lcode.c 53 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893
  1. /*
  2. ** $Id: lcode.c $
  3. ** Code generator for Lua
  4. ** See Copyright Notice in lua.h
  5. */
  6. #define lcode_c
  7. #define LUA_CORE
  8. #include "lprefix.h"
  9. #include <float.h>
  10. #include <limits.h>
  11. #include <math.h>
  12. #include <stdlib.h>
  13. #include "lua.h"
  14. #include "lcode.h"
  15. #include "ldebug.h"
  16. #include "ldo.h"
  17. #include "lgc.h"
  18. #include "llex.h"
  19. #include "lmem.h"
  20. #include "lobject.h"
  21. #include "lopcodes.h"
  22. #include "lparser.h"
  23. #include "lstring.h"
  24. #include "ltable.h"
  25. #include "lvm.h"
  26. /* (note that expressions VJMP also have jumps.) */
  27. #define hasjumps(e) ((e)->t != (e)->f)
  28. static int codesJ (FuncState *fs, OpCode o, int sj, int k);
  29. /* semantic error */
  30. l_noret luaK_semerror (LexState *ls, const char *msg) {
  31. ls->t.token = 0; /* remove "near <token>" from final message */
  32. luaX_syntaxerror(ls, msg);
  33. }
  34. /*
  35. ** If expression is a numeric constant, fills 'v' with its value
  36. ** and returns 1. Otherwise, returns 0.
  37. */
  38. static int tonumeral (const expdesc *e, TValue *v) {
  39. if (hasjumps(e))
  40. return 0; /* not a numeral */
  41. switch (e->k) {
  42. case VKINT:
  43. if (v) setivalue(v, e->u.ival);
  44. return 1;
  45. case VKFLT:
  46. if (v) setfltvalue(v, e->u.nval);
  47. return 1;
  48. default: return 0;
  49. }
  50. }
  51. /*
  52. ** Get the constant value from a constant expression
  53. */
  54. static TValue *const2val (FuncState *fs, const expdesc *e) {
  55. lua_assert(e->k == VCONST);
  56. return &fs->ls->dyd->actvar.arr[e->u.info].k;
  57. }
  58. /*
  59. ** If expression is a constant, fills 'v' with its value
  60. ** and returns 1. Otherwise, returns 0.
  61. */
  62. int luaK_exp2const (FuncState *fs, const expdesc *e, TValue *v) {
  63. if (hasjumps(e))
  64. return 0; /* not a constant */
  65. switch (e->k) {
  66. case VFALSE:
  67. setbfvalue(v);
  68. return 1;
  69. case VTRUE:
  70. setbtvalue(v);
  71. return 1;
  72. case VNIL:
  73. setnilvalue(v);
  74. return 1;
  75. case VKSTR: {
  76. setsvalue(fs->ls->L, v, e->u.strval);
  77. return 1;
  78. }
  79. case VCONST: {
  80. setobj(fs->ls->L, v, const2val(fs, e));
  81. return 1;
  82. }
  83. default: return tonumeral(e, v);
  84. }
  85. }
  86. /*
  87. ** Return the previous instruction of the current code. If there
  88. ** may be a jump target between the current instruction and the
  89. ** previous one, return an invalid instruction (to avoid wrong
  90. ** optimizations).
  91. */
  92. static Instruction *previousinstruction (FuncState *fs) {
  93. static const Instruction invalidinstruction = ~(Instruction)0;
  94. if (fs->pc > fs->lasttarget)
  95. return &fs->f->code[fs->pc - 1]; /* previous instruction */
  96. else
  97. return cast(Instruction*, &invalidinstruction);
  98. }
  99. /*
  100. ** Create a OP_LOADNIL instruction, but try to optimize: if the previous
  101. ** instruction is also OP_LOADNIL and ranges are compatible, adjust
  102. ** range of previous instruction instead of emitting a new one. (For
  103. ** instance, 'local a; local b' will generate a single opcode.)
  104. */
  105. void luaK_nil (FuncState *fs, int from, int n) {
  106. int l = from + n - 1; /* last register to set nil */
  107. Instruction *previous = previousinstruction(fs);
  108. if (GET_OPCODE(*previous) == OP_LOADNIL) { /* previous is LOADNIL? */
  109. int pfrom = GETARG_A(*previous); /* get previous range */
  110. int pl = pfrom + GETARG_B(*previous);
  111. if ((pfrom <= from && from <= pl + 1) ||
  112. (from <= pfrom && pfrom <= l + 1)) { /* can connect both? */
  113. if (pfrom < from) from = pfrom; /* from = min(from, pfrom) */
  114. if (pl > l) l = pl; /* l = max(l, pl) */
  115. SETARG_A(*previous, from);
  116. SETARG_B(*previous, l - from);
  117. return;
  118. } /* else go through */
  119. }
  120. luaK_codeABC(fs, OP_LOADNIL, from, n - 1, 0); /* else no optimization */
  121. }
  122. /*
  123. ** Gets the destination address of a jump instruction. Used to traverse
  124. ** a list of jumps.
  125. */
  126. static int getjump (FuncState *fs, int pc) {
  127. int offset = GETARG_sJ(fs->f->code[pc]);
  128. if (offset == NO_JUMP) /* point to itself represents end of list */
  129. return NO_JUMP; /* end of list */
  130. else
  131. return (pc+1)+offset; /* turn offset into absolute position */
  132. }
  133. /*
  134. ** Fix jump instruction at position 'pc' to jump to 'dest'.
  135. ** (Jump addresses are relative in Lua)
  136. */
  137. static void fixjump (FuncState *fs, int pc, int dest) {
  138. Instruction *jmp = &fs->f->code[pc];
  139. int offset = dest - (pc + 1);
  140. lua_assert(dest != NO_JUMP);
  141. if (!(-OFFSET_sJ <= offset && offset <= MAXARG_sJ - OFFSET_sJ))
  142. luaX_syntaxerror(fs->ls, "control structure too long");
  143. lua_assert(GET_OPCODE(*jmp) == OP_JMP);
  144. SETARG_sJ(*jmp, offset);
  145. }
  146. /*
  147. ** Concatenate jump-list 'l2' into jump-list 'l1'
  148. */
  149. void luaK_concat (FuncState *fs, int *l1, int l2) {
  150. if (l2 == NO_JUMP) return; /* nothing to concatenate? */
  151. else if (*l1 == NO_JUMP) /* no original list? */
  152. *l1 = l2; /* 'l1' points to 'l2' */
  153. else {
  154. int list = *l1;
  155. int next;
  156. while ((next = getjump(fs, list)) != NO_JUMP) /* find last element */
  157. list = next;
  158. fixjump(fs, list, l2); /* last element links to 'l2' */
  159. }
  160. }
  161. /*
  162. ** Create a jump instruction and return its position, so its destination
  163. ** can be fixed later (with 'fixjump').
  164. */
  165. int luaK_jump (FuncState *fs) {
  166. return codesJ(fs, OP_JMP, NO_JUMP, 0);
  167. }
  168. /*
  169. ** Code a 'return' instruction
  170. */
  171. void luaK_ret (FuncState *fs, int first, int nret) {
  172. OpCode op;
  173. switch (nret) {
  174. case 0: op = OP_RETURN0; break;
  175. case 1: op = OP_RETURN1; break;
  176. default: op = OP_RETURN; break;
  177. }
  178. luaY_checklimit(fs, nret + 1, MAXARG_B, "returns");
  179. luaK_codeABC(fs, op, first, nret + 1, 0);
  180. }
  181. /*
  182. ** Code a "conditional jump", that is, a test or comparison opcode
  183. ** followed by a jump. Return jump position.
  184. */
  185. static int condjump (FuncState *fs, OpCode op, int A, int B, int C, int k) {
  186. luaK_codeABCk(fs, op, A, B, C, k);
  187. return luaK_jump(fs);
  188. }
  189. /*
  190. ** returns current 'pc' and marks it as a jump target (to avoid wrong
  191. ** optimizations with consecutive instructions not in the same basic block).
  192. */
  193. int luaK_getlabel (FuncState *fs) {
  194. fs->lasttarget = fs->pc;
  195. return fs->pc;
  196. }
  197. /*
  198. ** Returns the position of the instruction "controlling" a given
  199. ** jump (that is, its condition), or the jump itself if it is
  200. ** unconditional.
  201. */
  202. static Instruction *getjumpcontrol (FuncState *fs, int pc) {
  203. Instruction *pi = &fs->f->code[pc];
  204. if (pc >= 1 && testTMode(GET_OPCODE(*(pi-1))))
  205. return pi-1;
  206. else
  207. return pi;
  208. }
  209. /*
  210. ** Patch destination register for a TESTSET instruction.
  211. ** If instruction in position 'node' is not a TESTSET, return 0 ("fails").
  212. ** Otherwise, if 'reg' is not 'NO_REG', set it as the destination
  213. ** register. Otherwise, change instruction to a simple 'TEST' (produces
  214. ** no register value)
  215. */
  216. static int patchtestreg (FuncState *fs, int node, int reg) {
  217. Instruction *i = getjumpcontrol(fs, node);
  218. if (GET_OPCODE(*i) != OP_TESTSET)
  219. return 0; /* cannot patch other instructions */
  220. if (reg != NO_REG && reg != GETARG_B(*i))
  221. SETARG_A(*i, reg);
  222. else {
  223. /* no register to put value or register already has the value;
  224. change instruction to simple test */
  225. *i = CREATE_ABCk(OP_TEST, GETARG_B(*i), 0, 0, GETARG_k(*i));
  226. }
  227. return 1;
  228. }
  229. /*
  230. ** Traverse a list of tests ensuring no one produces a value
  231. */
  232. static void removevalues (FuncState *fs, int list) {
  233. for (; list != NO_JUMP; list = getjump(fs, list))
  234. patchtestreg(fs, list, NO_REG);
  235. }
  236. /*
  237. ** Traverse a list of tests, patching their destination address and
  238. ** registers: tests producing values jump to 'vtarget' (and put their
  239. ** values in 'reg'), other tests jump to 'dtarget'.
  240. */
  241. static void patchlistaux (FuncState *fs, int list, int vtarget, int reg,
  242. int dtarget) {
  243. while (list != NO_JUMP) {
  244. int next = getjump(fs, list);
  245. if (patchtestreg(fs, list, reg))
  246. fixjump(fs, list, vtarget);
  247. else
  248. fixjump(fs, list, dtarget); /* jump to default target */
  249. list = next;
  250. }
  251. }
  252. /*
  253. ** Path all jumps in 'list' to jump to 'target'.
  254. ** (The assert means that we cannot fix a jump to a forward address
  255. ** because we only know addresses once code is generated.)
  256. */
  257. void luaK_patchlist (FuncState *fs, int list, int target) {
  258. lua_assert(target <= fs->pc);
  259. patchlistaux(fs, list, target, NO_REG, target);
  260. }
  261. void luaK_patchtohere (FuncState *fs, int list) {
  262. int hr = luaK_getlabel(fs); /* mark "here" as a jump target */
  263. luaK_patchlist(fs, list, hr);
  264. }
  265. /* limit for difference between lines in relative line info. */
  266. #define LIMLINEDIFF 0x80
  267. /*
  268. ** Save line info for a new instruction. If difference from last line
  269. ** does not fit in a byte, of after that many instructions, save a new
  270. ** absolute line info; (in that case, the special value 'ABSLINEINFO'
  271. ** in 'lineinfo' signals the existence of this absolute information.)
  272. ** Otherwise, store the difference from last line in 'lineinfo'.
  273. */
  274. static void savelineinfo (FuncState *fs, Proto *f, int line) {
  275. int linedif = line - fs->previousline;
  276. int pc = fs->pc - 1; /* last instruction coded */
  277. if (abs(linedif) >= LIMLINEDIFF || fs->iwthabs++ >= MAXIWTHABS) {
  278. luaM_growvector(fs->ls->L, f->abslineinfo, fs->nabslineinfo,
  279. f->sizeabslineinfo, AbsLineInfo, INT_MAX, "lines");
  280. f->abslineinfo[fs->nabslineinfo].pc = pc;
  281. f->abslineinfo[fs->nabslineinfo++].line = line;
  282. linedif = ABSLINEINFO; /* signal that there is absolute information */
  283. fs->iwthabs = 1; /* restart counter */
  284. }
  285. luaM_growvector(fs->ls->L, f->lineinfo, pc, f->sizelineinfo, ls_byte,
  286. INT_MAX, "opcodes");
  287. f->lineinfo[pc] = cast(ls_byte, linedif);
  288. fs->previousline = line; /* last line saved */
  289. }
  290. /*
  291. ** Remove line information from the last instruction.
  292. ** If line information for that instruction is absolute, set 'iwthabs'
  293. ** above its max to force the new (replacing) instruction to have
  294. ** absolute line info, too.
  295. */
  296. static void removelastlineinfo (FuncState *fs) {
  297. Proto *f = fs->f;
  298. int pc = fs->pc - 1; /* last instruction coded */
  299. if (f->lineinfo[pc] != ABSLINEINFO) { /* relative line info? */
  300. fs->previousline -= f->lineinfo[pc]; /* correct last line saved */
  301. fs->iwthabs--; /* undo previous increment */
  302. }
  303. else { /* absolute line information */
  304. lua_assert(f->abslineinfo[fs->nabslineinfo - 1].pc == pc);
  305. fs->nabslineinfo--; /* remove it */
  306. fs->iwthabs = MAXIWTHABS + 1; /* force next line info to be absolute */
  307. }
  308. }
  309. /*
  310. ** Remove the last instruction created, correcting line information
  311. ** accordingly.
  312. */
  313. static void removelastinstruction (FuncState *fs) {
  314. removelastlineinfo(fs);
  315. fs->pc--;
  316. }
  317. /*
  318. ** Emit instruction 'i', checking for array sizes and saving also its
  319. ** line information. Return 'i' position.
  320. */
  321. int luaK_code (FuncState *fs, Instruction i) {
  322. Proto *f = fs->f;
  323. /* put new instruction in code array */
  324. luaM_growvector(fs->ls->L, f->code, fs->pc, f->sizecode, Instruction,
  325. INT_MAX, "opcodes");
  326. f->code[fs->pc++] = i;
  327. savelineinfo(fs, f, fs->ls->lastline);
  328. return fs->pc - 1; /* index of new instruction */
  329. }
  330. /*
  331. ** Format and emit an 'iABC' instruction. (Assertions check consistency
  332. ** of parameters versus opcode.)
  333. */
  334. int luaK_codeABCk (FuncState *fs, OpCode o, int A, int B, int C, int k) {
  335. lua_assert(getOpMode(o) == iABC);
  336. lua_assert(A <= MAXARG_A && B <= MAXARG_B &&
  337. C <= MAXARG_C && (k & ~1) == 0);
  338. return luaK_code(fs, CREATE_ABCk(o, A, B, C, k));
  339. }
  340. int luaK_codevABCk (FuncState *fs, OpCode o, int A, int B, int C, int k) {
  341. lua_assert(getOpMode(o) == ivABC);
  342. lua_assert(A <= MAXARG_A && B <= MAXARG_vB &&
  343. C <= MAXARG_vC && (k & ~1) == 0);
  344. return luaK_code(fs, CREATE_vABCk(o, A, B, C, k));
  345. }
  346. /*
  347. ** Format and emit an 'iABx' instruction.
  348. */
  349. int luaK_codeABx (FuncState *fs, OpCode o, int A, int Bc) {
  350. lua_assert(getOpMode(o) == iABx);
  351. lua_assert(A <= MAXARG_A && Bc <= MAXARG_Bx);
  352. return luaK_code(fs, CREATE_ABx(o, A, Bc));
  353. }
  354. /*
  355. ** Format and emit an 'iAsBx' instruction.
  356. */
  357. static int codeAsBx (FuncState *fs, OpCode o, int A, int Bc) {
  358. int b = Bc + OFFSET_sBx;
  359. lua_assert(getOpMode(o) == iAsBx);
  360. lua_assert(A <= MAXARG_A && b <= MAXARG_Bx);
  361. return luaK_code(fs, CREATE_ABx(o, A, b));
  362. }
  363. /*
  364. ** Format and emit an 'isJ' instruction.
  365. */
  366. static int codesJ (FuncState *fs, OpCode o, int sj, int k) {
  367. int j = sj + OFFSET_sJ;
  368. lua_assert(getOpMode(o) == isJ);
  369. lua_assert(j <= MAXARG_sJ && (k & ~1) == 0);
  370. return luaK_code(fs, CREATE_sJ(o, j, k));
  371. }
  372. /*
  373. ** Emit an "extra argument" instruction (format 'iAx')
  374. */
  375. static int codeextraarg (FuncState *fs, int A) {
  376. lua_assert(A <= MAXARG_Ax);
  377. return luaK_code(fs, CREATE_Ax(OP_EXTRAARG, A));
  378. }
  379. /*
  380. ** Emit a "load constant" instruction, using either 'OP_LOADK'
  381. ** (if constant index 'k' fits in 18 bits) or an 'OP_LOADKX'
  382. ** instruction with "extra argument".
  383. */
  384. static int luaK_codek (FuncState *fs, int reg, int k) {
  385. if (k <= MAXARG_Bx)
  386. return luaK_codeABx(fs, OP_LOADK, reg, k);
  387. else {
  388. int p = luaK_codeABx(fs, OP_LOADKX, reg, 0);
  389. codeextraarg(fs, k);
  390. return p;
  391. }
  392. }
  393. /*
  394. ** Check register-stack level, keeping track of its maximum size
  395. ** in field 'maxstacksize'
  396. */
  397. void luaK_checkstack (FuncState *fs, int n) {
  398. int newstack = fs->freereg + n;
  399. if (newstack > fs->f->maxstacksize) {
  400. luaY_checklimit(fs, newstack, MAX_FSTACK, "registers");
  401. fs->f->maxstacksize = cast_byte(newstack);
  402. }
  403. }
  404. /*
  405. ** Reserve 'n' registers in register stack
  406. */
  407. void luaK_reserveregs (FuncState *fs, int n) {
  408. luaK_checkstack(fs, n);
  409. fs->freereg = cast_byte(fs->freereg + n);
  410. }
  411. /*
  412. ** Free register 'reg', if it is neither a constant index nor
  413. ** a local variable.
  414. )
  415. */
  416. static void freereg (FuncState *fs, int reg) {
  417. if (reg >= luaY_nvarstack(fs)) {
  418. fs->freereg--;
  419. lua_assert(reg == fs->freereg);
  420. }
  421. }
  422. /*
  423. ** Free two registers in proper order
  424. */
  425. static void freeregs (FuncState *fs, int r1, int r2) {
  426. if (r1 > r2) {
  427. freereg(fs, r1);
  428. freereg(fs, r2);
  429. }
  430. else {
  431. freereg(fs, r2);
  432. freereg(fs, r1);
  433. }
  434. }
  435. /*
  436. ** Free register used by expression 'e' (if any)
  437. */
  438. static void freeexp (FuncState *fs, expdesc *e) {
  439. if (e->k == VNONRELOC)
  440. freereg(fs, e->u.info);
  441. }
  442. /*
  443. ** Free registers used by expressions 'e1' and 'e2' (if any) in proper
  444. ** order.
  445. */
  446. static void freeexps (FuncState *fs, expdesc *e1, expdesc *e2) {
  447. int r1 = (e1->k == VNONRELOC) ? e1->u.info : -1;
  448. int r2 = (e2->k == VNONRELOC) ? e2->u.info : -1;
  449. freeregs(fs, r1, r2);
  450. }
  451. /*
  452. ** Add constant 'v' to prototype's list of constants (field 'k').
  453. ** Use scanner's table to cache position of constants in constant list
  454. ** and try to reuse constants. Because some values should not be used
  455. ** as keys (nil cannot be a key, integer keys can collapse with float
  456. ** keys), the caller must provide a useful 'key' for indexing the cache.
  457. ** Note that all functions share the same table, so entering or exiting
  458. ** a function can make some indices wrong.
  459. */
  460. static int addk (FuncState *fs, TValue *key, TValue *v) {
  461. TValue val;
  462. lua_State *L = fs->ls->L;
  463. Proto *f = fs->f;
  464. int tag = luaH_get(fs->ls->h, key, &val); /* query scanner table */
  465. int k, oldsize;
  466. if (tag == LUA_VNUMINT) { /* is there an index there? */
  467. k = cast_int(ivalue(&val));
  468. /* correct value? (warning: must distinguish floats from integers!) */
  469. if (k < fs->nk && ttypetag(&f->k[k]) == ttypetag(v) &&
  470. luaV_rawequalobj(&f->k[k], v))
  471. return k; /* reuse index */
  472. }
  473. /* constant not found; create a new entry */
  474. oldsize = f->sizek;
  475. k = fs->nk;
  476. /* numerical value does not need GC barrier;
  477. table has no metatable, so it does not need to invalidate cache */
  478. setivalue(&val, k);
  479. luaH_set(L, fs->ls->h, key, &val);
  480. luaM_growvector(L, f->k, k, f->sizek, TValue, MAXARG_Ax, "constants");
  481. while (oldsize < f->sizek) setnilvalue(&f->k[oldsize++]);
  482. setobj(L, &f->k[k], v);
  483. fs->nk++;
  484. luaC_barrier(L, f, v);
  485. return k;
  486. }
  487. /*
  488. ** Add a string to list of constants and return its index.
  489. */
  490. static int stringK (FuncState *fs, TString *s) {
  491. TValue o;
  492. setsvalue(fs->ls->L, &o, s);
  493. return addk(fs, &o, &o); /* use string itself as key */
  494. }
  495. /*
  496. ** Add an integer to list of constants and return its index.
  497. */
  498. static int luaK_intK (FuncState *fs, lua_Integer n) {
  499. TValue o;
  500. setivalue(&o, n);
  501. return addk(fs, &o, &o); /* use integer itself as key */
  502. }
  503. /*
  504. ** Add a float to list of constants and return its index. Floats
  505. ** with integral values need a different key, to avoid collision
  506. ** with actual integers. To that, we add to the number its smaller
  507. ** power-of-two fraction that is still significant in its scale.
  508. ** For doubles, that would be 1/2^52.
  509. ** (This method is not bulletproof: there may be another float
  510. ** with that value, and for floats larger than 2^53 the result is
  511. ** still an integer. At worst, this only wastes an entry with
  512. ** a duplicate.)
  513. */
  514. static int luaK_numberK (FuncState *fs, lua_Number r) {
  515. TValue o;
  516. lua_Integer ik;
  517. setfltvalue(&o, r);
  518. if (!luaV_flttointeger(r, &ik, F2Ieq)) /* not an integral value? */
  519. return addk(fs, &o, &o); /* use number itself as key */
  520. else { /* must build an alternative key */
  521. const int nbm = l_floatatt(MANT_DIG);
  522. const lua_Number q = l_mathop(ldexp)(l_mathop(1.0), -nbm + 1);
  523. const lua_Number k = (ik == 0) ? q : r + r*q; /* new key */
  524. TValue kv;
  525. setfltvalue(&kv, k);
  526. /* result is not an integral value, unless value is too large */
  527. lua_assert(!luaV_flttointeger(k, &ik, F2Ieq) ||
  528. l_mathop(fabs)(r) >= l_mathop(1e6));
  529. return addk(fs, &kv, &o);
  530. }
  531. }
  532. /*
  533. ** Add a false to list of constants and return its index.
  534. */
  535. static int boolF (FuncState *fs) {
  536. TValue o;
  537. setbfvalue(&o);
  538. return addk(fs, &o, &o); /* use boolean itself as key */
  539. }
  540. /*
  541. ** Add a true to list of constants and return its index.
  542. */
  543. static int boolT (FuncState *fs) {
  544. TValue o;
  545. setbtvalue(&o);
  546. return addk(fs, &o, &o); /* use boolean itself as key */
  547. }
  548. /*
  549. ** Add nil to list of constants and return its index.
  550. */
  551. static int nilK (FuncState *fs) {
  552. TValue k, v;
  553. setnilvalue(&v);
  554. /* cannot use nil as key; instead use table itself to represent nil */
  555. sethvalue(fs->ls->L, &k, fs->ls->h);
  556. return addk(fs, &k, &v);
  557. }
  558. /*
  559. ** Check whether 'i' can be stored in an 'sC' operand. Equivalent to
  560. ** (0 <= int2sC(i) && int2sC(i) <= MAXARG_C) but without risk of
  561. ** overflows in the hidden addition inside 'int2sC'.
  562. */
  563. static int fitsC (lua_Integer i) {
  564. return (l_castS2U(i) + OFFSET_sC <= cast_uint(MAXARG_C));
  565. }
  566. /*
  567. ** Check whether 'i' can be stored in an 'sBx' operand.
  568. */
  569. static int fitsBx (lua_Integer i) {
  570. return (-OFFSET_sBx <= i && i <= MAXARG_Bx - OFFSET_sBx);
  571. }
  572. void luaK_int (FuncState *fs, int reg, lua_Integer i) {
  573. if (fitsBx(i))
  574. codeAsBx(fs, OP_LOADI, reg, cast_int(i));
  575. else
  576. luaK_codek(fs, reg, luaK_intK(fs, i));
  577. }
  578. static void luaK_float (FuncState *fs, int reg, lua_Number f) {
  579. lua_Integer fi;
  580. if (luaV_flttointeger(f, &fi, F2Ieq) && fitsBx(fi))
  581. codeAsBx(fs, OP_LOADF, reg, cast_int(fi));
  582. else
  583. luaK_codek(fs, reg, luaK_numberK(fs, f));
  584. }
  585. /*
  586. ** Convert a constant in 'v' into an expression description 'e'
  587. */
  588. static void const2exp (TValue *v, expdesc *e) {
  589. switch (ttypetag(v)) {
  590. case LUA_VNUMINT:
  591. e->k = VKINT; e->u.ival = ivalue(v);
  592. break;
  593. case LUA_VNUMFLT:
  594. e->k = VKFLT; e->u.nval = fltvalue(v);
  595. break;
  596. case LUA_VFALSE:
  597. e->k = VFALSE;
  598. break;
  599. case LUA_VTRUE:
  600. e->k = VTRUE;
  601. break;
  602. case LUA_VNIL:
  603. e->k = VNIL;
  604. break;
  605. case LUA_VSHRSTR: case LUA_VLNGSTR:
  606. e->k = VKSTR; e->u.strval = tsvalue(v);
  607. break;
  608. default: lua_assert(0);
  609. }
  610. }
  611. /*
  612. ** Fix an expression to return the number of results 'nresults'.
  613. ** 'e' must be a multi-ret expression (function call or vararg).
  614. */
  615. void luaK_setreturns (FuncState *fs, expdesc *e, int nresults) {
  616. Instruction *pc = &getinstruction(fs, e);
  617. luaY_checklimit(fs, nresults + 1, MAXARG_C, "multiple results");
  618. if (e->k == VCALL) /* expression is an open function call? */
  619. SETARG_C(*pc, nresults + 1);
  620. else {
  621. lua_assert(e->k == VVARARG);
  622. SETARG_C(*pc, nresults + 1);
  623. SETARG_A(*pc, fs->freereg);
  624. luaK_reserveregs(fs, 1);
  625. }
  626. }
  627. /*
  628. ** Convert a VKSTR to a VK
  629. */
  630. static void str2K (FuncState *fs, expdesc *e) {
  631. lua_assert(e->k == VKSTR);
  632. e->u.info = stringK(fs, e->u.strval);
  633. e->k = VK;
  634. }
  635. /*
  636. ** Fix an expression to return one result.
  637. ** If expression is not a multi-ret expression (function call or
  638. ** vararg), it already returns one result, so nothing needs to be done.
  639. ** Function calls become VNONRELOC expressions (as its result comes
  640. ** fixed in the base register of the call), while vararg expressions
  641. ** become VRELOC (as OP_VARARG puts its results where it wants).
  642. ** (Calls are created returning one result, so that does not need
  643. ** to be fixed.)
  644. */
  645. void luaK_setoneret (FuncState *fs, expdesc *e) {
  646. if (e->k == VCALL) { /* expression is an open function call? */
  647. /* already returns 1 value */
  648. lua_assert(GETARG_C(getinstruction(fs, e)) == 2);
  649. e->k = VNONRELOC; /* result has fixed position */
  650. e->u.info = GETARG_A(getinstruction(fs, e));
  651. }
  652. else if (e->k == VVARARG) {
  653. SETARG_C(getinstruction(fs, e), 2);
  654. e->k = VRELOC; /* can relocate its simple result */
  655. }
  656. }
  657. /*
  658. ** Ensure that expression 'e' is not a variable (nor a <const>).
  659. ** (Expression still may have jump lists.)
  660. */
  661. void luaK_dischargevars (FuncState *fs, expdesc *e) {
  662. switch (e->k) {
  663. case VCONST: {
  664. const2exp(const2val(fs, e), e);
  665. break;
  666. }
  667. case VLOCAL: { /* already in a register */
  668. int temp = e->u.var.ridx;
  669. e->u.info = temp; /* (can't do a direct assignment; values overlap) */
  670. e->k = VNONRELOC; /* becomes a non-relocatable value */
  671. break;
  672. }
  673. case VUPVAL: { /* move value to some (pending) register */
  674. e->u.info = luaK_codeABC(fs, OP_GETUPVAL, 0, e->u.info, 0);
  675. e->k = VRELOC;
  676. break;
  677. }
  678. case VINDEXUP: {
  679. e->u.info = luaK_codeABC(fs, OP_GETTABUP, 0, e->u.ind.t, e->u.ind.idx);
  680. e->k = VRELOC;
  681. break;
  682. }
  683. case VINDEXI: {
  684. freereg(fs, e->u.ind.t);
  685. e->u.info = luaK_codeABC(fs, OP_GETI, 0, e->u.ind.t, e->u.ind.idx);
  686. e->k = VRELOC;
  687. break;
  688. }
  689. case VINDEXSTR: {
  690. freereg(fs, e->u.ind.t);
  691. e->u.info = luaK_codeABC(fs, OP_GETFIELD, 0, e->u.ind.t, e->u.ind.idx);
  692. e->k = VRELOC;
  693. break;
  694. }
  695. case VINDEXED: {
  696. freeregs(fs, e->u.ind.t, e->u.ind.idx);
  697. e->u.info = luaK_codeABC(fs, OP_GETTABLE, 0, e->u.ind.t, e->u.ind.idx);
  698. e->k = VRELOC;
  699. break;
  700. }
  701. case VVARARG: case VCALL: {
  702. luaK_setoneret(fs, e);
  703. break;
  704. }
  705. default: break; /* there is one value available (somewhere) */
  706. }
  707. }
  708. /*
  709. ** Ensure expression value is in register 'reg', making 'e' a
  710. ** non-relocatable expression.
  711. ** (Expression still may have jump lists.)
  712. */
  713. static void discharge2reg (FuncState *fs, expdesc *e, int reg) {
  714. luaK_dischargevars(fs, e);
  715. switch (e->k) {
  716. case VNIL: {
  717. luaK_nil(fs, reg, 1);
  718. break;
  719. }
  720. case VFALSE: {
  721. luaK_codeABC(fs, OP_LOADFALSE, reg, 0, 0);
  722. break;
  723. }
  724. case VTRUE: {
  725. luaK_codeABC(fs, OP_LOADTRUE, reg, 0, 0);
  726. break;
  727. }
  728. case VKSTR: {
  729. str2K(fs, e);
  730. } /* FALLTHROUGH */
  731. case VK: {
  732. luaK_codek(fs, reg, e->u.info);
  733. break;
  734. }
  735. case VKFLT: {
  736. luaK_float(fs, reg, e->u.nval);
  737. break;
  738. }
  739. case VKINT: {
  740. luaK_int(fs, reg, e->u.ival);
  741. break;
  742. }
  743. case VRELOC: {
  744. Instruction *pc = &getinstruction(fs, e);
  745. SETARG_A(*pc, reg); /* instruction will put result in 'reg' */
  746. break;
  747. }
  748. case VNONRELOC: {
  749. if (reg != e->u.info)
  750. luaK_codeABC(fs, OP_MOVE, reg, e->u.info, 0);
  751. break;
  752. }
  753. default: {
  754. lua_assert(e->k == VJMP);
  755. return; /* nothing to do... */
  756. }
  757. }
  758. e->u.info = reg;
  759. e->k = VNONRELOC;
  760. }
  761. /*
  762. ** Ensure expression value is in a register, making 'e' a
  763. ** non-relocatable expression.
  764. ** (Expression still may have jump lists.)
  765. */
  766. static void discharge2anyreg (FuncState *fs, expdesc *e) {
  767. if (e->k != VNONRELOC) { /* no fixed register yet? */
  768. luaK_reserveregs(fs, 1); /* get a register */
  769. discharge2reg(fs, e, fs->freereg-1); /* put value there */
  770. }
  771. }
  772. static int code_loadbool (FuncState *fs, int A, OpCode op) {
  773. luaK_getlabel(fs); /* those instructions may be jump targets */
  774. return luaK_codeABC(fs, op, A, 0, 0);
  775. }
  776. /*
  777. ** check whether list has any jump that do not produce a value
  778. ** or produce an inverted value
  779. */
  780. static int need_value (FuncState *fs, int list) {
  781. for (; list != NO_JUMP; list = getjump(fs, list)) {
  782. Instruction i = *getjumpcontrol(fs, list);
  783. if (GET_OPCODE(i) != OP_TESTSET) return 1;
  784. }
  785. return 0; /* not found */
  786. }
  787. /*
  788. ** Ensures final expression result (which includes results from its
  789. ** jump lists) is in register 'reg'.
  790. ** If expression has jumps, need to patch these jumps either to
  791. ** its final position or to "load" instructions (for those tests
  792. ** that do not produce values).
  793. */
  794. static void exp2reg (FuncState *fs, expdesc *e, int reg) {
  795. discharge2reg(fs, e, reg);
  796. if (e->k == VJMP) /* expression itself is a test? */
  797. luaK_concat(fs, &e->t, e->u.info); /* put this jump in 't' list */
  798. if (hasjumps(e)) {
  799. int final; /* position after whole expression */
  800. int p_f = NO_JUMP; /* position of an eventual LOAD false */
  801. int p_t = NO_JUMP; /* position of an eventual LOAD true */
  802. if (need_value(fs, e->t) || need_value(fs, e->f)) {
  803. int fj = (e->k == VJMP) ? NO_JUMP : luaK_jump(fs);
  804. p_f = code_loadbool(fs, reg, OP_LFALSESKIP); /* skip next inst. */
  805. p_t = code_loadbool(fs, reg, OP_LOADTRUE);
  806. /* jump around these booleans if 'e' is not a test */
  807. luaK_patchtohere(fs, fj);
  808. }
  809. final = luaK_getlabel(fs);
  810. patchlistaux(fs, e->f, final, reg, p_f);
  811. patchlistaux(fs, e->t, final, reg, p_t);
  812. }
  813. e->f = e->t = NO_JUMP;
  814. e->u.info = reg;
  815. e->k = VNONRELOC;
  816. }
  817. /*
  818. ** Ensures final expression result is in next available register.
  819. */
  820. void luaK_exp2nextreg (FuncState *fs, expdesc *e) {
  821. luaK_dischargevars(fs, e);
  822. freeexp(fs, e);
  823. luaK_reserveregs(fs, 1);
  824. exp2reg(fs, e, fs->freereg - 1);
  825. }
  826. /*
  827. ** Ensures final expression result is in some (any) register
  828. ** and return that register.
  829. */
  830. int luaK_exp2anyreg (FuncState *fs, expdesc *e) {
  831. luaK_dischargevars(fs, e);
  832. if (e->k == VNONRELOC) { /* expression already has a register? */
  833. if (!hasjumps(e)) /* no jumps? */
  834. return e->u.info; /* result is already in a register */
  835. if (e->u.info >= luaY_nvarstack(fs)) { /* reg. is not a local? */
  836. exp2reg(fs, e, e->u.info); /* put final result in it */
  837. return e->u.info;
  838. }
  839. /* else expression has jumps and cannot change its register
  840. to hold the jump values, because it is a local variable.
  841. Go through to the default case. */
  842. }
  843. luaK_exp2nextreg(fs, e); /* default: use next available register */
  844. return e->u.info;
  845. }
  846. /*
  847. ** Ensures final expression result is either in a register
  848. ** or in an upvalue.
  849. */
  850. void luaK_exp2anyregup (FuncState *fs, expdesc *e) {
  851. if (e->k != VUPVAL || hasjumps(e))
  852. luaK_exp2anyreg(fs, e);
  853. }
  854. /*
  855. ** Ensures final expression result is either in a register
  856. ** or it is a constant.
  857. */
  858. void luaK_exp2val (FuncState *fs, expdesc *e) {
  859. if (e->k == VJMP || hasjumps(e))
  860. luaK_exp2anyreg(fs, e);
  861. else
  862. luaK_dischargevars(fs, e);
  863. }
  864. /*
  865. ** Try to make 'e' a K expression with an index in the range of R/K
  866. ** indices. Return true iff succeeded.
  867. */
  868. static int luaK_exp2K (FuncState *fs, expdesc *e) {
  869. if (!hasjumps(e)) {
  870. int info;
  871. switch (e->k) { /* move constants to 'k' */
  872. case VTRUE: info = boolT(fs); break;
  873. case VFALSE: info = boolF(fs); break;
  874. case VNIL: info = nilK(fs); break;
  875. case VKINT: info = luaK_intK(fs, e->u.ival); break;
  876. case VKFLT: info = luaK_numberK(fs, e->u.nval); break;
  877. case VKSTR: info = stringK(fs, e->u.strval); break;
  878. case VK: info = e->u.info; break;
  879. default: return 0; /* not a constant */
  880. }
  881. if (info <= MAXINDEXRK) { /* does constant fit in 'argC'? */
  882. e->k = VK; /* make expression a 'K' expression */
  883. e->u.info = info;
  884. return 1;
  885. }
  886. }
  887. /* else, expression doesn't fit; leave it unchanged */
  888. return 0;
  889. }
  890. /*
  891. ** Ensures final expression result is in a valid R/K index
  892. ** (that is, it is either in a register or in 'k' with an index
  893. ** in the range of R/K indices).
  894. ** Returns 1 iff expression is K.
  895. */
  896. static int exp2RK (FuncState *fs, expdesc *e) {
  897. if (luaK_exp2K(fs, e))
  898. return 1;
  899. else { /* not a constant in the right range: put it in a register */
  900. luaK_exp2anyreg(fs, e);
  901. return 0;
  902. }
  903. }
  904. static void codeABRK (FuncState *fs, OpCode o, int A, int B,
  905. expdesc *ec) {
  906. int k = exp2RK(fs, ec);
  907. luaK_codeABCk(fs, o, A, B, ec->u.info, k);
  908. }
  909. /*
  910. ** Generate code to store result of expression 'ex' into variable 'var'.
  911. */
  912. void luaK_storevar (FuncState *fs, expdesc *var, expdesc *ex) {
  913. switch (var->k) {
  914. case VLOCAL: {
  915. freeexp(fs, ex);
  916. exp2reg(fs, ex, var->u.var.ridx); /* compute 'ex' into proper place */
  917. return;
  918. }
  919. case VUPVAL: {
  920. int e = luaK_exp2anyreg(fs, ex);
  921. luaK_codeABC(fs, OP_SETUPVAL, e, var->u.info, 0);
  922. break;
  923. }
  924. case VINDEXUP: {
  925. codeABRK(fs, OP_SETTABUP, var->u.ind.t, var->u.ind.idx, ex);
  926. break;
  927. }
  928. case VINDEXI: {
  929. codeABRK(fs, OP_SETI, var->u.ind.t, var->u.ind.idx, ex);
  930. break;
  931. }
  932. case VINDEXSTR: {
  933. codeABRK(fs, OP_SETFIELD, var->u.ind.t, var->u.ind.idx, ex);
  934. break;
  935. }
  936. case VINDEXED: {
  937. codeABRK(fs, OP_SETTABLE, var->u.ind.t, var->u.ind.idx, ex);
  938. break;
  939. }
  940. default: lua_assert(0); /* invalid var kind to store */
  941. }
  942. freeexp(fs, ex);
  943. }
  944. /*
  945. ** Negate condition 'e' (where 'e' is a comparison).
  946. */
  947. static void negatecondition (FuncState *fs, expdesc *e) {
  948. Instruction *pc = getjumpcontrol(fs, e->u.info);
  949. lua_assert(testTMode(GET_OPCODE(*pc)) && GET_OPCODE(*pc) != OP_TESTSET &&
  950. GET_OPCODE(*pc) != OP_TEST);
  951. SETARG_k(*pc, (GETARG_k(*pc) ^ 1));
  952. }
  953. /*
  954. ** Emit instruction to jump if 'e' is 'cond' (that is, if 'cond'
  955. ** is true, code will jump if 'e' is true.) Return jump position.
  956. ** Optimize when 'e' is 'not' something, inverting the condition
  957. ** and removing the 'not'.
  958. */
  959. static int jumponcond (FuncState *fs, expdesc *e, int cond) {
  960. if (e->k == VRELOC) {
  961. Instruction ie = getinstruction(fs, e);
  962. if (GET_OPCODE(ie) == OP_NOT) {
  963. removelastinstruction(fs); /* remove previous OP_NOT */
  964. return condjump(fs, OP_TEST, GETARG_B(ie), 0, 0, !cond);
  965. }
  966. /* else go through */
  967. }
  968. discharge2anyreg(fs, e);
  969. freeexp(fs, e);
  970. return condjump(fs, OP_TESTSET, NO_REG, e->u.info, 0, cond);
  971. }
  972. /*
  973. ** Emit code to go through if 'e' is true, jump otherwise.
  974. */
  975. void luaK_goiftrue (FuncState *fs, expdesc *e) {
  976. int pc; /* pc of new jump */
  977. luaK_dischargevars(fs, e);
  978. switch (e->k) {
  979. case VJMP: { /* condition? */
  980. negatecondition(fs, e); /* jump when it is false */
  981. pc = e->u.info; /* save jump position */
  982. break;
  983. }
  984. case VK: case VKFLT: case VKINT: case VKSTR: case VTRUE: {
  985. pc = NO_JUMP; /* always true; do nothing */
  986. break;
  987. }
  988. default: {
  989. pc = jumponcond(fs, e, 0); /* jump when false */
  990. break;
  991. }
  992. }
  993. luaK_concat(fs, &e->f, pc); /* insert new jump in false list */
  994. luaK_patchtohere(fs, e->t); /* true list jumps to here (to go through) */
  995. e->t = NO_JUMP;
  996. }
  997. /*
  998. ** Emit code to go through if 'e' is false, jump otherwise.
  999. */
  1000. void luaK_goiffalse (FuncState *fs, expdesc *e) {
  1001. int pc; /* pc of new jump */
  1002. luaK_dischargevars(fs, e);
  1003. switch (e->k) {
  1004. case VJMP: {
  1005. pc = e->u.info; /* already jump if true */
  1006. break;
  1007. }
  1008. case VNIL: case VFALSE: {
  1009. pc = NO_JUMP; /* always false; do nothing */
  1010. break;
  1011. }
  1012. default: {
  1013. pc = jumponcond(fs, e, 1); /* jump if true */
  1014. break;
  1015. }
  1016. }
  1017. luaK_concat(fs, &e->t, pc); /* insert new jump in 't' list */
  1018. luaK_patchtohere(fs, e->f); /* false list jumps to here (to go through) */
  1019. e->f = NO_JUMP;
  1020. }
  1021. /*
  1022. ** Code 'not e', doing constant folding.
  1023. */
  1024. static void codenot (FuncState *fs, expdesc *e) {
  1025. switch (e->k) {
  1026. case VNIL: case VFALSE: {
  1027. e->k = VTRUE; /* true == not nil == not false */
  1028. break;
  1029. }
  1030. case VK: case VKFLT: case VKINT: case VKSTR: case VTRUE: {
  1031. e->k = VFALSE; /* false == not "x" == not 0.5 == not 1 == not true */
  1032. break;
  1033. }
  1034. case VJMP: {
  1035. negatecondition(fs, e);
  1036. break;
  1037. }
  1038. case VRELOC:
  1039. case VNONRELOC: {
  1040. discharge2anyreg(fs, e);
  1041. freeexp(fs, e);
  1042. e->u.info = luaK_codeABC(fs, OP_NOT, 0, e->u.info, 0);
  1043. e->k = VRELOC;
  1044. break;
  1045. }
  1046. default: lua_assert(0); /* cannot happen */
  1047. }
  1048. /* interchange true and false lists */
  1049. { int temp = e->f; e->f = e->t; e->t = temp; }
  1050. removevalues(fs, e->f); /* values are useless when negated */
  1051. removevalues(fs, e->t);
  1052. }
  1053. /*
  1054. ** Check whether expression 'e' is a short literal string
  1055. */
  1056. static int isKstr (FuncState *fs, expdesc *e) {
  1057. return (e->k == VK && !hasjumps(e) && e->u.info <= MAXARG_B &&
  1058. ttisshrstring(&fs->f->k[e->u.info]));
  1059. }
  1060. /*
  1061. ** Check whether expression 'e' is a literal integer.
  1062. */
  1063. static int isKint (expdesc *e) {
  1064. return (e->k == VKINT && !hasjumps(e));
  1065. }
  1066. /*
  1067. ** Check whether expression 'e' is a literal integer in
  1068. ** proper range to fit in register C
  1069. */
  1070. static int isCint (expdesc *e) {
  1071. return isKint(e) && (l_castS2U(e->u.ival) <= l_castS2U(MAXARG_C));
  1072. }
  1073. /*
  1074. ** Check whether expression 'e' is a literal integer in
  1075. ** proper range to fit in register sC
  1076. */
  1077. static int isSCint (expdesc *e) {
  1078. return isKint(e) && fitsC(e->u.ival);
  1079. }
  1080. /*
  1081. ** Check whether expression 'e' is a literal integer or float in
  1082. ** proper range to fit in a register (sB or sC).
  1083. */
  1084. static int isSCnumber (expdesc *e, int *pi, int *isfloat) {
  1085. lua_Integer i;
  1086. if (e->k == VKINT)
  1087. i = e->u.ival;
  1088. else if (e->k == VKFLT && luaV_flttointeger(e->u.nval, &i, F2Ieq))
  1089. *isfloat = 1;
  1090. else
  1091. return 0; /* not a number */
  1092. if (!hasjumps(e) && fitsC(i)) {
  1093. *pi = int2sC(cast_int(i));
  1094. return 1;
  1095. }
  1096. else
  1097. return 0;
  1098. }
  1099. /*
  1100. ** Emit SELF instruction or equivalent: the code will convert
  1101. ** expression 'e' into 'e.key(e,'.
  1102. */
  1103. void luaK_self (FuncState *fs, expdesc *e, expdesc *key) {
  1104. int ereg, base;
  1105. luaK_exp2anyreg(fs, e);
  1106. ereg = e->u.info; /* register where 'e' (the receiver) was placed */
  1107. freeexp(fs, e);
  1108. base = e->u.info = fs->freereg; /* base register for op_self */
  1109. e->k = VNONRELOC; /* self expression has a fixed register */
  1110. luaK_reserveregs(fs, 2); /* method and 'self' produced by op_self */
  1111. lua_assert(key->k == VKSTR);
  1112. /* is method name a short string in a valid K index? */
  1113. if (strisshr(key->u.strval) && luaK_exp2K(fs, key)) {
  1114. /* can use 'self' opcode */
  1115. luaK_codeABCk(fs, OP_SELF, base, ereg, key->u.info, 0);
  1116. }
  1117. else { /* cannot use 'self' opcode; use move+gettable */
  1118. luaK_exp2anyreg(fs, key); /* put method name in a register */
  1119. luaK_codeABC(fs, OP_MOVE, base + 1, ereg, 0); /* copy self to base+1 */
  1120. luaK_codeABC(fs, OP_GETTABLE, base, ereg, key->u.info); /* get method */
  1121. }
  1122. freeexp(fs, key);
  1123. }
  1124. /*
  1125. ** Create expression 't[k]'. 't' must have its final result already in a
  1126. ** register or upvalue. Upvalues can only be indexed by literal strings.
  1127. ** Keys can be literal strings in the constant table or arbitrary
  1128. ** values in registers.
  1129. */
  1130. void luaK_indexed (FuncState *fs, expdesc *t, expdesc *k) {
  1131. if (k->k == VKSTR)
  1132. str2K(fs, k);
  1133. lua_assert(!hasjumps(t) &&
  1134. (t->k == VLOCAL || t->k == VNONRELOC || t->k == VUPVAL));
  1135. if (t->k == VUPVAL && !isKstr(fs, k)) /* upvalue indexed by non 'Kstr'? */
  1136. luaK_exp2anyreg(fs, t); /* put it in a register */
  1137. if (t->k == VUPVAL) {
  1138. lu_byte temp = cast_byte(t->u.info); /* upvalue index */
  1139. lua_assert(isKstr(fs, k));
  1140. t->u.ind.t = temp; /* (can't do a direct assignment; values overlap) */
  1141. t->u.ind.idx = cast(short, k->u.info); /* literal short string */
  1142. t->k = VINDEXUP;
  1143. }
  1144. else {
  1145. /* register index of the table */
  1146. t->u.ind.t = cast_byte((t->k == VLOCAL) ? t->u.var.ridx: t->u.info);
  1147. if (isKstr(fs, k)) {
  1148. t->u.ind.idx = cast(short, k->u.info); /* literal short string */
  1149. t->k = VINDEXSTR;
  1150. }
  1151. else if (isCint(k)) { /* int. constant in proper range? */
  1152. t->u.ind.idx = cast(short, k->u.ival);
  1153. t->k = VINDEXI;
  1154. }
  1155. else {
  1156. t->u.ind.idx = cast(short, luaK_exp2anyreg(fs, k)); /* register */
  1157. t->k = VINDEXED;
  1158. }
  1159. }
  1160. }
  1161. /*
  1162. ** Return false if folding can raise an error.
  1163. ** Bitwise operations need operands convertible to integers; division
  1164. ** operations cannot have 0 as divisor.
  1165. */
  1166. static int validop (int op, TValue *v1, TValue *v2) {
  1167. switch (op) {
  1168. case LUA_OPBAND: case LUA_OPBOR: case LUA_OPBXOR:
  1169. case LUA_OPSHL: case LUA_OPSHR: case LUA_OPBNOT: { /* conversion errors */
  1170. lua_Integer i;
  1171. return (luaV_tointegerns(v1, &i, LUA_FLOORN2I) &&
  1172. luaV_tointegerns(v2, &i, LUA_FLOORN2I));
  1173. }
  1174. case LUA_OPDIV: case LUA_OPIDIV: case LUA_OPMOD: /* division by 0 */
  1175. return (nvalue(v2) != 0);
  1176. default: return 1; /* everything else is valid */
  1177. }
  1178. }
  1179. /*
  1180. ** Try to "constant-fold" an operation; return 1 iff successful.
  1181. ** (In this case, 'e1' has the final result.)
  1182. */
  1183. static int constfolding (FuncState *fs, int op, expdesc *e1,
  1184. const expdesc *e2) {
  1185. TValue v1, v2, res;
  1186. if (!tonumeral(e1, &v1) || !tonumeral(e2, &v2) || !validop(op, &v1, &v2))
  1187. return 0; /* non-numeric operands or not safe to fold */
  1188. luaO_rawarith(fs->ls->L, op, &v1, &v2, &res); /* does operation */
  1189. if (ttisinteger(&res)) {
  1190. e1->k = VKINT;
  1191. e1->u.ival = ivalue(&res);
  1192. }
  1193. else { /* folds neither NaN nor 0.0 (to avoid problems with -0.0) */
  1194. lua_Number n = fltvalue(&res);
  1195. if (luai_numisnan(n) || n == 0)
  1196. return 0;
  1197. e1->k = VKFLT;
  1198. e1->u.nval = n;
  1199. }
  1200. return 1;
  1201. }
  1202. /*
  1203. ** Convert a BinOpr to an OpCode (ORDER OPR - ORDER OP)
  1204. */
  1205. l_sinline OpCode binopr2op (BinOpr opr, BinOpr baser, OpCode base) {
  1206. lua_assert(baser <= opr &&
  1207. ((baser == OPR_ADD && opr <= OPR_SHR) ||
  1208. (baser == OPR_LT && opr <= OPR_LE)));
  1209. return cast(OpCode, (cast_int(opr) - cast_int(baser)) + cast_int(base));
  1210. }
  1211. /*
  1212. ** Convert a UnOpr to an OpCode (ORDER OPR - ORDER OP)
  1213. */
  1214. l_sinline OpCode unopr2op (UnOpr opr) {
  1215. return cast(OpCode, (cast_int(opr) - cast_int(OPR_MINUS)) +
  1216. cast_int(OP_UNM));
  1217. }
  1218. /*
  1219. ** Convert a BinOpr to a tag method (ORDER OPR - ORDER TM)
  1220. */
  1221. l_sinline TMS binopr2TM (BinOpr opr) {
  1222. lua_assert(OPR_ADD <= opr && opr <= OPR_SHR);
  1223. return cast(TMS, (cast_int(opr) - cast_int(OPR_ADD)) + cast_int(TM_ADD));
  1224. }
  1225. /*
  1226. ** Emit code for unary expressions that "produce values"
  1227. ** (everything but 'not').
  1228. ** Expression to produce final result will be encoded in 'e'.
  1229. */
  1230. static void codeunexpval (FuncState *fs, OpCode op, expdesc *e, int line) {
  1231. int r = luaK_exp2anyreg(fs, e); /* opcodes operate only on registers */
  1232. freeexp(fs, e);
  1233. e->u.info = luaK_codeABC(fs, op, 0, r, 0); /* generate opcode */
  1234. e->k = VRELOC; /* all those operations are relocatable */
  1235. luaK_fixline(fs, line);
  1236. }
  1237. /*
  1238. ** Emit code for binary expressions that "produce values"
  1239. ** (everything but logical operators 'and'/'or' and comparison
  1240. ** operators).
  1241. ** Expression to produce final result will be encoded in 'e1'.
  1242. */
  1243. static void finishbinexpval (FuncState *fs, expdesc *e1, expdesc *e2,
  1244. OpCode op, int v2, int flip, int line,
  1245. OpCode mmop, TMS event) {
  1246. int v1 = luaK_exp2anyreg(fs, e1);
  1247. int pc = luaK_codeABCk(fs, op, 0, v1, v2, 0);
  1248. freeexps(fs, e1, e2);
  1249. e1->u.info = pc;
  1250. e1->k = VRELOC; /* all those operations are relocatable */
  1251. luaK_fixline(fs, line);
  1252. luaK_codeABCk(fs, mmop, v1, v2, event, flip); /* to call metamethod */
  1253. luaK_fixline(fs, line);
  1254. }
  1255. /*
  1256. ** Emit code for binary expressions that "produce values" over
  1257. ** two registers.
  1258. */
  1259. static void codebinexpval (FuncState *fs, BinOpr opr,
  1260. expdesc *e1, expdesc *e2, int line) {
  1261. OpCode op = binopr2op(opr, OPR_ADD, OP_ADD);
  1262. int v2 = luaK_exp2anyreg(fs, e2); /* make sure 'e2' is in a register */
  1263. /* 'e1' must be already in a register or it is a constant */
  1264. lua_assert((VNIL <= e1->k && e1->k <= VKSTR) ||
  1265. e1->k == VNONRELOC || e1->k == VRELOC);
  1266. lua_assert(OP_ADD <= op && op <= OP_SHR);
  1267. finishbinexpval(fs, e1, e2, op, v2, 0, line, OP_MMBIN, binopr2TM(opr));
  1268. }
  1269. /*
  1270. ** Code binary operators with immediate operands.
  1271. */
  1272. static void codebini (FuncState *fs, OpCode op,
  1273. expdesc *e1, expdesc *e2, int flip, int line,
  1274. TMS event) {
  1275. int v2 = int2sC(cast_int(e2->u.ival)); /* immediate operand */
  1276. lua_assert(e2->k == VKINT);
  1277. finishbinexpval(fs, e1, e2, op, v2, flip, line, OP_MMBINI, event);
  1278. }
  1279. /*
  1280. ** Code binary operators with K operand.
  1281. */
  1282. static void codebinK (FuncState *fs, BinOpr opr,
  1283. expdesc *e1, expdesc *e2, int flip, int line) {
  1284. TMS event = binopr2TM(opr);
  1285. int v2 = e2->u.info; /* K index */
  1286. OpCode op = binopr2op(opr, OPR_ADD, OP_ADDK);
  1287. finishbinexpval(fs, e1, e2, op, v2, flip, line, OP_MMBINK, event);
  1288. }
  1289. /* Try to code a binary operator negating its second operand.
  1290. ** For the metamethod, 2nd operand must keep its original value.
  1291. */
  1292. static int finishbinexpneg (FuncState *fs, expdesc *e1, expdesc *e2,
  1293. OpCode op, int line, TMS event) {
  1294. if (!isKint(e2))
  1295. return 0; /* not an integer constant */
  1296. else {
  1297. lua_Integer i2 = e2->u.ival;
  1298. if (!(fitsC(i2) && fitsC(-i2)))
  1299. return 0; /* not in the proper range */
  1300. else { /* operating a small integer constant */
  1301. int v2 = cast_int(i2);
  1302. finishbinexpval(fs, e1, e2, op, int2sC(-v2), 0, line, OP_MMBINI, event);
  1303. /* correct metamethod argument */
  1304. SETARG_B(fs->f->code[fs->pc - 1], int2sC(v2));
  1305. return 1; /* successfully coded */
  1306. }
  1307. }
  1308. }
  1309. static void swapexps (expdesc *e1, expdesc *e2) {
  1310. expdesc temp = *e1; *e1 = *e2; *e2 = temp; /* swap 'e1' and 'e2' */
  1311. }
  1312. /*
  1313. ** Code binary operators with no constant operand.
  1314. */
  1315. static void codebinNoK (FuncState *fs, BinOpr opr,
  1316. expdesc *e1, expdesc *e2, int flip, int line) {
  1317. if (flip)
  1318. swapexps(e1, e2); /* back to original order */
  1319. codebinexpval(fs, opr, e1, e2, line); /* use standard operators */
  1320. }
  1321. /*
  1322. ** Code arithmetic operators ('+', '-', ...). If second operand is a
  1323. ** constant in the proper range, use variant opcodes with K operands.
  1324. */
  1325. static void codearith (FuncState *fs, BinOpr opr,
  1326. expdesc *e1, expdesc *e2, int flip, int line) {
  1327. if (tonumeral(e2, NULL) && luaK_exp2K(fs, e2)) /* K operand? */
  1328. codebinK(fs, opr, e1, e2, flip, line);
  1329. else /* 'e2' is neither an immediate nor a K operand */
  1330. codebinNoK(fs, opr, e1, e2, flip, line);
  1331. }
  1332. /*
  1333. ** Code commutative operators ('+', '*'). If first operand is a
  1334. ** numeric constant, change order of operands to try to use an
  1335. ** immediate or K operator.
  1336. */
  1337. static void codecommutative (FuncState *fs, BinOpr op,
  1338. expdesc *e1, expdesc *e2, int line) {
  1339. int flip = 0;
  1340. if (tonumeral(e1, NULL)) { /* is first operand a numeric constant? */
  1341. swapexps(e1, e2); /* change order */
  1342. flip = 1;
  1343. }
  1344. if (op == OPR_ADD && isSCint(e2)) /* immediate operand? */
  1345. codebini(fs, OP_ADDI, e1, e2, flip, line, TM_ADD);
  1346. else
  1347. codearith(fs, op, e1, e2, flip, line);
  1348. }
  1349. /*
  1350. ** Code bitwise operations; they are all commutative, so the function
  1351. ** tries to put an integer constant as the 2nd operand (a K operand).
  1352. */
  1353. static void codebitwise (FuncState *fs, BinOpr opr,
  1354. expdesc *e1, expdesc *e2, int line) {
  1355. int flip = 0;
  1356. if (e1->k == VKINT) {
  1357. swapexps(e1, e2); /* 'e2' will be the constant operand */
  1358. flip = 1;
  1359. }
  1360. if (e2->k == VKINT && luaK_exp2K(fs, e2)) /* K operand? */
  1361. codebinK(fs, opr, e1, e2, flip, line);
  1362. else /* no constants */
  1363. codebinNoK(fs, opr, e1, e2, flip, line);
  1364. }
  1365. /*
  1366. ** Emit code for order comparisons. When using an immediate operand,
  1367. ** 'isfloat' tells whether the original value was a float.
  1368. */
  1369. static void codeorder (FuncState *fs, BinOpr opr, expdesc *e1, expdesc *e2) {
  1370. int r1, r2;
  1371. int im;
  1372. int isfloat = 0;
  1373. OpCode op;
  1374. if (isSCnumber(e2, &im, &isfloat)) {
  1375. /* use immediate operand */
  1376. r1 = luaK_exp2anyreg(fs, e1);
  1377. r2 = im;
  1378. op = binopr2op(opr, OPR_LT, OP_LTI);
  1379. }
  1380. else if (isSCnumber(e1, &im, &isfloat)) {
  1381. /* transform (A < B) to (B > A) and (A <= B) to (B >= A) */
  1382. r1 = luaK_exp2anyreg(fs, e2);
  1383. r2 = im;
  1384. op = binopr2op(opr, OPR_LT, OP_GTI);
  1385. }
  1386. else { /* regular case, compare two registers */
  1387. r1 = luaK_exp2anyreg(fs, e1);
  1388. r2 = luaK_exp2anyreg(fs, e2);
  1389. op = binopr2op(opr, OPR_LT, OP_LT);
  1390. }
  1391. freeexps(fs, e1, e2);
  1392. e1->u.info = condjump(fs, op, r1, r2, isfloat, 1);
  1393. e1->k = VJMP;
  1394. }
  1395. /*
  1396. ** Emit code for equality comparisons ('==', '~=').
  1397. ** 'e1' was already put as RK by 'luaK_infix'.
  1398. */
  1399. static void codeeq (FuncState *fs, BinOpr opr, expdesc *e1, expdesc *e2) {
  1400. int r1, r2;
  1401. int im;
  1402. int isfloat = 0; /* not needed here, but kept for symmetry */
  1403. OpCode op;
  1404. if (e1->k != VNONRELOC) {
  1405. lua_assert(e1->k == VK || e1->k == VKINT || e1->k == VKFLT);
  1406. swapexps(e1, e2);
  1407. }
  1408. r1 = luaK_exp2anyreg(fs, e1); /* 1st expression must be in register */
  1409. if (isSCnumber(e2, &im, &isfloat)) {
  1410. op = OP_EQI;
  1411. r2 = im; /* immediate operand */
  1412. }
  1413. else if (exp2RK(fs, e2)) { /* 2nd expression is constant? */
  1414. op = OP_EQK;
  1415. r2 = e2->u.info; /* constant index */
  1416. }
  1417. else {
  1418. op = OP_EQ; /* will compare two registers */
  1419. r2 = luaK_exp2anyreg(fs, e2);
  1420. }
  1421. freeexps(fs, e1, e2);
  1422. e1->u.info = condjump(fs, op, r1, r2, isfloat, (opr == OPR_EQ));
  1423. e1->k = VJMP;
  1424. }
  1425. /*
  1426. ** Apply prefix operation 'op' to expression 'e'.
  1427. */
  1428. void luaK_prefix (FuncState *fs, UnOpr opr, expdesc *e, int line) {
  1429. static const expdesc ef = {VKINT, {0}, NO_JUMP, NO_JUMP};
  1430. luaK_dischargevars(fs, e);
  1431. switch (opr) {
  1432. case OPR_MINUS: case OPR_BNOT: /* use 'ef' as fake 2nd operand */
  1433. if (constfolding(fs, cast_int(opr + LUA_OPUNM), e, &ef))
  1434. break;
  1435. /* else */ /* FALLTHROUGH */
  1436. case OPR_LEN:
  1437. codeunexpval(fs, unopr2op(opr), e, line);
  1438. break;
  1439. case OPR_NOT: codenot(fs, e); break;
  1440. default: lua_assert(0);
  1441. }
  1442. }
  1443. /*
  1444. ** Process 1st operand 'v' of binary operation 'op' before reading
  1445. ** 2nd operand.
  1446. */
  1447. void luaK_infix (FuncState *fs, BinOpr op, expdesc *v) {
  1448. luaK_dischargevars(fs, v);
  1449. switch (op) {
  1450. case OPR_AND: {
  1451. luaK_goiftrue(fs, v); /* go ahead only if 'v' is true */
  1452. break;
  1453. }
  1454. case OPR_OR: {
  1455. luaK_goiffalse(fs, v); /* go ahead only if 'v' is false */
  1456. break;
  1457. }
  1458. case OPR_CONCAT: {
  1459. luaK_exp2nextreg(fs, v); /* operand must be on the stack */
  1460. break;
  1461. }
  1462. case OPR_ADD: case OPR_SUB:
  1463. case OPR_MUL: case OPR_DIV: case OPR_IDIV:
  1464. case OPR_MOD: case OPR_POW:
  1465. case OPR_BAND: case OPR_BOR: case OPR_BXOR:
  1466. case OPR_SHL: case OPR_SHR: {
  1467. if (!tonumeral(v, NULL))
  1468. luaK_exp2anyreg(fs, v);
  1469. /* else keep numeral, which may be folded or used as an immediate
  1470. operand */
  1471. break;
  1472. }
  1473. case OPR_EQ: case OPR_NE: {
  1474. if (!tonumeral(v, NULL))
  1475. exp2RK(fs, v);
  1476. /* else keep numeral, which may be an immediate operand */
  1477. break;
  1478. }
  1479. case OPR_LT: case OPR_LE:
  1480. case OPR_GT: case OPR_GE: {
  1481. int dummy, dummy2;
  1482. if (!isSCnumber(v, &dummy, &dummy2))
  1483. luaK_exp2anyreg(fs, v);
  1484. /* else keep numeral, which may be an immediate operand */
  1485. break;
  1486. }
  1487. default: lua_assert(0);
  1488. }
  1489. }
  1490. /*
  1491. ** Create code for '(e1 .. e2)'.
  1492. ** For '(e1 .. e2.1 .. e2.2)' (which is '(e1 .. (e2.1 .. e2.2))',
  1493. ** because concatenation is right associative), merge both CONCATs.
  1494. */
  1495. static void codeconcat (FuncState *fs, expdesc *e1, expdesc *e2, int line) {
  1496. Instruction *ie2 = previousinstruction(fs);
  1497. if (GET_OPCODE(*ie2) == OP_CONCAT) { /* is 'e2' a concatenation? */
  1498. int n = GETARG_B(*ie2); /* # of elements concatenated in 'e2' */
  1499. lua_assert(e1->u.info + 1 == GETARG_A(*ie2));
  1500. freeexp(fs, e2);
  1501. SETARG_A(*ie2, e1->u.info); /* correct first element ('e1') */
  1502. SETARG_B(*ie2, n + 1); /* will concatenate one more element */
  1503. }
  1504. else { /* 'e2' is not a concatenation */
  1505. luaK_codeABC(fs, OP_CONCAT, e1->u.info, 2, 0); /* new concat opcode */
  1506. freeexp(fs, e2);
  1507. luaK_fixline(fs, line);
  1508. }
  1509. }
  1510. /*
  1511. ** Finalize code for binary operation, after reading 2nd operand.
  1512. */
  1513. void luaK_posfix (FuncState *fs, BinOpr opr,
  1514. expdesc *e1, expdesc *e2, int line) {
  1515. luaK_dischargevars(fs, e2);
  1516. if (foldbinop(opr) && constfolding(fs, cast_int(opr + LUA_OPADD), e1, e2))
  1517. return; /* done by folding */
  1518. switch (opr) {
  1519. case OPR_AND: {
  1520. lua_assert(e1->t == NO_JUMP); /* list closed by 'luaK_infix' */
  1521. luaK_concat(fs, &e2->f, e1->f);
  1522. *e1 = *e2;
  1523. break;
  1524. }
  1525. case OPR_OR: {
  1526. lua_assert(e1->f == NO_JUMP); /* list closed by 'luaK_infix' */
  1527. luaK_concat(fs, &e2->t, e1->t);
  1528. *e1 = *e2;
  1529. break;
  1530. }
  1531. case OPR_CONCAT: { /* e1 .. e2 */
  1532. luaK_exp2nextreg(fs, e2);
  1533. codeconcat(fs, e1, e2, line);
  1534. break;
  1535. }
  1536. case OPR_ADD: case OPR_MUL: {
  1537. codecommutative(fs, opr, e1, e2, line);
  1538. break;
  1539. }
  1540. case OPR_SUB: {
  1541. if (finishbinexpneg(fs, e1, e2, OP_ADDI, line, TM_SUB))
  1542. break; /* coded as (r1 + -I) */
  1543. /* ELSE */
  1544. } /* FALLTHROUGH */
  1545. case OPR_DIV: case OPR_IDIV: case OPR_MOD: case OPR_POW: {
  1546. codearith(fs, opr, e1, e2, 0, line);
  1547. break;
  1548. }
  1549. case OPR_BAND: case OPR_BOR: case OPR_BXOR: {
  1550. codebitwise(fs, opr, e1, e2, line);
  1551. break;
  1552. }
  1553. case OPR_SHL: {
  1554. if (isSCint(e1)) {
  1555. swapexps(e1, e2);
  1556. codebini(fs, OP_SHLI, e1, e2, 1, line, TM_SHL); /* I << r2 */
  1557. }
  1558. else if (finishbinexpneg(fs, e1, e2, OP_SHRI, line, TM_SHL)) {
  1559. /* coded as (r1 >> -I) */;
  1560. }
  1561. else /* regular case (two registers) */
  1562. codebinexpval(fs, opr, e1, e2, line);
  1563. break;
  1564. }
  1565. case OPR_SHR: {
  1566. if (isSCint(e2))
  1567. codebini(fs, OP_SHRI, e1, e2, 0, line, TM_SHR); /* r1 >> I */
  1568. else /* regular case (two registers) */
  1569. codebinexpval(fs, opr, e1, e2, line);
  1570. break;
  1571. }
  1572. case OPR_EQ: case OPR_NE: {
  1573. codeeq(fs, opr, e1, e2);
  1574. break;
  1575. }
  1576. case OPR_GT: case OPR_GE: {
  1577. /* '(a > b)' <=> '(b < a)'; '(a >= b)' <=> '(b <= a)' */
  1578. swapexps(e1, e2);
  1579. opr = cast(BinOpr, (opr - OPR_GT) + OPR_LT);
  1580. } /* FALLTHROUGH */
  1581. case OPR_LT: case OPR_LE: {
  1582. codeorder(fs, opr, e1, e2);
  1583. break;
  1584. }
  1585. default: lua_assert(0);
  1586. }
  1587. }
  1588. /*
  1589. ** Change line information associated with current position, by removing
  1590. ** previous info and adding it again with new line.
  1591. */
  1592. void luaK_fixline (FuncState *fs, int line) {
  1593. removelastlineinfo(fs);
  1594. savelineinfo(fs, fs->f, line);
  1595. }
  1596. void luaK_settablesize (FuncState *fs, int pc, int ra, int asize, int hsize) {
  1597. Instruction *inst = &fs->f->code[pc];
  1598. int extra = asize / (MAXARG_vC + 1); /* higher bits of array size */
  1599. int rc = asize % (MAXARG_vC + 1); /* lower bits of array size */
  1600. int k = (extra > 0); /* true iff needs extra argument */
  1601. hsize = (hsize != 0) ? luaO_ceillog2(cast_uint(hsize)) + 1 : 0;
  1602. *inst = CREATE_vABCk(OP_NEWTABLE, ra, hsize, rc, k);
  1603. *(inst + 1) = CREATE_Ax(OP_EXTRAARG, extra);
  1604. }
  1605. /*
  1606. ** Emit a SETLIST instruction.
  1607. ** 'base' is register that keeps table;
  1608. ** 'nelems' is #table plus those to be stored now;
  1609. ** 'tostore' is number of values (in registers 'base + 1',...) to add to
  1610. ** table (or LUA_MULTRET to add up to stack top).
  1611. */
  1612. void luaK_setlist (FuncState *fs, int base, int nelems, int tostore) {
  1613. lua_assert(tostore != 0);
  1614. if (tostore == LUA_MULTRET)
  1615. tostore = 0;
  1616. if (nelems <= MAXARG_vC)
  1617. luaK_codevABCk(fs, OP_SETLIST, base, tostore, nelems, 0);
  1618. else {
  1619. int extra = nelems / (MAXARG_vC + 1);
  1620. nelems %= (MAXARG_vC + 1);
  1621. luaK_codevABCk(fs, OP_SETLIST, base, tostore, nelems, 1);
  1622. codeextraarg(fs, extra);
  1623. }
  1624. fs->freereg = cast_byte(base + 1); /* free registers with list values */
  1625. }
  1626. /*
  1627. ** return the final target of a jump (skipping jumps to jumps)
  1628. */
  1629. static int finaltarget (Instruction *code, int i) {
  1630. int count;
  1631. for (count = 0; count < 100; count++) { /* avoid infinite loops */
  1632. Instruction pc = code[i];
  1633. if (GET_OPCODE(pc) != OP_JMP)
  1634. break;
  1635. else
  1636. i += GETARG_sJ(pc) + 1;
  1637. }
  1638. return i;
  1639. }
  1640. /*
  1641. ** Do a final pass over the code of a function, doing small peephole
  1642. ** optimizations and adjustments.
  1643. */
  1644. #include "lopnames.h"
  1645. void luaK_finish (FuncState *fs) {
  1646. int i;
  1647. Proto *p = fs->f;
  1648. for (i = 0; i < fs->pc; i++) {
  1649. Instruction *pc = &p->code[i];
  1650. /* avoid "not used" warnings when assert is off (for 'onelua.c') */
  1651. (void)luaP_isOT; (void)luaP_isIT;
  1652. lua_assert(i == 0 || luaP_isOT(*(pc - 1)) == luaP_isIT(*pc));
  1653. switch (GET_OPCODE(*pc)) {
  1654. case OP_RETURN0: case OP_RETURN1: {
  1655. if (!(fs->needclose || (p->flag & PF_ISVARARG)))
  1656. break; /* no extra work */
  1657. /* else use OP_RETURN to do the extra work */
  1658. SET_OPCODE(*pc, OP_RETURN);
  1659. } /* FALLTHROUGH */
  1660. case OP_RETURN: case OP_TAILCALL: {
  1661. if (fs->needclose)
  1662. SETARG_k(*pc, 1); /* signal that it needs to close */
  1663. if (p->flag & PF_ISVARARG)
  1664. SETARG_C(*pc, p->numparams + 1); /* signal that it is vararg */
  1665. break;
  1666. }
  1667. case OP_JMP: {
  1668. int target = finaltarget(p->code, i);
  1669. fixjump(fs, i, target);
  1670. break;
  1671. }
  1672. default: break;
  1673. }
  1674. }
  1675. }