) /* no jumps? */
  710. return e->u.info; /* result is already in a register */
  711. if (e->u.info >= fs->nactvar) { /* reg. is not a local? */
  712. exp2reg(fs, e, e->u.info); /* put final result in it */
  713. return e->u.info;
  714. }
  715. }
  716. luaK_exp2nextreg(fs, e); /* otherwise, use next available register */
  717. return e->u.info;
  718. }
  719. /*
  720. ** Ensures final expression result is either in a register or in an
  721. ** upvalue.
  722. */
  723. void luaK_exp2anyregup (FuncState *fs, expdesc *e) {
  724. if (e->k != VUPVAL || hasjumps(e))
  725. luaK_exp2anyreg(fs, e);
  726. }
  727. /*
  728. ** Ensures final expression result is either in a register or it is
  729. ** a constant.
  730. */
  731. void luaK_exp2val (FuncState *fs, expdesc *e) {
  732. if (hasjumps(e))
  733. luaK_exp2anyreg(fs, e);
  734. else
  735. luaK_dischargevars(fs, e);
  736. }
  737. /*
  738. ** Ensures final expression result is in a valid R/K index
  739. ** (that is, it is either in a register or in 'k' with an index
  740. ** in the range of R/K indices).
  741. ** Returns 1 if expression is K, 0 otherwise.
  742. */
  743. int luaK_exp2RK (FuncState *fs, expdesc *e) {
  744. luaK_exp2val(fs, e);
  745. switch (e->k) { /* move constants to 'k' */
  746. case VTRUE: e->u.info = boolK(fs, 1); goto vk;
  747. case VFALSE: e->u.info = boolK(fs, 0); goto vk;
  748. case VNIL: e->u.info = nilK(fs); goto vk;
  749. case VKINT: e->u.info = luaK_intK(fs, e->u.ival); goto vk;
  750. case VKFLT: e->u.info = luaK_numberK(fs, e->u.nval); goto vk;
  751. case VK:
  752. vk:
  753. e->k = VK;
  754. if (e->u.info <= MAXINDEXRK) /* constant fits in 'argC'? */
  755. return 1;
  756. else break;
  757. default: break;
  758. }
  759. /* not a constant in the right range: put it in a register */
  760. luaK_exp2anyreg(fs, e);
  761. return 0;
  762. }
  763. static void codeABRK (FuncState *fs, OpCode o, int a, int b,
  764. expdesc *ec) {
  765. int k = luaK_exp2RK(fs, ec);
  766. luaK_codeABCk(fs, o, a, b, ec->u.info, k);
  767. }
  768. /*
  769. ** Generate code to store result of expression 'ex' into variable 'var'.
  770. */
  771. void luaK_storevar (FuncState *fs, expdesc *var, expdesc *ex) {
  772. switch (var->k) {
  773. case VLOCAL: {
  774. freeexp(fs, ex);
  775. exp2reg(fs, ex, var->u.info); /* compute 'ex' into proper place */
  776. return;
  777. }
  778. case VUPVAL: {
  779. int e = luaK_exp2anyreg(fs, ex);
  780. luaK_codeABC(fs, OP_SETUPVAL, e, var->u.info, 0);
  781. break;
  782. }
  783. case VINDEXUP: {
  784. codeABRK(fs, OP_SETTABUP, var->u.ind.t, var->u.ind.idx, ex);
  785. break;
  786. }
  787. case VINDEXI: {
  788. codeABRK(fs, OP_SETI, var->u.ind.t, var->u.ind.idx, ex);
  789. break;
  790. }
  791. case VINDEXSTR: {
  792. codeABRK(fs, OP_SETFIELD, var->u.ind.t, var->u.ind.idx, ex);
  793. break;
  794. }
  795. case VINDEXED: {
  796. codeABRK(fs, OP_SETTABLE, var->u.ind.t, var->u.ind.idx, ex);
  797. break;
  798. }
  799. default: lua_assert(0); /* invalid var kind to store */
  800. }
  801. freeexp(fs, ex);
  802. }
  803. /*
  804. ** Emit SELF instruction (convert expression 'e' into 'e:key(e,').
  805. */
  806. void luaK_self (FuncState *fs, expdesc *e, expdesc *key) {
  807. int ereg;
  808. luaK_exp2anyreg(fs, e);
  809. ereg = e->u.info; /* register where 'e' was placed */
  810. freeexp(fs, e);
  811. e->u.info = fs->freereg; /* base register for op_self */
  812. e->k = VNONRELOC; /* self expression has a fixed register */
  813. luaK_reserveregs(fs, 2); /* function and 'self' produced by op_self */
  814. codeABRK(fs, OP_SELF, e->u.info, ereg, key);
  815. freeexp(fs, key);
  816. }
  817. /*
  818. ** Negate condition 'e' (where 'e' is a comparison).
  819. */
  820. static void negatecondition (FuncState *fs, expdesc *e) {
  821. Instruction *pc = getjumpcontrol(fs, e->u.info);
  822. lua_assert(testTMode(GET_OPCODE(*pc)) && GET_OPCODE(*pc) != OP_TESTSET &&
  823. GET_OPCODE(*pc) != OP_TEST);
  824. SETARG_k(*pc, (GETARG_k(*pc) ^ 1));
  825. }
  826. /*
  827. ** Emit instruction to jump if 'e' is 'cond' (that is, if 'cond'
  828. ** is true, code will jump if 'e' is true.) Return jump position.
  829. ** Optimize when 'e' is 'not' something, inverting the condition
  830. ** and removing the 'not'.
  831. */
  832. static int jumponcond (FuncState *fs, expdesc *e, int cond) {
  833. if (e->k == VRELOCABLE) {
  834. Instruction ie = getinstruction(fs, e);
  835. if (GET_OPCODE(ie) == OP_NOT) {
  836. fs->pc--; /* remove previous OP_NOT */
  837. return condjump(fs, OP_TEST, GETARG_B(ie), 0, 0, !cond);
  838. }
  839. /* else go through */
  840. }
  841. discharge2anyreg(fs, e);
  842. freeexp(fs, e);
  843. return condjump(fs, OP_TESTSET, NO_REG, e->u.info, 0, cond);
  844. }
  845. /*
  846. ** Emit code to go through if 'e' is true, jump otherwise.
  847. */
  848. void luaK_goiftrue (FuncState *fs, expdesc *e) {
  849. int pc; /* pc of new jump */
  850. luaK_dischargevars(fs, e);
  851. switch (e->k) {
  852. case VJMP: { /* condition? */
  853. negatecondition(fs, e); /* jump when it is false */
  854. pc = e->u.info; /* save jump position */
  855. break;
  856. }
  857. case VK: case VKFLT: case VKINT: case VTRUE: {
  858. pc = NO_JUMP; /* always true; do nothing */
  859. break;
  860. }
  861. default: {
  862. pc = jumponcond(fs, e, 0); /* jump when false */
  863. break;
  864. }
  865. }
  866. luaK_concat(fs, &e->f, pc); /* insert new jump in false list */
  867. luaK_patchtohere(fs, e->t); /* true list jumps to here (to go through) */
  868. e->t = NO_JUMP;
  869. }
  870. /*
  871. ** Emit code to go through if 'e' is false, jump otherwise.
  872. */
  873. void luaK_goiffalse (FuncState *fs, expdesc *e) {
  874. int pc; /* pc of new jump */
  875. luaK_dischargevars(fs, e);
  876. switch (e->k) {
  877. case VJMP: {
  878. pc = e->u.info; /* already jump if true */
  879. break;
  880. }
  881. case VNIL: case VFALSE: {
  882. pc = NO_JUMP; /* always false; do nothing */
  883. break;
  884. }
  885. default: {
  886. pc = jumponcond(fs, e, 1); /* jump if true */
  887. break;
  888. }
  889. }
  890. luaK_concat(fs, &e->t, pc); /* insert new jump in 't' list */
  891. luaK_patchtohere(fs, e->f); /* false list jumps to here (to go through) */
  892. e->f = NO_JUMP;
  893. }
  894. /*
  895. ** Code 'not e', doing constant folding.
  896. */
  897. static void codenot (FuncState *fs, expdesc *e) {
  898. luaK_dischargevars(fs, e);
  899. switch (e->k) {
  900. case VNIL: case VFALSE: {
  901. e->k = VTRUE; /* true == not nil == not false */
  902. break;
  903. }
  904. case VK: case VKFLT: case VKINT: case VTRUE: {
  905. e->k = VFALSE; /* false == not "x" == not 0.5 == not 1 == not true */
  906. break;
  907. }
  908. case VJMP: {
  909. negatecondition(fs, e);
  910. break;
  911. }
  912. case VRELOCABLE:
  913. case VNONRELOC: {
  914. discharge2anyreg(fs, e);
  915. freeexp(fs, e);
  916. e->u.info = luaK_codeABC(fs, OP_NOT, 0, e->u.info, 0);
  917. e->k = VRELOCABLE;
  918. break;
  919. }
  920. default: lua_assert(0); /* cannot happen */
  921. }
  922. /* interchange true and false lists */
  923. { int temp = e->f; e->f = e->t; e->t = temp; }
  924. removevalues(fs, e->f); /* values are useless when negated */
  925. removevalues(fs, e->t);
  926. }
  927. /*
  928. ** Check whether expression 'e' is a small literal string
  929. */
  930. static int isKstr (FuncState *fs, expdesc *e) {
  931. return (e->k == VK && !hasjumps(e) && e->u.info <= MAXARG_B &&
  932. ttisshrstring(&fs->f->k[e->u.info]));
  933. }
  934. /*
  935. ** Check whether expression 'e' is a literal integer in
  936. ** proper range to fit in register C
  937. */
  938. static int isCint (expdesc *e) {
  939. return (e->k == VKINT && !hasjumps(e) &&
  940. l_castS2U(e->u.ival) <= l_castS2U(MAXARG_C));
  941. }
  942. /*
  943. ** Check whether expression 'e' is a literal integer in
  944. ** proper range to fit in register sC
  945. */
  946. static int isSCint (expdesc *e) {
  947. return (e->k == VKINT && !hasjumps(e) &&
  948. l_castS2U(e->u.ival + MAXARG_sC) <= l_castS2U(MAXARG_C));
  949. }
  950. /*
  951. ** Check whether expression 'e' is a literal integer or float in
  952. ** proper range to fit in register sC
  953. */
  954. static int isSCnumber (expdesc *e, lua_Integer *i) {
  955. if (e->k == VKINT)
  956. *i = e->u.ival;
  957. else if (!(e->k == VKFLT && floatI(e->u.nval, i)))
  958. return 0; /* not a number */
  959. *i += MAXARG_sC;
  960. return (!hasjumps(e) && l_castS2U(*i) <= l_castS2U(MAXARG_C));
  961. }
  962. /*
  963. ** Create expression 't[k]'. 't' must have its final result already in a
  964. ** register or upvalue. Upvalues can only be indexed by literal strings.
  965. ** Keys can be literal strings in the constant table or arbitrary
  966. ** values in registers.
  967. */
  968. void luaK_indexed (FuncState *fs, expdesc *t, expdesc *k) {
  969. lua_assert(!hasjumps(t) && (vkisinreg(t->k) || t->k == VUPVAL));
  970. if (t->k == VUPVAL && !isKstr(fs, k)) /* upvalue indexed by non string? */
  971. luaK_exp2anyreg(fs, t); /* put it in a register */
  972. t->u.ind.t = t->u.info; /* register or upvalue index */
  973. if (t->k == VUPVAL) {
  974. t->u.ind.idx = k->u.info; /* literal string */
  975. t->k = VINDEXUP;
  976. }
  977. else if (isKstr(fs, k)) {
  978. t->u.ind.idx = k->u.info; /* literal string */
  979. t->k = VINDEXSTR;
  980. }
  981. else if (isCint(k)) {
  982. t->u.ind.idx = k->u.ival; /* integer constant */
  983. t->k = VINDEXI;
  984. }
  985. else {
  986. t->u.ind.idx = luaK_exp2anyreg(fs, k); /* register */
  987. t->k = VINDEXED;
  988. }
  989. }
  990. /*
  991. ** Return false if folding can raise an error.
  992. ** Bitwise operations need operands convertible to integers; division
  993. ** operations cannot have 0 as divisor.
  994. */
  995. static int validop (int op, TValue *v1, TValue *v2) {
  996. switch (op) {
  997. case LUA_OPBAND: case LUA_OPBOR: case LUA_OPBXOR:
  998. case LUA_OPSHL: case LUA_OPSHR: case LUA_OPBNOT: { /* conversion errors */
  999. lua_Integer i;
  1000. return (tointegerns(v1, &i) && tointegerns(v2, &i));
  1001. }
  1002. case LUA_OPDIV: case LUA_OPIDIV: case LUA_OPMOD: /* division by 0 */
  1003. return (nvalue(v2) != 0);
  1004. default: return 1; /* everything else is valid */
  1005. }
  1006. }
  1007. /*
  1008. ** Try to "constant-fold" an operation; return 1 iff successful.
  1009. ** (In this case, 'e1' has the final result.)
  1010. */
  1011. static int constfolding (FuncState *fs, int op, expdesc *e1,
  1012. const expdesc *e2) {
  1013. TValue v1, v2, res;
  1014. if (!tonumeral(e1, &v1) || !tonumeral(e2, &v2) || !validop(op, &v1, &v2))
  1015. return 0; /* non-numeric operands or not safe to fold */
  1016. luaO_rawarith(fs->ls->L, op, &v1, &v2, &res); /* does operation */
  1017. if (ttisinteger(&res)) {
  1018. e1->k = VKINT;
  1019. e1->u.ival = ivalue(&res);
  1020. }
  1021. else { /* folds neither NaN nor 0.0 (to avoid problems with -0.0) */
  1022. lua_Number n = fltvalue(&res);
  1023. if (luai_numisnan(n) || n == 0)
  1024. return 0;
  1025. e1->k = VKFLT;
  1026. e1->u.nval = n;
  1027. }
  1028. return 1;
  1029. }
  1030. /*
  1031. ** Emit code for unary expressions that "produce values"
  1032. ** (everything but 'not').
  1033. ** Expression to produce final result will be encoded in 'e'.
  1034. */
  1035. static void codeunexpval (FuncState *fs, OpCode op, expdesc *e, int line) {
  1036. int r = luaK_exp2anyreg(fs, e); /* opcodes operate only on registers */
  1037. freeexp(fs, e);
  1038. e->u.info = luaK_codeABC(fs, op, 0, r, 0); /* generate opcode */
  1039. e->k = VRELOCABLE; /* all those operations are relocatable */
  1040. luaK_fixline(fs, line);
  1041. }
  1042. /*
  1043. ** Emit code for binary expressions that "produce values"
  1044. ** (everything but logical operators 'and'/'or' and comparison
  1045. ** operators).
  1046. ** Expression to produce final result will be encoded in 'e1'.
  1047. ** Because 'luaK_exp2anyreg' can free registers, its calls must be
  1048. ** in "stack order" (that is, first on 'e2', which may have more
  1049. ** recent registers to be released).
  1050. */
  1051. static void codebinexpval (FuncState *fs, OpCode op,
  1052. expdesc *e1, expdesc *e2, int line) {
  1053. int v2 = luaK_exp2anyreg(fs, e2); /* both operands are in registers */
  1054. int v1 = luaK_exp2anyreg(fs, e1);
  1055. freeexps(fs, e1, e2);
  1056. e1->u.info = luaK_codeABC(fs, op, 0, v1, v2); /* generate opcode */
  1057. e1->k = VRELOCABLE; /* all those operations are relocatable */
  1058. luaK_fixline(fs, line);
  1059. }
  1060. /*
  1061. ** Code arithmetic operators ('+', '-', ...). If second operand is a
  1062. ** constant in the proper range, use variant opcodes with immediate
  1063. ** operands.
  1064. */
  1065. static void codearith (FuncState *fs, OpCode op,
  1066. expdesc *e1, expdesc *e2, int flip, int line) {
  1067. if (!isSCint(e2))
  1068. codebinexpval(fs, op, e1, e2, line); /* use standard operators */
  1069. else { /* use immediate operators */
  1070. int v2 = cast_int(e2->u.ival); /* immediate operand */
  1071. int v1 = luaK_exp2anyreg(fs, e1);
  1072. op = cast(OpCode, op - OP_ADD + OP_ADDI);
  1073. freeexp(fs, e1);
  1074. e1->u.info = codeABsC(fs, op, 0, v1, v2, flip); /* generate opcode */
  1075. e1->k = VRELOCABLE; /* all those operations are relocatable */
  1076. luaK_fixline(fs, line);
  1077. }
  1078. }
  1079. static void swapexps (expdesc *e1, expdesc *e2) {
  1080. expdesc temp = *e1; *e1 = *e2; *e2 = temp; /* swap 'e1' and 'e2' */
  1081. }
  1082. /*
  1083. ** Code commutative operators ('+', '*'). If first operand is a
  1084. ** constant, change order of operands to use immediate operator.
  1085. */
  1086. static void codecommutative (FuncState *fs, OpCode op,
  1087. expdesc *e1, expdesc *e2, int line) {
  1088. int flip = 0;
  1089. if (isSCint(e1)) {
  1090. swapexps(e1, e2);
  1091. flip = 1;
  1092. }
  1093. codearith(fs, op, e1, e2, flip, line);
  1094. }
  1095. /*
  1096. ** Emit code for order comparisons.
  1097. ** When the first operand is an integral value in the proper range,
  1098. ** change (A < B) to (!(B <= A)) and (A <= B) to (!(B < A)) so that
  1099. ** it can use an immediate operand. In this case, C indicates this
  1100. ** change, for cases that cannot assume a total order (NaN and
  1101. ** metamethods).
  1102. */
  1103. static void codeorder (FuncState *fs, OpCode op, expdesc *e1, expdesc *e2) {
  1104. int r1, r2;
  1105. int cond = 1;
  1106. int C = 0;
  1107. lua_Integer im;
  1108. if (isSCnumber(e2, &im)) {
  1109. /* use immediate operand */
  1110. r1 = luaK_exp2anyreg(fs, e1);
  1111. r2 = cast_int(im);
  1112. op = cast(OpCode, (op - OP_LT) + OP_LTI);
  1113. }
  1114. else if (isSCnumber(e1, &im)) {
  1115. /* transform (A < B) to (!(B <= A)) and (A <= B) to (!(B < A)) */
  1116. r1 = luaK_exp2anyreg(fs, e2);
  1117. r2 = cast_int(im);
  1118. op = (op == OP_LT) ? OP_LEI : OP_LTI;
  1119. cond = 0; /* negate original test */
  1120. C = 1; /* indication that it used the transformations */
  1121. }
  1122. else { /* regular case, compare two registers */
  1123. r1 = luaK_exp2anyreg(fs, e1);
  1124. r2 = luaK_exp2anyreg(fs, e2);
  1125. }
  1126. freeexps(fs, e1, e2);
  1127. e1->u.info = condjump(fs, op, r1, r2, C, cond);
  1128. e1->k = VJMP;
  1129. }
  1130. /*
  1131. ** Emit code for equality comparisons ('==', '~=').
  1132. ** 'e1' was already put as RK by 'luaK_infix'.
  1133. */
  1134. static void codeeq (FuncState *fs, BinOpr opr, expdesc *e1, expdesc *e2) {
  1135. int r1, r2;
  1136. lua_Integer im;
  1137. OpCode op;
  1138. if (e1->k != VNONRELOC) {
  1139. lua_assert(e1->k == VK || e1->k == VKINT || e1->k == VKFLT);
  1140. swapexps(e1, e2);
  1141. }
  1142. r1 = luaK_exp2anyreg(fs, e1); /* 1nd expression must be in register */
  1143. if (isSCnumber(e2, &im)) {
  1144. op = OP_EQI;
  1145. r2 = cast_int(im); /* immediate operand */
  1146. }
  1147. else if (luaK_exp2RK(fs, e2)) { /* 1st expression is constant? */
  1148. op = OP_EQK;
  1149. r2 = e2->u.info; /* constant index */
  1150. }
  1151. else {
  1152. op = OP_EQ; /* will compare two registers */
  1153. r2 = luaK_exp2anyreg(fs, e2);
  1154. }
  1155. freeexps(fs, e1, e2);
  1156. e1->u.info = condjump(fs, op, r1, r2, 0, (opr == OPR_EQ));
  1157. e1->k = VJMP;
  1158. }
  1159. /*
  1160. ** Apply prefix operation 'op' to expression 'e'.
  1161. */
  1162. void luaK_prefix (FuncState *fs, UnOpr op, expdesc *e, int line) {
  1163. static const expdesc ef = {VKINT, {0}, NO_JUMP, NO_JUMP};
  1164. switch (op) {
  1165. case OPR_MINUS: case OPR_BNOT: /* use 'ef' as fake 2nd operand */
  1166. if (constfolding(fs, op + LUA_OPUNM, e, &ef))
  1167. break;
  1168. /* FALLTHROUGH */
  1169. case OPR_LEN:
  1170. codeunexpval(fs, cast(OpCode, op + OP_UNM), e, line);
  1171. break;
  1172. case OPR_NOT: codenot(fs, e); break;
  1173. default: lua_assert(0);
  1174. }
  1175. }
  1176. /*
  1177. ** Process 1st operand 'v' of binary operation 'op' before reading
  1178. ** 2nd operand.
  1179. */
  1180. void luaK_infix (FuncState *fs, BinOpr op, expdesc *v) {
  1181. switch (op) {
  1182. case OPR_AND: {
  1183. luaK_goiftrue(fs, v); /* go ahead only if 'v' is true */
  1184. break;
  1185. }
  1186. case OPR_OR: {
  1187. luaK_goiffalse(fs, v); /* go ahead only if 'v' is false */
  1188. break;
  1189. }
  1190. case OPR_CONCAT: {
  1191. luaK_exp2nextreg(fs, v); /* operand must be on the 'stack' */
  1192. break;
  1193. }
  1194. case OPR_ADD: case OPR_SUB:
  1195. case OPR_MUL: case OPR_DIV: case OPR_IDIV:
  1196. case OPR_MOD: case OPR_POW:
  1197. case OPR_BAND: case OPR_BOR: case OPR_BXOR:
  1198. case OPR_SHL: case OPR_SHR: {
  1199. if (!tonumeral(v, NULL))
  1200. luaK_exp2anyreg(fs, v);
  1201. /* else keep numeral, which may be folded with 2nd operand */
  1202. break;
  1203. }
  1204. case OPR_EQ: case OPR_NE: {
  1205. if (!tonumeral(v, NULL))
  1206. luaK_exp2RK(fs, v);
  1207. /* else keep numeral, which may be an immediate operand */
  1208. break;
  1209. }
  1210. case OPR_LT: case OPR_LE:
  1211. case OPR_GT: case OPR_GE: {
  1212. lua_Integer dummy;
  1213. if (!isSCnumber(v, &dummy))
  1214. luaK_exp2anyreg(fs, v);
  1215. /* else keep numeral, which may be an immediate operand */
  1216. break;
  1217. }
  1218. default: lua_assert(0);
  1219. }
  1220. }
  1221. /*
  1222. ** Finalize code for binary operation, after reading 2nd operand.
  1223. ** For '(a .. b .. c)' (which is '(a .. (b .. c))', because
  1224. ** concatenation is right associative), merge second CONCAT into first
  1225. ** one.
  1226. */
  1227. void luaK_posfix (FuncState *fs, BinOpr opr,
  1228. expdesc *e1, expdesc *e2, int line) {
  1229. switch (opr) {
  1230. case OPR_AND: {
  1231. lua_assert(e1->t == NO_JUMP); /* list closed by 'luK_infix' */
  1232. luaK_dischargevars(fs, e2);
  1233. luaK_concat(fs, &e2->f, e1->f);
  1234. *e1 = *e2;
  1235. break;
  1236. }
  1237. case OPR_OR: {
  1238. lua_assert(e1->f == NO_JUMP); /* list closed by 'luK_infix' */
  1239. luaK_dischargevars(fs, e2);
  1240. luaK_concat(fs, &e2->t, e1->t);
  1241. *e1 = *e2;
  1242. break;
  1243. }
  1244. case OPR_CONCAT: {
  1245. luaK_exp2val(fs, e2);
  1246. if (e2->k == VRELOCABLE &&
  1247. GET_OPCODE(getinstruction(fs, e2)) == OP_CONCAT) {
  1248. lua_assert(e1->u.info == GETARG_B(getinstruction(fs, e2))-1);
  1249. freeexp(fs, e1);
  1250. SETARG_B(getinstruction(fs, e2), e1->u.info);
  1251. e1->k = VRELOCABLE; e1->u.info = e2->u.info;
  1252. }
  1253. else {
  1254. luaK_exp2nextreg(fs, e2); /* operand must be on the 'stack' */
  1255. codebinexpval(fs, OP_CONCAT, e1, e2, line);
  1256. }
  1257. break;
  1258. }
  1259. case OPR_ADD: case OPR_MUL: {
  1260. if (!constfolding(fs, opr + LUA_OPADD, e1, e2))
  1261. codecommutative(fs, cast(OpCode, opr + OP_ADD), e1, e2, line);
  1262. break;
  1263. }
  1264. case OPR_SUB: case OPR_DIV:
  1265. case OPR_IDIV: case OPR_MOD: case OPR_POW: {
  1266. if (!constfolding(fs, opr + LUA_OPADD, e1, e2))
  1267. codearith(fs, cast(OpCode, opr + OP_ADD), e1, e2, 0, line);
  1268. break;
  1269. }
  1270. case OPR_BAND: case OPR_BOR: case OPR_BXOR:
  1271. case OPR_SHL: case OPR_SHR: {
  1272. if (!constfolding(fs, opr + LUA_OPADD, e1, e2))
  1273. codebinexpval(fs, cast(OpCode, opr + OP_ADD), e1, e2, line);
  1274. break;
  1275. }
  1276. case OPR_EQ: case OPR_NE: {
  1277. codeeq(fs, opr, e1, e2);
  1278. break;
  1279. }
  1280. case OPR_LT: case OPR_LE: {
  1281. OpCode op = cast(OpCode, (opr - OPR_EQ) + OP_EQ);
  1282. codeorder(fs, op, e1, e2);
  1283. break;
  1284. }
  1285. case OPR_GT: case OPR_GE: {
  1286. /* '(a > b)' <=> '(b < a)'; '(a >= b)' <=> '(b <= a)' */
  1287. OpCode op = cast(OpCode, (opr - OPR_NE) + OP_EQ);
  1288. swapexps(e1, e2);
  1289. codeorder(fs, op, e1, e2);
  1290. break;
  1291. }
  1292. default: lua_assert(0);
  1293. }
  1294. }
  1295. /*
  1296. ** Change line information associated with current position. If that
  1297. ** information is absolute, just change it and correct 'previousline'.
  1298. ** Otherwise, restore 'previousline' to its value before saving the
  1299. ** current position and than saves the line information again, with the
  1300. ** new line.
  1301. */
  1302. void luaK_fixline (FuncState *fs, int line) {
  1303. Proto *f = fs->f;
  1304. if (f->lineinfo[fs->pc - 1] == ABSLINEINFO) {
  1305. lua_assert(f->abslineinfo[fs->nabslineinfo - 1].pc == fs->pc - 1);
  1306. f->abslineinfo[fs->nabslineinfo - 1].line = line;
  1307. fs->previousline = line;
  1308. }
  1309. else {
  1310. fs->previousline -= f->lineinfo[fs->pc - 1]; /* undo previous info. */
  1311. savelineinfo(fs, f, fs->pc - 1, line); /* redo it */
  1312. }
  1313. }
  1314. /*
  1315. ** Emit a SETLIST instruction.
  1316. ** 'base' is register that keeps table;
  1317. ** 'nelems' is #table plus those to be stored now;
  1318. ** 'tostore' is number of values (in registers 'base + 1',...) to add to
  1319. ** table (or LUA_MULTRET to add up to stack top).
  1320. */
  1321. void luaK_setlist (FuncState *fs, int base, int nelems, int tostore) {
  1322. int c = (nelems - 1)/LFIELDS_PER_FLUSH + 1;
  1323. int b = (tostore == LUA_MULTRET) ? 0 : tostore;
  1324. lua_assert(tostore != 0 && tostore <= LFIELDS_PER_FLUSH);
  1325. if (c <= MAXARG_C)
  1326. luaK_codeABC(fs, OP_SETLIST, base, b, c);
  1327. else if (c <= MAXARG_Ax) {
  1328. luaK_codeABC(fs, OP_SETLIST, base, b, 0);
  1329. codeextraarg(fs, c);
  1330. }
  1331. else
  1332. luaX_syntaxerror(fs->ls, "constructor too long");
  1333. fs->freereg = base + 1; /* free registers with list values */
  1334. }
  1335. /*
  1336. ** return the final target of a jump (skipping jumps to jumps)
  1337. */
  1338. static int finaltarget (Instruction *code, int i) {
  1339. int count;
  1340. for (count = 0; count < 100; count++) { /* avoid infinite loops */
  1341. Instruction pc = code[i];
  1342. if (GET_OPCODE(pc) != OP_JMP)
  1343. break;
  1344. else
  1345. i += GETARG_sJ(pc) + 1;
  1346. }
  1347. return i;
  1348. }
  1349. /*
  1350. ** Do a final pass over the code of a function, doing small peephole
  1351. ** optimizations and adjustments.
  1352. */
  1353. void luaK_finish (FuncState *fs) {
  1354. int i;
  1355. Proto *p = fs->f;
  1356. for (i = 0; i < fs->pc; i++) {
  1357. Instruction *pc = &p->code[i];
  1358. switch (GET_OPCODE(*pc)) {
  1359. case OP_RETURN: case OP_RETURN0: case OP_RETURN1:
  1360. case OP_TAILCALL: {
  1361. if (p->sizep > 0)
  1362. SETARG_k(*pc, 1); /* signal that they must close upvalues */
  1363. break;
  1364. }
  1365. case OP_JMP: {
  1366. int target = finaltarget(p->code, i);
  1367. fixjump(fs, i, target);
  1368. break;
  1369. }
  1370. default: break;
  1371. }
  1372. }
  1373. }