lopcodes.h 7.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263
  1. /*
  2. ** $Id: lopcodes.h,v 1.109 2004/05/31 18:51:50 roberto Exp roberto $
  3. ** Opcodes for Lua virtual machine
  4. ** See Copyright Notice in lua.h
  5. */
  6. #ifndef lopcodes_h
  7. #define lopcodes_h
  8. #include "llimits.h"
  9. /*===========================================================================
  10. We assume that instructions are unsigned numbers.
  11. All instructions have an opcode in the first 6 bits.
  12. Instructions can have the following fields:
  13. `A' : 8 bits
  14. `B' : 9 bits
  15. `C' : 9 bits
  16. `Bx' : 18 bits (`B' and `C' together)
  17. `sBx' : signed Bx
  18. A signed argument is represented in excess K; that is, the number
  19. value is the unsigned value minus K. K is exactly the maximum value
  20. for that argument (so that -max is represented by 0, and +max is
  21. represented by 2*max), which is half the maximum for the corresponding
  22. unsigned argument.
  23. ===========================================================================*/
  24. enum OpMode {iABC, iABx, iAsBx}; /* basic instruction format */
  25. /*
  26. ** size and position of opcode arguments.
  27. */
  28. #define SIZE_C 9
  29. #define SIZE_B 9
  30. #define SIZE_Bx (SIZE_C + SIZE_B)
  31. #define SIZE_A 8
  32. #define SIZE_OP 6
  33. #define POS_C (POS_A + SIZE_A)
  34. #define POS_B (POS_C + SIZE_C)
  35. #define POS_Bx POS_C
  36. #define POS_A SIZE_OP
  37. /*
  38. ** limits for opcode arguments.
  39. ** we use (signed) int to manipulate most arguments,
  40. ** so they must fit in LUA_BITSINT-1 bits (-1 for sign)
  41. */
  42. #if SIZE_Bx < LUA_BITSINT-1
  43. #define MAXARG_Bx ((1<<SIZE_Bx)-1)
  44. #define MAXARG_sBx (MAXARG_Bx>>1) /* `sBx' is signed */
  45. #else
  46. #define MAXARG_Bx MAX_INT
  47. #define MAXARG_sBx MAX_INT
  48. #endif
  49. #define MAXARG_A ((1<<SIZE_A)-1)
  50. #define MAXARG_B ((1<<SIZE_B)-1)
  51. #define MAXARG_C ((1<<SIZE_C)-1)
  52. /* creates a mask with `n' 1 bits at position `p' */
  53. #define MASK1(n,p) ((~((~(Instruction)0)<<n))<<p)
  54. /* creates a mask with `n' 0 bits at position `p' */
  55. #define MASK0(n,p) (~MASK1(n,p))
  56. /*
  57. ** the following macros help to manipulate instructions
  58. */
  59. #define GET_OPCODE(i) (cast(OpCode, (i)&MASK1(SIZE_OP,0)))
  60. #define SET_OPCODE(i,o) ((i) = (((i)&MASK0(SIZE_OP,0)) | cast(Instruction, o)))
  61. #define GETARG_A(i) (cast(int, ((i)>>POS_A) & MASK1(SIZE_A,0)))
  62. #define SETARG_A(i,u) ((i) = (((i)&MASK0(SIZE_A,POS_A)) | \
  63. ((cast(Instruction, u)<<POS_A)&MASK1(SIZE_A,POS_A))))
  64. #define GETARG_B(i) (cast(int, ((i)>>POS_B) & MASK1(SIZE_B,0)))
  65. #define SETARG_B(i,b) ((i) = (((i)&MASK0(SIZE_B,POS_B)) | \
  66. ((cast(Instruction, b)<<POS_B)&MASK1(SIZE_B,POS_B))))
  67. #define GETARG_C(i) (cast(int, ((i)>>POS_C) & MASK1(SIZE_C,0)))
  68. #define SETARG_C(i,b) ((i) = (((i)&MASK0(SIZE_C,POS_C)) | \
  69. ((cast(Instruction, b)<<POS_C)&MASK1(SIZE_C,POS_C))))
  70. #define GETARG_Bx(i) (cast(int, ((i)>>POS_Bx) & MASK1(SIZE_Bx,0)))
  71. #define SETARG_Bx(i,b) ((i) = (((i)&MASK0(SIZE_Bx,POS_Bx)) | \
  72. ((cast(Instruction, b)<<POS_Bx)&MASK1(SIZE_Bx,POS_Bx))))
  73. #define GETARG_sBx(i) (GETARG_Bx(i)-MAXARG_sBx)
  74. #define SETARG_sBx(i,b) SETARG_Bx((i),cast(unsigned int, (b)+MAXARG_sBx))
  75. #define CREATE_ABC(o,a,b,c) (cast(Instruction, o) \
  76. | (cast(Instruction, a)<<POS_A) \
  77. | (cast(Instruction, b)<<POS_B) \
  78. | (cast(Instruction, c)<<POS_C))
  79. #define CREATE_ABx(o,a,bc) (cast(Instruction, o) \
  80. | (cast(Instruction, a)<<POS_A) \
  81. | (cast(Instruction, bc)<<POS_Bx))
  82. /*
  83. ** Macros to operate RK indices
  84. */
  85. /* this bit 1 means constant (0 means register) */
  86. #define BITRK (1 << (SIZE_B - 1))
  87. /* test whether value is a constant */
  88. #define ISK(x) ((x) & BITRK)
  89. /* gets the index of the constant */
  90. #define INDEXK(r) ((int)(r) & ~BITRK)
  91. #define MAXINDEXRK (BITRK - 1)
  92. /* code a constant index as a RK value */
  93. #define RKASK(x) ((x) | BITRK)
  94. /*
  95. ** invalid register that fits in 8 bits
  96. */
  97. #define NO_REG MAXARG_A
  98. /*
  99. ** R(x) - register
  100. ** Kst(x) - constant (in constant table)
  101. ** RK(x) == if ISK(x) then Kst(INDEXK(x)) else R(x)
  102. */
  103. /*
  104. ** grep "ORDER OP" if you change these enums
  105. */
  106. typedef enum {
  107. /*----------------------------------------------------------------------
  108. name args description
  109. ------------------------------------------------------------------------*/
  110. OP_MOVE,/* A B R(A) := R(B) */
  111. OP_LOADK,/* A Bx R(A) := Kst(Bx) */
  112. OP_LOADBOOL,/* A B C R(A) := (Bool)B; if (C) pc++ */
  113. OP_LOADNIL,/* A B R(A) := ... := R(B) := nil */
  114. OP_GETUPVAL,/* A B R(A) := UpValue[B] */
  115. OP_GETGLOBAL,/* A Bx R(A) := Gbl[Kst(Bx)] */
  116. OP_GETTABLE,/* A B C R(A) := R(B)[RK(C)] */
  117. OP_SETGLOBAL,/* A Bx Gbl[Kst(Bx)] := R(A) */
  118. OP_SETUPVAL,/* A B UpValue[B] := R(A) */
  119. OP_SETTABLE,/* A B C R(A)[RK(B)] := RK(C) */
  120. OP_NEWTABLE,/* A B C R(A) := {} (size = B,C) */
  121. OP_SELF,/* A B C R(A+1) := R(B); R(A) := R(B)[RK(C)] */
  122. OP_ADD,/* A B C R(A) := RK(B) + RK(C) */
  123. OP_SUB,/* A B C R(A) := RK(B) - RK(C) */
  124. OP_MUL,/* A B C R(A) := RK(B) * RK(C) */
  125. OP_DIV,/* A B C R(A) := RK(B) / RK(C) */
  126. OP_POW,/* A B C R(A) := RK(B) ^ RK(C) */
  127. OP_UNM,/* A B R(A) := -R(B) */
  128. OP_NOT,/* A B R(A) := not R(B) */
  129. OP_CONCAT,/* A B C R(A) := R(B).. ... ..R(C) */
  130. OP_JMP,/* sBx pc+=sBx */
  131. OP_EQ,/* A B C if ((RK(B) == RK(C)) ~= A) then pc++ */
  132. OP_LT,/* A B C if ((RK(B) < RK(C)) ~= A) then pc++ */
  133. OP_LE,/* A B C if ((RK(B) <= RK(C)) ~= A) then pc++ */
  134. OP_TEST,/* A B C if (R(B) <=> C) then R(A) := R(B) else pc++ */
  135. OP_CALL,/* A B C R(A), ... ,R(A+C-2) := R(A)(R(A+1), ... ,R(A+B-1)) */
  136. OP_TAILCALL,/* A B C return R(A)(R(A+1), ... ,R(A+B-1)) */
  137. OP_RETURN,/* A B return R(A), ... ,R(A+B-2) (see note) */
  138. OP_FORLOOP,/* A sBx R(A)+=R(A+2); if R(A) <?= R(A+1) then pc+=sBx */
  139. OP_FORPREP,/* A sBx R(A)-=R(A+2); pc+=sBx */
  140. OP_TFORLOOP,/* A C R(A+2), ... ,R(A+2+C) := R(A)(R(A+1), R(A+2));
  141. if R(A+2) ~= nil then pc++ */
  142. OP_TFORPREP,/* A sBx if type(R(A)) == table then R(A+1):=R(A), R(A):=next;
  143. pc+=sBx */
  144. OP_SETLIST,/* A Bx R(A)[Bx-Bx%FPF+i] := R(A+i), 1 <= i <= Bx%FPF+1 */
  145. OP_SETLISTO,/* A Bx */
  146. OP_CLOSE,/* A close all variables in the stack up to (>=) R(A)*/
  147. OP_CLOSURE,/* A Bx R(A) := closure(KPROTO[Bx], R(A), ... ,R(A+n)) */
  148. OP_VARARG/* A B R(A), R(A+1), ..., R(A+B-1) = vararg */
  149. } OpCode;
  150. #define NUM_OPCODES (cast(int, OP_VARARG+1))
  151. /*===========================================================================
  152. Notes:
  153. (*) In OP_CALL, if (B == 0) then B = top. C is the number of returns - 1,
  154. and can be 0: OP_CALL then sets `top' to last_result+1, so
  155. next open instruction (OP_CALL, OP_RETURN, OP_SETLIST) may use `top'.
  156. (*) In OP_VARARG, if (B == 0) then use actual number of varargs and
  157. set top (like in OP_CALL).
  158. (*) In OP_RETURN, if (B == 0) then return up to `top'
  159. (*) For comparisons, B specifies what conditions the test should accept.
  160. (*) All `skips' (pc++) assume that next instruction is a jump
  161. ===========================================================================*/
  162. /*
  163. ** masks for instruction properties. The format is:
  164. ** bits 0-1: op mode
  165. ** bits 2-3: C arg mode
  166. ** bits 4-5: B arg mode
  167. ** bit 6: instruction set register A
  168. ** bit 7: operator is a test
  169. */
  170. enum OpArgMask {
  171. OpArgN, /* argument is not used */
  172. OpArgU, /* argument is used */
  173. OpArgR, /* argument is a register or a jump offset */
  174. OpArgK /* argument is a constant or register/constant */
  175. };
  176. extern const lu_byte luaP_opmodes[NUM_OPCODES];
  177. #define getOpMode(m) (cast(enum OpMode, luaP_opmodes[m] & 3))
  178. #define getBMode(m) (cast(enum OpArgMask, (luaP_opmodes[m] >> 4) & 3))
  179. #define getCMode(m) (cast(enum OpArgMask, (luaP_opmodes[m] >> 2) & 3))
  180. #define testAMode(m) (luaP_opmodes[m] & (1 << 6))
  181. #define testTMode(m) (luaP_opmodes[m] & (1 << 7))
  182. extern const char *const luaP_opnames[NUM_OPCODES]; /* opcode names */
  183. /* number of list items to accumulate before a SETLIST instruction */
  184. /* (must be a power of 2) */
  185. #define LFIELDS_PER_FLUSH 32
  186. #endif