lcode.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635
  1. /*
  2. ** $Id: lcode.c,v 1.28 2000/04/19 13:41:37 roberto Exp roberto $
  3. ** Code generator for Lua
  4. ** See Copyright Notice in lua.h
  5. */
  6. #include "stdlib.h"
  7. #define LUA_REENTRANT
  8. #include "lcode.h"
  9. #include "ldo.h"
  10. #include "llex.h"
  11. #include "lmem.h"
  12. #include "lobject.h"
  13. #include "lopcodes.h"
  14. #include "lparser.h"
  15. void luaK_error (LexState *ls, const char *msg) {
  16. luaX_error(ls, msg, ls->token);
  17. }
  18. /*
  19. ** Returns the the previous instruction, for optimizations.
  20. ** If there is a jump target between this and the current instruction,
  21. ** returns a dummy instruction to avoid wrong optimizations.
  22. */
  23. static Instruction previous_instruction (FuncState *fs) {
  24. if (fs->pc > fs->lasttarget) /* no jumps to current position? */
  25. return fs->f->code[fs->pc-1]; /* returns previous instruction */
  26. else
  27. return CREATE_0(OP_END); /* no optimizations after an `END' */
  28. }
  29. int luaK_jump (FuncState *fs) {
  30. int j = luaK_code0(fs, OP_JMP);
  31. if (j == fs->lasttarget) { /* possible jumps to this jump? */
  32. luaK_concat(fs, &j, fs->jlt); /* keep them on hold */
  33. fs->jlt = NO_JUMP;
  34. }
  35. return j;
  36. }
  37. static void luaK_fixjump (FuncState *fs, int pc, int dest) {
  38. Instruction *jmp = &fs->f->code[pc];
  39. if (dest == NO_JUMP)
  40. SETARG_S(*jmp, NO_JUMP); /* point to itself to represent end of list */
  41. else { /* jump is relative to position following jump instruction */
  42. int offset = dest-(pc+1);
  43. if (abs(offset) > MAXARG_S)
  44. luaK_error(fs->ls, "control structure too long");
  45. SETARG_S(*jmp, offset);
  46. }
  47. }
  48. static int luaK_getjump (FuncState *fs, int pc) {
  49. int offset = GETARG_S(fs->f->code[pc]);
  50. if (offset == NO_JUMP) /* point to itself represents end of list */
  51. return NO_JUMP; /* end of list */
  52. else
  53. return (pc+1)+offset; /* turn offset into absolute position */
  54. }
  55. /*
  56. ** discharge list of jumps to last target.
  57. ** returns current `pc' and marks it as a jump target (to avoid wrong
  58. ** optimizations with consecutive instructions not in the same basic block).
  59. */
  60. int luaK_getlabel (FuncState *fs) {
  61. if (fs->pc != fs->lasttarget) {
  62. int lasttarget = fs->lasttarget;
  63. fs->lasttarget = fs->pc;
  64. luaK_patchlist(fs, fs->jlt, lasttarget); /* discharge old list `jlt' */
  65. fs->jlt = NO_JUMP; /* nobody jumps to this new label (till now) */
  66. }
  67. return fs->pc;
  68. }
  69. void luaK_deltastack (FuncState *fs, int delta) {
  70. fs->stacklevel += delta;
  71. if (delta > 0 && fs->stacklevel > fs->f->maxstacksize) {
  72. if (fs->stacklevel > MAXSTACK)
  73. luaK_error(fs->ls, "function or expression too complex");
  74. fs->f->maxstacksize = fs->stacklevel;
  75. }
  76. }
  77. void luaK_kstr (LexState *ls, int c) {
  78. luaK_code1(ls->fs, OP_PUSHSTRING, c);
  79. }
  80. static int real_constant (FuncState *fs, Number r) {
  81. /* check whether `r' has appeared within the last LOOKBACKNUMS entries */
  82. Proto *f = fs->f;
  83. int c = f->nknum;
  84. int lim = c < LOOKBACKNUMS ? 0 : c-LOOKBACKNUMS;
  85. while (--c >= lim)
  86. if (f->knum[c] == r) return c;
  87. /* not found; create a new entry */
  88. luaM_growvector(fs->L, f->knum, f->nknum, 1, Number, constantEM, MAXARG_U);
  89. c = f->nknum++;
  90. f->knum[c] = r;
  91. return c;
  92. }
  93. void luaK_number (FuncState *fs, Number f) {
  94. if (f <= (Number)MAXARG_S && (int)f == f)
  95. luaK_code1(fs, OP_PUSHINT, (int)f); /* f has a short integer value */
  96. else
  97. luaK_code1(fs, OP_PUSHNUM, real_constant(fs, f));
  98. }
  99. void luaK_adjuststack (FuncState *fs, int n) {
  100. if (n > 0)
  101. luaK_code1(fs, OP_POP, n);
  102. else if (n < 0)
  103. luaK_code1(fs, OP_PUSHNIL, -n);
  104. }
  105. int luaK_lastisopen (FuncState *fs) {
  106. /* check whether last instruction is an open function call */
  107. Instruction i = previous_instruction(fs);
  108. if (GET_OPCODE(i) == OP_CALL && GETARG_B(i) == MULT_RET)
  109. return 1;
  110. else return 0;
  111. }
  112. void luaK_setcallreturns (FuncState *fs, int nresults) {
  113. if (luaK_lastisopen(fs)) { /* expression is an open function call? */
  114. SETARG_B(fs->f->code[fs->pc-1], nresults); /* set number of results */
  115. luaK_deltastack(fs, nresults); /* push results */
  116. }
  117. }
  118. static int discharge (FuncState *fs, expdesc *var) {
  119. switch (var->k) {
  120. case VLOCAL:
  121. luaK_code1(fs, OP_GETLOCAL, var->u.index);
  122. break;
  123. case VGLOBAL:
  124. luaK_code1(fs, OP_GETGLOBAL, var->u.index);
  125. break;
  126. case VINDEXED:
  127. luaK_code0(fs, OP_GETTABLE);
  128. break;
  129. case VEXP:
  130. return 0; /* nothing to do */
  131. }
  132. var->k = VEXP;
  133. var->u.l.t = var->u.l.f = NO_JUMP;
  134. return 1;
  135. }
  136. static void discharge1 (FuncState *fs, expdesc *var) {
  137. discharge(fs, var);
  138. /* if it has jumps it is already discharged */
  139. if (var->u.l.t == NO_JUMP && var->u.l.f == NO_JUMP)
  140. luaK_setcallreturns(fs, 1); /* call must return 1 value */
  141. }
  142. void luaK_storevar (LexState *ls, const expdesc *var) {
  143. FuncState *fs = ls->fs;
  144. switch (var->k) {
  145. case VLOCAL:
  146. luaK_code1(fs, OP_SETLOCAL, var->u.index);
  147. break;
  148. case VGLOBAL:
  149. luaK_code1(fs, OP_SETGLOBAL, var->u.index);
  150. break;
  151. case VINDEXED: /* table is at top-3; pop 3 elements after operation */
  152. luaK_code2(fs, OP_SETTABLE, 3, 3);
  153. break;
  154. default:
  155. LUA_INTERNALERROR(ls->L, "invalid var kind to store");
  156. }
  157. }
  158. static OpCode invertjump (OpCode op) {
  159. switch (op) {
  160. case OP_JMPNE: return OP_JMPEQ;
  161. case OP_JMPEQ: return OP_JMPNE;
  162. case OP_JMPLT: return OP_JMPGE;
  163. case OP_JMPLE: return OP_JMPGT;
  164. case OP_JMPGT: return OP_JMPLE;
  165. case OP_JMPGE: return OP_JMPLT;
  166. case OP_JMPT: case OP_JMPONT: return OP_JMPF;
  167. case OP_JMPF: case OP_JMPONF: return OP_JMPT;
  168. default:
  169. LUA_INTERNALERROR(NULL, "invalid jump instruction");
  170. return OP_END; /* to avoid warnings */
  171. }
  172. }
  173. static void luaK_patchlistaux (FuncState *fs, int list, int target,
  174. OpCode special, int special_target) {
  175. Instruction *code = fs->f->code;
  176. while (list != NO_JUMP) {
  177. int next = luaK_getjump(fs, list);
  178. Instruction *i = &code[list];
  179. OpCode op = GET_OPCODE(*i);
  180. if (op == special) /* this `op' already has a value */
  181. luaK_fixjump(fs, list, special_target);
  182. else {
  183. luaK_fixjump(fs, list, target); /* do the patch */
  184. if (op == OP_JMPONT) /* remove eventual values */
  185. SET_OPCODE(*i, OP_JMPT);
  186. else if (op == OP_JMPONF)
  187. SET_OPCODE(*i, OP_JMPF);
  188. }
  189. list = next;
  190. }
  191. }
  192. void luaK_patchlist (FuncState *fs, int list, int target) {
  193. if (target == fs->lasttarget) /* same target that list `jlt'? */
  194. luaK_concat(fs, &fs->jlt, list); /* delay fixing */
  195. else
  196. luaK_patchlistaux(fs, list, target, OP_END, 0);
  197. }
  198. static int need_value (FuncState *fs, int list, OpCode hasvalue) {
  199. /* check whether list has a jump without a value */
  200. for (; list != NO_JUMP; list = luaK_getjump(fs, list))
  201. if (GET_OPCODE(fs->f->code[list]) != hasvalue) return 1;
  202. return 0; /* not found */
  203. }
  204. void luaK_concat (FuncState *fs, int *l1, int l2) {
  205. if (*l1 == NO_JUMP)
  206. *l1 = l2;
  207. else {
  208. int list = *l1;
  209. for (;;) { /* traverse `l1' */
  210. int next = luaK_getjump(fs, list);
  211. if (next == NO_JUMP) { /* end of list? */
  212. luaK_fixjump(fs, list, l2);
  213. return;
  214. }
  215. list = next;
  216. }
  217. }
  218. }
  219. static void luaK_testgo (FuncState *fs, expdesc *v, int invert, OpCode jump) {
  220. Instruction *previous;
  221. int *golist = &v->u.l.f;
  222. int *exitlist = &v->u.l.t;
  223. if (invert) { /* interchange `golist' and `exitlist' */
  224. int *temp = golist; golist = exitlist; exitlist = temp;
  225. }
  226. discharge1(fs, v);
  227. previous = &fs->f->code[fs->pc-1];
  228. LUA_ASSERT(L, GET_OPCODE(*previous) != OP_SETLINE, "bad place to set line");
  229. if (ISJUMP(GET_OPCODE(*previous))) {
  230. if (invert)
  231. SET_OPCODE(*previous, invertjump(GET_OPCODE(*previous)));
  232. }
  233. else
  234. luaK_code0(fs, jump);
  235. luaK_concat(fs, exitlist, fs->pc-1); /* insert last jump in `exitlist' */
  236. luaK_patchlist(fs, *golist, luaK_getlabel(fs));
  237. *golist = NO_JUMP;
  238. }
  239. void luaK_goiftrue (FuncState *fs, expdesc *v, int keepvalue) {
  240. luaK_testgo(fs, v, 1, keepvalue ? OP_JMPONF : OP_JMPF);
  241. }
  242. void luaK_goiffalse (FuncState *fs, expdesc *v, int keepvalue) {
  243. luaK_testgo(fs, v, 0, keepvalue ? OP_JMPONT : OP_JMPT);
  244. }
  245. static int code_label (FuncState *fs, OpCode op, int arg) {
  246. int j = luaK_getlabel(fs);
  247. luaK_code1(fs, op, arg);
  248. return j;
  249. }
  250. void luaK_tostack (LexState *ls, expdesc *v, int onlyone) {
  251. FuncState *fs = ls->fs;
  252. if (!discharge(fs, v)) { /* `v' is an expression? */
  253. OpCode previous = GET_OPCODE(fs->f->code[fs->pc-1]);
  254. LUA_ASSERT(L, previous != OP_SETLINE, "bad place to set line");
  255. if (!ISJUMP(previous) && v->u.l.f == NO_JUMP && v->u.l.t == NO_JUMP) {
  256. /* expression has no jumps */
  257. if (onlyone)
  258. luaK_setcallreturns(fs, 1); /* call must return 1 value */
  259. }
  260. else { /* expression has jumps */
  261. int final; /* position after whole expression */
  262. int j = NO_JUMP; /* eventual jump over values */
  263. int p_nil = NO_JUMP; /* position of an eventual PUSHNIL */
  264. int p_1 = NO_JUMP; /* position of an eventual PUSHINT */
  265. if (ISJUMP(previous) || need_value(fs, v->u.l.f, OP_JMPONF) ||
  266. need_value(fs, v->u.l.t, OP_JMPONT)) {
  267. /* expression needs values */
  268. if (ISJUMP(previous))
  269. luaK_concat(fs, &v->u.l.t, fs->pc-1); /* put `previous' in t. list */
  270. else {
  271. j = code_label(fs, OP_JMP, 0); /* to jump over both pushes */
  272. luaK_deltastack(fs, -1); /* next PUSHes may be skipped */
  273. }
  274. p_nil = code_label(fs, OP_PUSHNILJMP, 0);
  275. p_1 = code_label(fs, OP_PUSHINT, 1);
  276. luaK_patchlist(fs, j, luaK_getlabel(fs));
  277. }
  278. final = luaK_getlabel(fs);
  279. luaK_patchlistaux(fs, v->u.l.f, p_nil, OP_JMPONF, final);
  280. luaK_patchlistaux(fs, v->u.l.t, p_1, OP_JMPONT, final);
  281. v->u.l.f = v->u.l.t = NO_JUMP;
  282. }
  283. }
  284. }
  285. void luaK_prefix (LexState *ls, int op, expdesc *v) {
  286. FuncState *fs = ls->fs;
  287. if (op == '-') {
  288. luaK_tostack(ls, v, 1);
  289. luaK_code0(fs, OP_MINUS);
  290. }
  291. else { /* op == NOT */
  292. Instruction *previous;
  293. discharge1(fs, v);
  294. previous = &fs->f->code[fs->pc-1];
  295. if (ISJUMP(GET_OPCODE(*previous)))
  296. SET_OPCODE(*previous, invertjump(GET_OPCODE(*previous)));
  297. else
  298. luaK_code0(fs, OP_NOT);
  299. /* interchange true and false lists */
  300. { int temp = v->u.l.f; v->u.l.f = v->u.l.t; v->u.l.t = temp; }
  301. }
  302. }
  303. void luaK_infix (LexState *ls, int op, expdesc *v) {
  304. FuncState *fs = ls->fs;
  305. if (op == TK_AND)
  306. luaK_goiftrue(fs, v, 1);
  307. else if (op == TK_OR)
  308. luaK_goiffalse(fs, v, 1);
  309. else
  310. luaK_tostack(ls, v, 1); /* all other binary operators need a value */
  311. }
  312. void luaK_posfix (LexState *ls, int op, expdesc *v1, expdesc *v2) {
  313. FuncState *fs = ls->fs;
  314. if (op == TK_AND) {
  315. LUA_ASSERT(ls->L, v1->u.l.t == NO_JUMP, "list must be closed");
  316. discharge1(fs, v2);
  317. v1->u.l.t = v2->u.l.t;
  318. luaK_concat(fs, &v1->u.l.f, v2->u.l.f);
  319. }
  320. else if (op == TK_OR) {
  321. LUA_ASSERT(ls->L, v1->u.l.f == NO_JUMP, "list must be closed");
  322. discharge1(fs, v2);
  323. v1->u.l.f = v2->u.l.f;
  324. luaK_concat(fs, &v1->u.l.t, v2->u.l.t);
  325. }
  326. else {
  327. luaK_tostack(ls, v2, 1); /* `v2' must be a value */
  328. switch (op) {
  329. case '+': luaK_code0(fs, OP_ADD); break;
  330. case '-': luaK_code0(fs, OP_SUB); break;
  331. case '*': luaK_code0(fs, OP_MULT); break;
  332. case '/': luaK_code0(fs, OP_DIV); break;
  333. case '^': luaK_code0(fs, OP_POW); break;
  334. case TK_CONCAT: luaK_code1(fs, OP_CONCAT, 2); break;
  335. case TK_EQ: luaK_code0(fs, OP_JMPEQ); break;
  336. case TK_NE: luaK_code0(fs, OP_JMPNE); break;
  337. case '>': luaK_code0(fs, OP_JMPGT); break;
  338. case '<': luaK_code0(fs, OP_JMPLT); break;
  339. case TK_GE: luaK_code0(fs, OP_JMPGE); break;
  340. case TK_LE: luaK_code0(fs, OP_JMPLE); break;
  341. }
  342. }
  343. }
  344. int luaK_code0 (FuncState *fs, OpCode o) {
  345. return luaK_code2(fs, o, 0, 0);
  346. }
  347. int luaK_code1 (FuncState *fs, OpCode o, int arg1) {
  348. return luaK_code2(fs, o, arg1, 0);
  349. }
  350. int luaK_code2 (FuncState *fs, OpCode o, int arg1, int arg2) {
  351. Instruction i = previous_instruction(fs);
  352. int delta = 0;
  353. enum {iO, iU, iS, iAB, iP} mode; /* instruction format (or iP to optimize) */
  354. mode = iP;
  355. switch (o) {
  356. case OP_CLOSURE:
  357. delta = -arg2+1;
  358. mode = iAB;
  359. break;
  360. case OP_SETLINE:
  361. mode = iU;
  362. break;
  363. case OP_CALL:
  364. mode = iAB;
  365. break;
  366. case OP_PUSHINT:
  367. delta = 1;
  368. mode = iS;
  369. break;
  370. case OP_SETTABLE:
  371. delta = -arg2;
  372. mode = iAB;
  373. break;
  374. case OP_SETLIST:
  375. delta = -(arg2+1);
  376. mode = iAB;
  377. break;
  378. case OP_SETMAP:
  379. delta = -2*(arg1+1);
  380. mode = iU;
  381. break;
  382. case OP_FORLOOP:
  383. delta = -3;
  384. arg1 = NO_JUMP;
  385. mode = iS;
  386. break;
  387. case OP_SETLOCAL:
  388. case OP_SETGLOBAL:
  389. delta = -1;
  390. mode = iU;
  391. break;
  392. case OP_FORPREP:
  393. case OP_JMP:
  394. arg1 = NO_JUMP;
  395. mode = iS;
  396. break;
  397. case OP_END:
  398. case OP_PUSHNILJMP:
  399. case OP_NOT:
  400. mode = iO;
  401. break;
  402. case OP_PUSHSTRING:
  403. case OP_PUSHNUM:
  404. case OP_PUSHNEGNUM:
  405. case OP_PUSHUPVALUE:
  406. case OP_GETLOCAL:
  407. case OP_GETGLOBAL:
  408. case OP_PUSHSELF:
  409. case OP_CREATETABLE:
  410. delta = 1;
  411. mode = iU;
  412. break;
  413. case OP_JMPLT:
  414. case OP_JMPLE:
  415. case OP_JMPGT:
  416. case OP_JMPGE:
  417. delta = -2;
  418. arg1 = NO_JUMP;
  419. mode = iS;
  420. break;
  421. case OP_MULT:
  422. case OP_DIV:
  423. case OP_POW:
  424. delta = -1;
  425. mode = iO;
  426. break;
  427. case OP_RETURN:
  428. if (GET_OPCODE(i) == OP_CALL && GETARG_B(i) == MULT_RET) {
  429. SET_OPCODE(i, OP_TAILCALL);
  430. SETARG_B(i, arg1);
  431. }
  432. else mode = iU;
  433. break;
  434. case OP_PUSHNIL:
  435. delta = arg1;
  436. switch(GET_OPCODE(i)) {
  437. case OP_PUSHNIL: SETARG_U(i, GETARG_U(i)+arg1); break;
  438. default: mode = iU; break;
  439. }
  440. break;
  441. case OP_POP:
  442. delta = -arg1;
  443. switch(GET_OPCODE(i)) {
  444. case OP_SETTABLE: SETARG_B(i, GETARG_B(i)+arg1); break;
  445. default: mode = iU; break;
  446. }
  447. break;
  448. case OP_GETTABLE:
  449. delta = -1;
  450. switch(GET_OPCODE(i)) {
  451. case OP_PUSHSTRING: SET_OPCODE(i, OP_GETDOTTED); break; /* `t.x' */
  452. case OP_GETLOCAL: SET_OPCODE(i, OP_GETINDEXED); break; /* `t[i]' */
  453. default: mode = iO; break;
  454. }
  455. break;
  456. case OP_ADD:
  457. delta = -1;
  458. switch(GET_OPCODE(i)) {
  459. case OP_PUSHINT: SET_OPCODE(i, OP_ADDI); break; /* `a+k' */
  460. default: mode = iO; break;
  461. }
  462. break;
  463. case OP_SUB:
  464. delta = -1;
  465. switch(GET_OPCODE(i)) {
  466. case OP_PUSHINT: i = CREATE_S(OP_ADDI, -GETARG_S(i)); break; /* `a-k' */
  467. default: mode = iO; break;
  468. }
  469. break;
  470. case OP_CONCAT:
  471. delta = -arg1+1;
  472. switch(GET_OPCODE(i)) {
  473. case OP_CONCAT: SETARG_U(i, GETARG_U(i)+1); break; /* `a..b..c' */
  474. default: mode = iU; break;
  475. }
  476. break;
  477. case OP_MINUS:
  478. switch(GET_OPCODE(i)) {
  479. case OP_PUSHINT: SETARG_S(i, -GETARG_S(i)); break; /* `-k' */
  480. case OP_PUSHNUM: SET_OPCODE(i, OP_PUSHNEGNUM); break; /* `-k' */
  481. default: mode = iO; break;
  482. }
  483. break;
  484. case OP_JMPNE:
  485. delta = -2;
  486. if (i == CREATE_U(OP_PUSHNIL, 1)) /* `a~=nil' */
  487. i = CREATE_S(OP_JMPT, NO_JUMP);
  488. else {
  489. arg1 = NO_JUMP;
  490. mode = iS;
  491. }
  492. break;
  493. case OP_JMPEQ:
  494. delta = -2;
  495. if (i == CREATE_U(OP_PUSHNIL, 1)) { /* `a==nil' */
  496. i = CREATE_0(OP_NOT);
  497. delta = -1; /* just undo effect of previous PUSHNIL */
  498. }
  499. else {
  500. arg1 = NO_JUMP;
  501. mode = iS;
  502. }
  503. break;
  504. case OP_JMPT:
  505. case OP_JMPF:
  506. case OP_JMPONT:
  507. case OP_JMPONF:
  508. delta = -1;
  509. arg1 = NO_JUMP;
  510. switch (GET_OPCODE(i)) {
  511. case OP_NOT: i = CREATE_S(invertjump(o), NO_JUMP); break;
  512. default: mode = iS; break;
  513. }
  514. break;
  515. case OP_GETDOTTED:
  516. case OP_GETINDEXED:
  517. case OP_TAILCALL:
  518. case OP_ADDI:
  519. LUA_INTERNALERROR(L, "instruction used only for optimizations");
  520. return 0; /* to avoid warnings */
  521. }
  522. luaK_deltastack(fs, delta);
  523. switch (mode) { /* handle instruction formats */
  524. case iO: i = CREATE_0(o); break;
  525. case iU: i = CREATE_U(o, arg1); break;
  526. case iS: i = CREATE_S(o, arg1); break;
  527. case iAB: i = CREATE_AB(o, arg1, arg2); break;
  528. case iP: { /* optimize: put instruction in place of last one */
  529. fs->f->code[fs->pc-1] = i; /* change previous instruction */
  530. return fs->pc-1;
  531. }
  532. }
  533. /* actually create the new instruction */
  534. luaM_growvector(fs->L, fs->f->code, fs->pc, 1, Instruction, codeEM, MAX_INT);
  535. fs->f->code[fs->pc] = i;
  536. return fs->pc++;
  537. }