lcode.c 53 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904
  1. /*
  2. ** $Id: lcode.c $
  3. ** Code generator for Lua
  4. ** See Copyright Notice in lua.h
  5. */
  6. #define lcode_c
  7. #define LUA_CORE
  8. #include "lprefix.h"
  9. #include <float.h>
  10. #include <limits.h>
  11. #include <math.h>
  12. #include <stdlib.h>
  13. #include "lua.h"
  14. #include "lcode.h"
  15. #include "ldebug.h"
  16. #include "ldo.h"
  17. #include "lgc.h"
  18. #include "llex.h"
  19. #include "lmem.h"
  20. #include "lobject.h"
  21. #include "lopcodes.h"
  22. #include "lparser.h"
  23. #include "lstring.h"
  24. #include "ltable.h"
  25. #include "lvm.h"
  26. /* (note that expressions VJMP also have jumps.) */
  27. #define hasjumps(e) ((e)->t != (e)->f)
  28. static int codesJ (FuncState *fs, OpCode o, int sj, int k);
  29. /* semantic error */
  30. l_noret luaK_semerror (LexState *ls, const char *msg) {
  31. ls->t.token = 0; /* remove "near <token>" from final message */
  32. luaX_syntaxerror(ls, msg);
  33. }
  34. /*
  35. ** If expression is a numeric constant, fills 'v' with its value
  36. ** and returns 1. Otherwise, returns 0.
  37. */
  38. static int tonumeral (const expdesc *e, TValue *v) {
  39. if (hasjumps(e))
  40. return 0; /* not a numeral */
  41. switch (e->k) {
  42. case VKINT:
  43. if (v) setivalue(v, e->u.ival);
  44. return 1;
  45. case VKFLT:
  46. if (v) setfltvalue(v, e->u.nval);
  47. return 1;
  48. default: return 0;
  49. }
  50. }
  51. /*
  52. ** Get the constant value from a constant expression
  53. */
  54. static TValue *const2val (FuncState *fs, const expdesc *e) {
  55. lua_assert(e->k == VCONST);
  56. return &fs->ls->dyd->actvar.arr[e->u.info].k;
  57. }
  58. /*
  59. ** If expression is a constant, fills 'v' with its value
  60. ** and returns 1. Otherwise, returns 0.
  61. */
  62. int luaK_exp2const (FuncState *fs, const expdesc *e, TValue *v) {
  63. if (hasjumps(e))
  64. return 0; /* not a constant */
  65. switch (e->k) {
  66. case VFALSE:
  67. setbfvalue(v);
  68. return 1;
  69. case VTRUE:
  70. setbtvalue(v);
  71. return 1;
  72. case VNIL:
  73. setnilvalue(v);
  74. return 1;
  75. case VKSTR: {
  76. setsvalue(fs->ls->L, v, e->u.strval);
  77. return 1;
  78. }
  79. case VCONST: {
  80. setobj(fs->ls->L, v, const2val(fs, e));
  81. return 1;
  82. }
  83. default: return tonumeral(e, v);
  84. }
  85. }
  86. /*
  87. ** Return the previous instruction of the current code. If there
  88. ** may be a jump target between the current instruction and the
  89. ** previous one, return an invalid instruction (to avoid wrong
  90. ** optimizations).
  91. */
  92. static Instruction *previousinstruction (FuncState *fs) {
  93. static const Instruction invalidinstruction = ~(Instruction)0;
  94. if (fs->pc > fs->lasttarget)
  95. return &fs->f->code[fs->pc - 1]; /* previous instruction */
  96. else
  97. return cast(Instruction*, &invalidinstruction);
  98. }
  99. /*
  100. ** Create a OP_LOADNIL instruction, but try to optimize: if the previous
  101. ** instruction is also OP_LOADNIL and ranges are compatible, adjust
  102. ** range of previous instruction instead of emitting a new one. (For
  103. ** instance, 'local a; local b' will generate a single opcode.)
  104. */
  105. void luaK_nil (FuncState *fs, int from, int n) {
  106. int l = from + n - 1; /* last register to set nil */
  107. Instruction *previous = previousinstruction(fs);
  108. if (GET_OPCODE(*previous) == OP_LOADNIL) { /* previous is LOADNIL? */
  109. int pfrom = GETARG_A(*previous); /* get previous range */
  110. int pl = pfrom + GETARG_B(*previous);
  111. if ((pfrom <= from && from <= pl + 1) ||
  112. (from <= pfrom && pfrom <= l + 1)) { /* can connect both? */
  113. if (pfrom < from) from = pfrom; /* from = min(from, pfrom) */
  114. if (pl > l) l = pl; /* l = max(l, pl) */
  115. SETARG_A(*previous, from);
  116. SETARG_B(*previous, l - from);
  117. return;
  118. } /* else go through */
  119. }
  120. luaK_codeABC(fs, OP_LOADNIL, from, n - 1, 0); /* else no optimization */
  121. }
  122. /*
  123. ** Gets the destination address of a jump instruction. Used to traverse
  124. ** a list of jumps.
  125. */
  126. static int getjump (FuncState *fs, int pc) {
  127. int offset = GETARG_sJ(fs->f->code[pc]);
  128. if (offset == NO_JUMP) /* point to itself represents end of list */
  129. return NO_JUMP; /* end of list */
  130. else
  131. return (pc+1)+offset; /* turn offset into absolute position */
  132. }
  133. /*
  134. ** Fix jump instruction at position 'pc' to jump to 'dest'.
  135. ** (Jump addresses are relative in Lua)
  136. */
  137. static void fixjump (FuncState *fs, int pc, int dest) {
  138. Instruction *jmp = &fs->f->code[pc];
  139. int offset = dest - (pc + 1);
  140. lua_assert(dest != NO_JUMP);
  141. if (!(-OFFSET_sJ <= offset && offset <= MAXARG_sJ - OFFSET_sJ))
  142. luaX_syntaxerror(fs->ls, "control structure too long");
  143. lua_assert(GET_OPCODE(*jmp) == OP_JMP);
  144. SETARG_sJ(*jmp, offset);
  145. }
  146. /*
  147. ** Concatenate jump-list 'l2' into jump-list 'l1'
  148. */
  149. void luaK_concat (FuncState *fs, int *l1, int l2) {
  150. if (l2 == NO_JUMP) return; /* nothing to concatenate? */
  151. else if (*l1 == NO_JUMP) /* no original list? */
  152. *l1 = l2; /* 'l1' points to 'l2' */
  153. else {
  154. int list = *l1;
  155. int next;
  156. while ((next = getjump(fs, list)) != NO_JUMP) /* find last element */
  157. list = next;
  158. fixjump(fs, list, l2); /* last element links to 'l2' */
  159. }
  160. }
  161. /*
  162. ** Create a jump instruction and return its position, so its destination
  163. ** can be fixed later (with 'fixjump').
  164. */
  165. int luaK_jump (FuncState *fs) {
  166. return codesJ(fs, OP_JMP, NO_JUMP, 0);
  167. }
  168. /*
  169. ** Code a 'return' instruction
  170. */
  171. void luaK_ret (FuncState *fs, int first, int nret) {
  172. OpCode op;
  173. switch (nret) {
  174. case 0: op = OP_RETURN0; break;
  175. case 1: op = OP_RETURN1; break;
  176. default: op = OP_RETURN; break;
  177. }
  178. luaY_checklimit(fs, nret + 1, MAXARG_B, "returns");
  179. luaK_codeABC(fs, op, first, nret + 1, 0);
  180. }
  181. /*
  182. ** Code a "conditional jump", that is, a test or comparison opcode
  183. ** followed by a jump. Return jump position.
  184. */
  185. static int condjump (FuncState *fs, OpCode op, int A, int B, int C, int k) {
  186. luaK_codeABCk(fs, op, A, B, C, k);
  187. return luaK_jump(fs);
  188. }
  189. /*
  190. ** returns current 'pc' and marks it as a jump target (to avoid wrong
  191. ** optimizations with consecutive instructions not in the same basic block).
  192. */
  193. int luaK_getlabel (FuncState *fs) {
  194. fs->lasttarget = fs->pc;
  195. return fs->pc;
  196. }
  197. /*
  198. ** Returns the position of the instruction "controlling" a given
  199. ** jump (that is, its condition), or the jump itself if it is
  200. ** unconditional.
  201. */
  202. static Instruction *getjumpcontrol (FuncState *fs, int pc) {
  203. Instruction *pi = &fs->f->code[pc];
  204. if (pc >= 1 && testTMode(GET_OPCODE(*(pi-1))))
  205. return pi-1;
  206. else
  207. return pi;
  208. }
  209. /*
  210. ** Patch destination register for a TESTSET instruction.
  211. ** If instruction in position 'node' is not a TESTSET, return 0 ("fails").
  212. ** Otherwise, if 'reg' is not 'NO_REG', set it as the destination
  213. ** register. Otherwise, change instruction to a simple 'TEST' (produces
  214. ** no register value)
  215. */
  216. static int patchtestreg (FuncState *fs, int node, int reg) {
  217. Instruction *i = getjumpcontrol(fs, node);
  218. if (GET_OPCODE(*i) != OP_TESTSET)
  219. return 0; /* cannot patch other instructions */
  220. if (reg != NO_REG && reg != GETARG_B(*i))
  221. SETARG_A(*i, reg);
  222. else {
  223. /* no register to put value or register already has the value;
  224. change instruction to simple test */
  225. *i = CREATE_ABCk(OP_TEST, GETARG_B(*i), 0, 0, GETARG_k(*i));
  226. }
  227. return 1;
  228. }
  229. /*
  230. ** Traverse a list of tests ensuring no one produces a value
  231. */
  232. static void removevalues (FuncState *fs, int list) {
  233. for (; list != NO_JUMP; list = getjump(fs, list))
  234. patchtestreg(fs, list, NO_REG);
  235. }
  236. /*
  237. ** Traverse a list of tests, patching their destination address and
  238. ** registers: tests producing values jump to 'vtarget' (and put their
  239. ** values in 'reg'), other tests jump to 'dtarget'.
  240. */
  241. static void patchlistaux (FuncState *fs, int list, int vtarget, int reg,
  242. int dtarget) {
  243. while (list != NO_JUMP) {
  244. int next = getjump(fs, list);
  245. if (patchtestreg(fs, list, reg))
  246. fixjump(fs, list, vtarget);
  247. else
  248. fixjump(fs, list, dtarget); /* jump to default target */
  249. list = next;
  250. }
  251. }
  252. /*
  253. ** Path all jumps in 'list' to jump to 'target'.
  254. ** (The assert means that we cannot fix a jump to a forward address
  255. ** because we only know addresses once code is generated.)
  256. */
  257. void luaK_patchlist (FuncState *fs, int list, int target) {
  258. lua_assert(target <= fs->pc);
  259. patchlistaux(fs, list, target, NO_REG, target);
  260. }
  261. void luaK_patchtohere (FuncState *fs, int list) {
  262. int hr = luaK_getlabel(fs); /* mark "here" as a jump target */
  263. luaK_patchlist(fs, list, hr);
  264. }
  265. /* limit for difference between lines in relative line info. */
  266. #define LIMLINEDIFF 0x80
  267. /*
  268. ** Save line info for a new instruction. If difference from last line
  269. ** does not fit in a byte, of after that many instructions, save a new
  270. ** absolute line info; (in that case, the special value 'ABSLINEINFO'
  271. ** in 'lineinfo' signals the existence of this absolute information.)
  272. ** Otherwise, store the difference from last line in 'lineinfo'.
  273. */
  274. static void savelineinfo (FuncState *fs, Proto *f, int line) {
  275. int linedif = line - fs->previousline;
  276. int pc = fs->pc - 1; /* last instruction coded */
  277. if (abs(linedif) >= LIMLINEDIFF || fs->iwthabs++ >= MAXIWTHABS) {
  278. luaM_growvector(fs->ls->L, f->abslineinfo, fs->nabslineinfo,
  279. f->sizeabslineinfo, AbsLineInfo, INT_MAX, "lines");
  280. f->abslineinfo[fs->nabslineinfo].pc = pc;
  281. f->abslineinfo[fs->nabslineinfo++].line = line;
  282. linedif = ABSLINEINFO; /* signal that there is absolute information */
  283. fs->iwthabs = 1; /* restart counter */
  284. }
  285. luaM_growvector(fs->ls->L, f->lineinfo, pc, f->sizelineinfo, ls_byte,
  286. INT_MAX, "opcodes");
  287. f->lineinfo[pc] = cast(ls_byte, linedif);
  288. fs->previousline = line; /* last line saved */
  289. }
  290. /*
  291. ** Remove line information from the last instruction.
  292. ** If line information for that instruction is absolute, set 'iwthabs'
  293. ** above its max to force the new (replacing) instruction to have
  294. ** absolute line info, too.
  295. */
  296. static void removelastlineinfo (FuncState *fs) {
  297. Proto *f = fs->f;
  298. int pc = fs->pc - 1; /* last instruction coded */
  299. if (f->lineinfo[pc] != ABSLINEINFO) { /* relative line info? */
  300. fs->previousline -= f->lineinfo[pc]; /* correct last line saved */
  301. fs->iwthabs--; /* undo previous increment */
  302. }
  303. else { /* absolute line information */
  304. lua_assert(f->abslineinfo[fs->nabslineinfo - 1].pc == pc);
  305. fs->nabslineinfo--; /* remove it */
  306. fs->iwthabs = MAXIWTHABS + 1; /* force next line info to be absolute */
  307. }
  308. }
  309. /*
  310. ** Remove the last instruction created, correcting line information
  311. ** accordingly.
  312. */
  313. static void removelastinstruction (FuncState *fs) {
  314. removelastlineinfo(fs);
  315. fs->pc--;
  316. }
  317. /*
  318. ** Emit instruction 'i', checking for array sizes and saving also its
  319. ** line information. Return 'i' position.
  320. */
  321. int luaK_code (FuncState *fs, Instruction i) {
  322. Proto *f = fs->f;
  323. /* put new instruction in code array */
  324. luaM_growvector(fs->ls->L, f->code, fs->pc, f->sizecode, Instruction,
  325. INT_MAX, "opcodes");
  326. f->code[fs->pc++] = i;
  327. savelineinfo(fs, f, fs->ls->lastline);
  328. return fs->pc - 1; /* index of new instruction */
  329. }
  330. /*
  331. ** Format and emit an 'iABC' instruction. (Assertions check consistency
  332. ** of parameters versus opcode.)
  333. */
  334. int luaK_codeABCk (FuncState *fs, OpCode o, int A, int B, int C, int k) {
  335. lua_assert(getOpMode(o) == iABC);
  336. lua_assert(A <= MAXARG_A && B <= MAXARG_B &&
  337. C <= MAXARG_C && (k & ~1) == 0);
  338. return luaK_code(fs, CREATE_ABCk(o, A, B, C, k));
  339. }
  340. int luaK_codevABCk (FuncState *fs, OpCode o, int A, int B, int C, int k) {
  341. lua_assert(getOpMode(o) == ivABC);
  342. lua_assert(A <= MAXARG_A && B <= MAXARG_vB &&
  343. C <= MAXARG_vC && (k & ~1) == 0);
  344. return luaK_code(fs, CREATE_vABCk(o, A, B, C, k));
  345. }
  346. /*
  347. ** Format and emit an 'iABx' instruction.
  348. */
  349. int luaK_codeABx (FuncState *fs, OpCode o, int A, int Bc) {
  350. lua_assert(getOpMode(o) == iABx);
  351. lua_assert(A <= MAXARG_A && Bc <= MAXARG_Bx);
  352. return luaK_code(fs, CREATE_ABx(o, A, Bc));
  353. }
  354. /*
  355. ** Format and emit an 'iAsBx' instruction.
  356. */
  357. static int codeAsBx (FuncState *fs, OpCode o, int A, int Bc) {
  358. int b = Bc + OFFSET_sBx;
  359. lua_assert(getOpMode(o) == iAsBx);
  360. lua_assert(A <= MAXARG_A && b <= MAXARG_Bx);
  361. return luaK_code(fs, CREATE_ABx(o, A, b));
  362. }
  363. /*
  364. ** Format and emit an 'isJ' instruction.
  365. */
  366. static int codesJ (FuncState *fs, OpCode o, int sj, int k) {
  367. int j = sj + OFFSET_sJ;
  368. lua_assert(getOpMode(o) == isJ);
  369. lua_assert(j <= MAXARG_sJ && (k & ~1) == 0);
  370. return luaK_code(fs, CREATE_sJ(o, j, k));
  371. }
  372. /*
  373. ** Emit an "extra argument" instruction (format 'iAx')
  374. */
  375. static int codeextraarg (FuncState *fs, int A) {
  376. lua_assert(A <= MAXARG_Ax);
  377. return luaK_code(fs, CREATE_Ax(OP_EXTRAARG, A));
  378. }
  379. /*
  380. ** Emit a "load constant" instruction, using either 'OP_LOADK'
  381. ** (if constant index 'k' fits in 18 bits) or an 'OP_LOADKX'
  382. ** instruction with "extra argument".
  383. */
  384. static int luaK_codek (FuncState *fs, int reg, int k) {
  385. if (k <= MAXARG_Bx)
  386. return luaK_codeABx(fs, OP_LOADK, reg, k);
  387. else {
  388. int p = luaK_codeABx(fs, OP_LOADKX, reg, 0);
  389. codeextraarg(fs, k);
  390. return p;
  391. }
  392. }
  393. /*
  394. ** Check register-stack level, keeping track of its maximum size
  395. ** in field 'maxstacksize'
  396. */
  397. void luaK_checkstack (FuncState *fs, int n) {
  398. int newstack = fs->freereg + n;
  399. if (newstack > fs->f->maxstacksize) {
  400. luaY_checklimit(fs, newstack, MAX_FSTACK, "registers");
  401. fs->f->maxstacksize = cast_byte(newstack);
  402. }
  403. }
  404. /*
  405. ** Reserve 'n' registers in register stack
  406. */
  407. void luaK_reserveregs (FuncState *fs, int n) {
  408. luaK_checkstack(fs, n);
  409. fs->freereg = cast_byte(fs->freereg + n);
  410. }
  411. /*
  412. ** Free register 'reg', if it is neither a constant index nor
  413. ** a local variable.
  414. )
  415. */
  416. static void freereg (FuncState *fs, int reg) {
  417. if (reg >= luaY_nvarstack(fs)) {
  418. fs->freereg--;
  419. lua_assert(reg == fs->freereg);
  420. }
  421. }
  422. /*
  423. ** Free two registers in proper order
  424. */
  425. static void freeregs (FuncState *fs, int r1, int r2) {
  426. if (r1 > r2) {
  427. freereg(fs, r1);
  428. freereg(fs, r2);
  429. }
  430. else {
  431. freereg(fs, r2);
  432. freereg(fs, r1);
  433. }
  434. }
  435. /*
  436. ** Free register used by expression 'e' (if any)
  437. */
  438. static void freeexp (FuncState *fs, expdesc *e) {
  439. if (e->k == VNONRELOC)
  440. freereg(fs, e->u.info);
  441. }
  442. /*
  443. ** Free registers used by expressions 'e1' and 'e2' (if any) in proper
  444. ** order.
  445. */
  446. static void freeexps (FuncState *fs, expdesc *e1, expdesc *e2) {
  447. int r1 = (e1->k == VNONRELOC) ? e1->u.info : -1;
  448. int r2 = (e2->k == VNONRELOC) ? e2->u.info : -1;
  449. freeregs(fs, r1, r2);
  450. }
  451. /*
  452. ** Add constant 'v' to prototype's list of constants (field 'k').
  453. */
  454. static int addk (FuncState *fs, Proto *f, TValue *v) {
  455. lua_State *L = fs->ls->L;
  456. int oldsize = f->sizek;
  457. int k = fs->nk;
  458. luaM_growvector(L, f->k, k, f->sizek, TValue, MAXARG_Ax, "constants");
  459. while (oldsize < f->sizek)
  460. setnilvalue(&f->k[oldsize++]);
  461. setobj(L, &f->k[k], v);
  462. fs->nk++;
  463. luaC_barrier(L, f, v);
  464. return k;
  465. }
  466. /*
  467. ** Use scanner's table to cache position of constants in constant list
  468. ** and try to reuse constants. Because some values should not be used
  469. ** as keys (nil cannot be a key, integer keys can collapse with float
  470. ** keys), the caller must provide a useful 'key' for indexing the cache.
  471. */
  472. static int k2proto (FuncState *fs, TValue *key, TValue *v) {
  473. TValue val;
  474. Proto *f = fs->f;
  475. int tag = luaH_get(fs->kcache, key, &val); /* query scanner table */
  476. int k;
  477. if (!tagisempty(tag)) { /* is there an index there? */
  478. k = cast_int(ivalue(&val));
  479. /* collisions can happen only for float keys */
  480. lua_assert(ttisfloat(key) || luaV_rawequalobj(&f->k[k], v));
  481. return k; /* reuse index */
  482. }
  483. /* constant not found; create a new entry */
  484. k = addk(fs, f, v);
  485. /* cache it for reuse; numerical value does not need GC barrier;
  486. table is not a metatable, so it does not need to invalidate cache */
  487. setivalue(&val, k);
  488. luaH_set(fs->ls->L, fs->kcache, key, &val);
  489. return k;
  490. }
  491. /*
  492. ** Add a string to list of constants and return its index.
  493. */
  494. static int stringK (FuncState *fs, TString *s) {
  495. TValue o;
  496. setsvalue(fs->ls->L, &o, s);
  497. return k2proto(fs, &o, &o); /* use string itself as key */
  498. }
  499. /*
  500. ** Add an integer to list of constants and return its index.
  501. */
  502. static int luaK_intK (FuncState *fs, lua_Integer n) {
  503. TValue o;
  504. setivalue(&o, n);
  505. return k2proto(fs, &o, &o); /* use integer itself as key */
  506. }
  507. /*
  508. ** Add a float to list of constants and return its index. Floats
  509. ** with integral values need a different key, to avoid collision
  510. ** with actual integers. To that, we add to the number its smaller
  511. ** power-of-two fraction that is still significant in its scale.
  512. ** For doubles, that would be 1/2^52.
  513. ** This method is not bulletproof: different numbers may generate the
  514. ** same key (e.g., very large numbers will overflow to 'inf') and for
  515. ** floats larger than 2^53 the result is still an integer. At worst,
  516. ** this only wastes an entry with a duplicate.
  517. */
  518. static int luaK_numberK (FuncState *fs, lua_Number r) {
  519. TValue o, kv;
  520. setfltvalue(&o, r); /* value as a TValue */
  521. if (r == 0) { /* handle zero as a special case */
  522. setpvalue(&kv, fs); /* use FuncState as index */
  523. return k2proto(fs, &kv, &o); /* cannot collide */
  524. }
  525. else {
  526. const int nbm = l_floatatt(MANT_DIG);
  527. const lua_Number q = l_mathop(ldexp)(l_mathop(1.0), -nbm + 1);
  528. const lua_Number k = r * (1 + q); /* key */
  529. lua_Integer ik;
  530. setfltvalue(&kv, k); /* key as a TValue */
  531. if (!luaV_flttointeger(k, &ik, F2Ieq)) { /* not an integral value? */
  532. int n = k2proto(fs, &kv, &o); /* use key */
  533. if (luaV_rawequalobj(&fs->f->k[n], &o)) /* correct value? */
  534. return n;
  535. }
  536. /* else, either key is still an integer or there was a collision;
  537. anyway, do not try to reuse constant; instead, create a new one */
  538. return addk(fs, fs->f, &o);
  539. }
  540. }
  541. /*
  542. ** Add a false to list of constants and return its index.
  543. */
  544. static int boolF (FuncState *fs) {
  545. TValue o;
  546. setbfvalue(&o);
  547. return k2proto(fs, &o, &o); /* use boolean itself as key */
  548. }
  549. /*
  550. ** Add a true to list of constants and return its index.
  551. */
  552. static int boolT (FuncState *fs) {
  553. TValue o;
  554. setbtvalue(&o);
  555. return k2proto(fs, &o, &o); /* use boolean itself as key */
  556. }
  557. /*
  558. ** Add nil to list of constants and return its index.
  559. */
  560. static int nilK (FuncState *fs) {
  561. TValue k, v;
  562. setnilvalue(&v);
  563. /* cannot use nil as key; instead use table itself */
  564. sethvalue(fs->ls->L, &k, fs->kcache);
  565. return k2proto(fs, &k, &v);
  566. }
  567. /*
  568. ** Check whether 'i' can be stored in an 'sC' operand. Equivalent to
  569. ** (0 <= int2sC(i) && int2sC(i) <= MAXARG_C) but without risk of
  570. ** overflows in the hidden addition inside 'int2sC'.
  571. */
  572. static int fitsC (lua_Integer i) {
  573. return (l_castS2U(i) + OFFSET_sC <= cast_uint(MAXARG_C));
  574. }
  575. /*
  576. ** Check whether 'i' can be stored in an 'sBx' operand.
  577. */
  578. static int fitsBx (lua_Integer i) {
  579. return (-OFFSET_sBx <= i && i <= MAXARG_Bx - OFFSET_sBx);
  580. }
  581. void luaK_int (FuncState *fs, int reg, lua_Integer i) {
  582. if (fitsBx(i))
  583. codeAsBx(fs, OP_LOADI, reg, cast_int(i));
  584. else
  585. luaK_codek(fs, reg, luaK_intK(fs, i));
  586. }
  587. static void luaK_float (FuncState *fs, int reg, lua_Number f) {
  588. lua_Integer fi;
  589. if (luaV_flttointeger(f, &fi, F2Ieq) && fitsBx(fi))
  590. codeAsBx(fs, OP_LOADF, reg, cast_int(fi));
  591. else
  592. luaK_codek(fs, reg, luaK_numberK(fs, f));
  593. }
  594. /*
  595. ** Convert a constant in 'v' into an expression description 'e'
  596. */
  597. static void const2exp (TValue *v, expdesc *e) {
  598. switch (ttypetag(v)) {
  599. case LUA_VNUMINT:
  600. e->k = VKINT; e->u.ival = ivalue(v);
  601. break;
  602. case LUA_VNUMFLT:
  603. e->k = VKFLT; e->u.nval = fltvalue(v);
  604. break;
  605. case LUA_VFALSE:
  606. e->k = VFALSE;
  607. break;
  608. case LUA_VTRUE:
  609. e->k = VTRUE;
  610. break;
  611. case LUA_VNIL:
  612. e->k = VNIL;
  613. break;
  614. case LUA_VSHRSTR: case LUA_VLNGSTR:
  615. e->k = VKSTR; e->u.strval = tsvalue(v);
  616. break;
  617. default: lua_assert(0);
  618. }
  619. }
  620. /*
  621. ** Fix an expression to return the number of results 'nresults'.
  622. ** 'e' must be a multi-ret expression (function call or vararg).
  623. */
  624. void luaK_setreturns (FuncState *fs, expdesc *e, int nresults) {
  625. Instruction *pc = &getinstruction(fs, e);
  626. luaY_checklimit(fs, nresults + 1, MAXARG_C, "multiple results");
  627. if (e->k == VCALL) /* expression is an open function call? */
  628. SETARG_C(*pc, nresults + 1);
  629. else {
  630. lua_assert(e->k == VVARARG);
  631. SETARG_C(*pc, nresults + 1);
  632. SETARG_A(*pc, fs->freereg);
  633. luaK_reserveregs(fs, 1);
  634. }
  635. }
  636. /*
  637. ** Convert a VKSTR to a VK
  638. */
  639. static void str2K (FuncState *fs, expdesc *e) {
  640. lua_assert(e->k == VKSTR);
  641. e->u.info = stringK(fs, e->u.strval);
  642. e->k = VK;
  643. }
  644. /*
  645. ** Fix an expression to return one result.
  646. ** If expression is not a multi-ret expression (function call or
  647. ** vararg), it already returns one result, so nothing needs to be done.
  648. ** Function calls become VNONRELOC expressions (as its result comes
  649. ** fixed in the base register of the call), while vararg expressions
  650. ** become VRELOC (as OP_VARARG puts its results where it wants).
  651. ** (Calls are created returning one result, so that does not need
  652. ** to be fixed.)
  653. */
  654. void luaK_setoneret (FuncState *fs, expdesc *e) {
  655. if (e->k == VCALL) { /* expression is an open function call? */
  656. /* already returns 1 value */
  657. lua_assert(GETARG_C(getinstruction(fs, e)) == 2);
  658. e->k = VNONRELOC; /* result has fixed position */
  659. e->u.info = GETARG_A(getinstruction(fs, e));
  660. }
  661. else if (e->k == VVARARG) {
  662. SETARG_C(getinstruction(fs, e), 2);
  663. e->k = VRELOC; /* can relocate its simple result */
  664. }
  665. }
  666. /*
  667. ** Ensure that expression 'e' is not a variable (nor a <const>).
  668. ** (Expression still may have jump lists.)
  669. */
  670. void luaK_dischargevars (FuncState *fs, expdesc *e) {
  671. switch (e->k) {
  672. case VCONST: {
  673. const2exp(const2val(fs, e), e);
  674. break;
  675. }
  676. case VLOCAL: { /* already in a register */
  677. int temp = e->u.var.ridx;
  678. e->u.info = temp; /* (can't do a direct assignment; values overlap) */
  679. e->k = VNONRELOC; /* becomes a non-relocatable value */
  680. break;
  681. }
  682. case VUPVAL: { /* move value to some (pending) register */
  683. e->u.info = luaK_codeABC(fs, OP_GETUPVAL, 0, e->u.info, 0);
  684. e->k = VRELOC;
  685. break;
  686. }
  687. case VINDEXUP: {
  688. e->u.info = luaK_codeABC(fs, OP_GETTABUP, 0, e->u.ind.t, e->u.ind.idx);
  689. e->k = VRELOC;
  690. break;
  691. }
  692. case VINDEXI: {
  693. freereg(fs, e->u.ind.t);
  694. e->u.info = luaK_codeABC(fs, OP_GETI, 0, e->u.ind.t, e->u.ind.idx);
  695. e->k = VRELOC;
  696. break;
  697. }
  698. case VINDEXSTR: {
  699. freereg(fs, e->u.ind.t);
  700. e->u.info = luaK_codeABC(fs, OP_GETFIELD, 0, e->u.ind.t, e->u.ind.idx);
  701. e->k = VRELOC;
  702. break;
  703. }
  704. case VINDEXED: {
  705. freeregs(fs, e->u.ind.t, e->u.ind.idx);
  706. e->u.info = luaK_codeABC(fs, OP_GETTABLE, 0, e->u.ind.t, e->u.ind.idx);
  707. e->k = VRELOC;
  708. break;
  709. }
  710. case VVARARG: case VCALL: {
  711. luaK_setoneret(fs, e);
  712. break;
  713. }
  714. default: break; /* there is one value available (somewhere) */
  715. }
  716. }
  717. /*
  718. ** Ensure expression value is in register 'reg', making 'e' a
  719. ** non-relocatable expression.
  720. ** (Expression still may have jump lists.)
  721. */
  722. static void discharge2reg (FuncState *fs, expdesc *e, int reg) {
  723. luaK_dischargevars(fs, e);
  724. switch (e->k) {
  725. case VNIL: {
  726. luaK_nil(fs, reg, 1);
  727. break;
  728. }
  729. case VFALSE: {
  730. luaK_codeABC(fs, OP_LOADFALSE, reg, 0, 0);
  731. break;
  732. }
  733. case VTRUE: {
  734. luaK_codeABC(fs, OP_LOADTRUE, reg, 0, 0);
  735. break;
  736. }
  737. case VKSTR: {
  738. str2K(fs, e);
  739. } /* FALLTHROUGH */
  740. case VK: {
  741. luaK_codek(fs, reg, e->u.info);
  742. break;
  743. }
  744. case VKFLT: {
  745. luaK_float(fs, reg, e->u.nval);
  746. break;
  747. }
  748. case VKINT: {
  749. luaK_int(fs, reg, e->u.ival);
  750. break;
  751. }
  752. case VRELOC: {
  753. Instruction *pc = &getinstruction(fs, e);
  754. SETARG_A(*pc, reg); /* instruction will put result in 'reg' */
  755. break;
  756. }
  757. case VNONRELOC: {
  758. if (reg != e->u.info)
  759. luaK_codeABC(fs, OP_MOVE, reg, e->u.info, 0);
  760. break;
  761. }
  762. default: {
  763. lua_assert(e->k == VJMP);
  764. return; /* nothing to do... */
  765. }
  766. }
  767. e->u.info = reg;
  768. e->k = VNONRELOC;
  769. }
  770. /*
  771. ** Ensure expression value is in a register, making 'e' a
  772. ** non-relocatable expression.
  773. ** (Expression still may have jump lists.)
  774. */
  775. static void discharge2anyreg (FuncState *fs, expdesc *e) {
  776. if (e->k != VNONRELOC) { /* no fixed register yet? */
  777. luaK_reserveregs(fs, 1); /* get a register */
  778. discharge2reg(fs, e, fs->freereg-1); /* put value there */
  779. }
  780. }
  781. static int code_loadbool (FuncState *fs, int A, OpCode op) {
  782. luaK_getlabel(fs); /* those instructions may be jump targets */
  783. return luaK_codeABC(fs, op, A, 0, 0);
  784. }
  785. /*
  786. ** check whether list has any jump that do not produce a value
  787. ** or produce an inverted value
  788. */
  789. static int need_value (FuncState *fs, int list) {
  790. for (; list != NO_JUMP; list = getjump(fs, list)) {
  791. Instruction i = *getjumpcontrol(fs, list);
  792. if (GET_OPCODE(i) != OP_TESTSET) return 1;
  793. }
  794. return 0; /* not found */
  795. }
  796. /*
  797. ** Ensures final expression result (which includes results from its
  798. ** jump lists) is in register 'reg'.
  799. ** If expression has jumps, need to patch these jumps either to
  800. ** its final position or to "load" instructions (for those tests
  801. ** that do not produce values).
  802. */
  803. static void exp2reg (FuncState *fs, expdesc *e, int reg) {
  804. discharge2reg(fs, e, reg);
  805. if (e->k == VJMP) /* expression itself is a test? */
  806. luaK_concat(fs, &e->t, e->u.info); /* put this jump in 't' list */
  807. if (hasjumps(e)) {
  808. int final; /* position after whole expression */
  809. int p_f = NO_JUMP; /* position of an eventual LOAD false */
  810. int p_t = NO_JUMP; /* position of an eventual LOAD true */
  811. if (need_value(fs, e->t) || need_value(fs, e->f)) {
  812. int fj = (e->k == VJMP) ? NO_JUMP : luaK_jump(fs);
  813. p_f = code_loadbool(fs, reg, OP_LFALSESKIP); /* skip next inst. */
  814. p_t = code_loadbool(fs, reg, OP_LOADTRUE);
  815. /* jump around these booleans if 'e' is not a test */
  816. luaK_patchtohere(fs, fj);
  817. }
  818. final = luaK_getlabel(fs);
  819. patchlistaux(fs, e->f, final, reg, p_f);
  820. patchlistaux(fs, e->t, final, reg, p_t);
  821. }
  822. e->f = e->t = NO_JUMP;
  823. e->u.info = reg;
  824. e->k = VNONRELOC;
  825. }
  826. /*
  827. ** Ensures final expression result is in next available register.
  828. */
  829. void luaK_exp2nextreg (FuncState *fs, expdesc *e) {
  830. luaK_dischargevars(fs, e);
  831. freeexp(fs, e);
  832. luaK_reserveregs(fs, 1);
  833. exp2reg(fs, e, fs->freereg - 1);
  834. }
  835. /*
  836. ** Ensures final expression result is in some (any) register
  837. ** and return that register.
  838. */
  839. int luaK_exp2anyreg (FuncState *fs, expdesc *e) {
  840. luaK_dischargevars(fs, e);
  841. if (e->k == VNONRELOC) { /* expression already has a register? */
  842. if (!hasjumps(e)) /* no jumps? */
  843. return e->u.info; /* result is already in a register */
  844. if (e->u.info >= luaY_nvarstack(fs)) { /* reg. is not a local? */
  845. exp2reg(fs, e, e->u.info); /* put final result in it */
  846. return e->u.info;
  847. }
  848. /* else expression has jumps and cannot change its register
  849. to hold the jump values, because it is a local variable.
  850. Go through to the default case. */
  851. }
  852. luaK_exp2nextreg(fs, e); /* default: use next available register */
  853. return e->u.info;
  854. }
  855. /*
  856. ** Ensures final expression result is either in a register
  857. ** or in an upvalue.
  858. */
  859. void luaK_exp2anyregup (FuncState *fs, expdesc *e) {
  860. if (e->k != VUPVAL || hasjumps(e))
  861. luaK_exp2anyreg(fs, e);
  862. }
  863. /*
  864. ** Ensures final expression result is either in a register
  865. ** or it is a constant.
  866. */
  867. void luaK_exp2val (FuncState *fs, expdesc *e) {
  868. if (e->k == VJMP || hasjumps(e))
  869. luaK_exp2anyreg(fs, e);
  870. else
  871. luaK_dischargevars(fs, e);
  872. }
  873. /*
  874. ** Try to make 'e' a K expression with an index in the range of R/K
  875. ** indices. Return true iff succeeded.
  876. */
  877. static int luaK_exp2K (FuncState *fs, expdesc *e) {
  878. if (!hasjumps(e)) {
  879. int info;
  880. switch (e->k) { /* move constants to 'k' */
  881. case VTRUE: info = boolT(fs); break;
  882. case VFALSE: info = boolF(fs); break;
  883. case VNIL: info = nilK(fs); break;
  884. case VKINT: info = luaK_intK(fs, e->u.ival); break;
  885. case VKFLT: info = luaK_numberK(fs, e->u.nval); break;
  886. case VKSTR: info = stringK(fs, e->u.strval); break;
  887. case VK: info = e->u.info; break;
  888. default: return 0; /* not a constant */
  889. }
  890. if (info <= MAXINDEXRK) { /* does constant fit in 'argC'? */
  891. e->k = VK; /* make expression a 'K' expression */
  892. e->u.info = info;
  893. return 1;
  894. }
  895. }
  896. /* else, expression doesn't fit; leave it unchanged */
  897. return 0;
  898. }
  899. /*
  900. ** Ensures final expression result is in a valid R/K index
  901. ** (that is, it is either in a register or in 'k' with an index
  902. ** in the range of R/K indices).
  903. ** Returns 1 iff expression is K.
  904. */
  905. static int exp2RK (FuncState *fs, expdesc *e) {
  906. if (luaK_exp2K(fs, e))
  907. return 1;
  908. else { /* not a constant in the right range: put it in a register */
  909. luaK_exp2anyreg(fs, e);
  910. return 0;
  911. }
  912. }
  913. static void codeABRK (FuncState *fs, OpCode o, int A, int B,
  914. expdesc *ec) {
  915. int k = exp2RK(fs, ec);
  916. luaK_codeABCk(fs, o, A, B, ec->u.info, k);
  917. }
  918. /*
  919. ** Generate code to store result of expression 'ex' into variable 'var'.
  920. */
  921. void luaK_storevar (FuncState *fs, expdesc *var, expdesc *ex) {
  922. switch (var->k) {
  923. case VLOCAL: {
  924. freeexp(fs, ex);
  925. exp2reg(fs, ex, var->u.var.ridx); /* compute 'ex' into proper place */
  926. return;
  927. }
  928. case VUPVAL: {
  929. int e = luaK_exp2anyreg(fs, ex);
  930. luaK_codeABC(fs, OP_SETUPVAL, e, var->u.info, 0);
  931. break;
  932. }
  933. case VINDEXUP: {
  934. codeABRK(fs, OP_SETTABUP, var->u.ind.t, var->u.ind.idx, ex);
  935. break;
  936. }
  937. case VINDEXI: {
  938. codeABRK(fs, OP_SETI, var->u.ind.t, var->u.ind.idx, ex);
  939. break;
  940. }
  941. case VINDEXSTR: {
  942. codeABRK(fs, OP_SETFIELD, var->u.ind.t, var->u.ind.idx, ex);
  943. break;
  944. }
  945. case VINDEXED: {
  946. codeABRK(fs, OP_SETTABLE, var->u.ind.t, var->u.ind.idx, ex);
  947. break;
  948. }
  949. default: lua_assert(0); /* invalid var kind to store */
  950. }
  951. freeexp(fs, ex);
  952. }
  953. /*
  954. ** Negate condition 'e' (where 'e' is a comparison).
  955. */
  956. static void negatecondition (FuncState *fs, expdesc *e) {
  957. Instruction *pc = getjumpcontrol(fs, e->u.info);
  958. lua_assert(testTMode(GET_OPCODE(*pc)) && GET_OPCODE(*pc) != OP_TESTSET &&
  959. GET_OPCODE(*pc) != OP_TEST);
  960. SETARG_k(*pc, (GETARG_k(*pc) ^ 1));
  961. }
  962. /*
  963. ** Emit instruction to jump if 'e' is 'cond' (that is, if 'cond'
  964. ** is true, code will jump if 'e' is true.) Return jump position.
  965. ** Optimize when 'e' is 'not' something, inverting the condition
  966. ** and removing the 'not'.
  967. */
  968. static int jumponcond (FuncState *fs, expdesc *e, int cond) {
  969. if (e->k == VRELOC) {
  970. Instruction ie = getinstruction(fs, e);
  971. if (GET_OPCODE(ie) == OP_NOT) {
  972. removelastinstruction(fs); /* remove previous OP_NOT */
  973. return condjump(fs, OP_TEST, GETARG_B(ie), 0, 0, !cond);
  974. }
  975. /* else go through */
  976. }
  977. discharge2anyreg(fs, e);
  978. freeexp(fs, e);
  979. return condjump(fs, OP_TESTSET, NO_REG, e->u.info, 0, cond);
  980. }
  981. /*
  982. ** Emit code to go through if 'e' is true, jump otherwise.
  983. */
  984. void luaK_goiftrue (FuncState *fs, expdesc *e) {
  985. int pc; /* pc of new jump */
  986. luaK_dischargevars(fs, e);
  987. switch (e->k) {
  988. case VJMP: { /* condition? */
  989. negatecondition(fs, e); /* jump when it is false */
  990. pc = e->u.info; /* save jump position */
  991. break;
  992. }
  993. case VK: case VKFLT: case VKINT: case VKSTR: case VTRUE: {
  994. pc = NO_JUMP; /* always true; do nothing */
  995. break;
  996. }
  997. default: {
  998. pc = jumponcond(fs, e, 0); /* jump when false */
  999. break;
  1000. }
  1001. }
  1002. luaK_concat(fs, &e->f, pc); /* insert new jump in false list */
  1003. luaK_patchtohere(fs, e->t); /* true list jumps to here (to go through) */
  1004. e->t = NO_JUMP;
  1005. }
  1006. /*
  1007. ** Emit code to go through if 'e' is false, jump otherwise.
  1008. */
  1009. void luaK_goiffalse (FuncState *fs, expdesc *e) {
  1010. int pc; /* pc of new jump */
  1011. luaK_dischargevars(fs, e);
  1012. switch (e->k) {
  1013. case VJMP: {
  1014. pc = e->u.info; /* already jump if true */
  1015. break;
  1016. }
  1017. case VNIL: case VFALSE: {
  1018. pc = NO_JUMP; /* always false; do nothing */
  1019. break;
  1020. }
  1021. default: {
  1022. pc = jumponcond(fs, e, 1); /* jump if true */
  1023. break;
  1024. }
  1025. }
  1026. luaK_concat(fs, &e->t, pc); /* insert new jump in 't' list */
  1027. luaK_patchtohere(fs, e->f); /* false list jumps to here (to go through) */
  1028. e->f = NO_JUMP;
  1029. }
  1030. /*
  1031. ** Code 'not e', doing constant folding.
  1032. */
  1033. static void codenot (FuncState *fs, expdesc *e) {
  1034. switch (e->k) {
  1035. case VNIL: case VFALSE: {
  1036. e->k = VTRUE; /* true == not nil == not false */
  1037. break;
  1038. }
  1039. case VK: case VKFLT: case VKINT: case VKSTR: case VTRUE: {
  1040. e->k = VFALSE; /* false == not "x" == not 0.5 == not 1 == not true */
  1041. break;
  1042. }
  1043. case VJMP: {
  1044. negatecondition(fs, e);
  1045. break;
  1046. }
  1047. case VRELOC:
  1048. case VNONRELOC: {
  1049. discharge2anyreg(fs, e);
  1050. freeexp(fs, e);
  1051. e->u.info = luaK_codeABC(fs, OP_NOT, 0, e->u.info, 0);
  1052. e->k = VRELOC;
  1053. break;
  1054. }
  1055. default: lua_assert(0); /* cannot happen */
  1056. }
  1057. /* interchange true and false lists */
  1058. { int temp = e->f; e->f = e->t; e->t = temp; }
  1059. removevalues(fs, e->f); /* values are useless when negated */
  1060. removevalues(fs, e->t);
  1061. }
  1062. /*
  1063. ** Check whether expression 'e' is a short literal string
  1064. */
  1065. static int isKstr (FuncState *fs, expdesc *e) {
  1066. return (e->k == VK && !hasjumps(e) && e->u.info <= MAXARG_B &&
  1067. ttisshrstring(&fs->f->k[e->u.info]));
  1068. }
  1069. /*
  1070. ** Check whether expression 'e' is a literal integer.
  1071. */
  1072. static int isKint (expdesc *e) {
  1073. return (e->k == VKINT && !hasjumps(e));
  1074. }
  1075. /*
  1076. ** Check whether expression 'e' is a literal integer in
  1077. ** proper range to fit in register C
  1078. */
  1079. static int isCint (expdesc *e) {
  1080. return isKint(e) && (l_castS2U(e->u.ival) <= l_castS2U(MAXARG_C));
  1081. }
  1082. /*
  1083. ** Check whether expression 'e' is a literal integer in
  1084. ** proper range to fit in register sC
  1085. */
  1086. static int isSCint (expdesc *e) {
  1087. return isKint(e) && fitsC(e->u.ival);
  1088. }
  1089. /*
  1090. ** Check whether expression 'e' is a literal integer or float in
  1091. ** proper range to fit in a register (sB or sC).
  1092. */
  1093. static int isSCnumber (expdesc *e, int *pi, int *isfloat) {
  1094. lua_Integer i;
  1095. if (e->k == VKINT)
  1096. i = e->u.ival;
  1097. else if (e->k == VKFLT && luaV_flttointeger(e->u.nval, &i, F2Ieq))
  1098. *isfloat = 1;
  1099. else
  1100. return 0; /* not a number */
  1101. if (!hasjumps(e) && fitsC(i)) {
  1102. *pi = int2sC(cast_int(i));
  1103. return 1;
  1104. }
  1105. else
  1106. return 0;
  1107. }
  1108. /*
  1109. ** Emit SELF instruction or equivalent: the code will convert
  1110. ** expression 'e' into 'e.key(e,'.
  1111. */
  1112. void luaK_self (FuncState *fs, expdesc *e, expdesc *key) {
  1113. int ereg, base;
  1114. luaK_exp2anyreg(fs, e);
  1115. ereg = e->u.info; /* register where 'e' (the receiver) was placed */
  1116. freeexp(fs, e);
  1117. base = e->u.info = fs->freereg; /* base register for op_self */
  1118. e->k = VNONRELOC; /* self expression has a fixed register */
  1119. luaK_reserveregs(fs, 2); /* method and 'self' produced by op_self */
  1120. lua_assert(key->k == VKSTR);
  1121. /* is method name a short string in a valid K index? */
  1122. if (strisshr(key->u.strval) && luaK_exp2K(fs, key)) {
  1123. /* can use 'self' opcode */
  1124. luaK_codeABCk(fs, OP_SELF, base, ereg, key->u.info, 0);
  1125. }
  1126. else { /* cannot use 'self' opcode; use move+gettable */
  1127. luaK_exp2anyreg(fs, key); /* put method name in a register */
  1128. luaK_codeABC(fs, OP_MOVE, base + 1, ereg, 0); /* copy self to base+1 */
  1129. luaK_codeABC(fs, OP_GETTABLE, base, ereg, key->u.info); /* get method */
  1130. }
  1131. freeexp(fs, key);
  1132. }
  1133. /*
  1134. ** Create expression 't[k]'. 't' must have its final result already in a
  1135. ** register or upvalue. Upvalues can only be indexed by literal strings.
  1136. ** Keys can be literal strings in the constant table or arbitrary
  1137. ** values in registers.
  1138. */
  1139. void luaK_indexed (FuncState *fs, expdesc *t, expdesc *k) {
  1140. if (k->k == VKSTR)
  1141. str2K(fs, k);
  1142. lua_assert(!hasjumps(t) &&
  1143. (t->k == VLOCAL || t->k == VNONRELOC || t->k == VUPVAL));
  1144. if (t->k == VUPVAL && !isKstr(fs, k)) /* upvalue indexed by non 'Kstr'? */
  1145. luaK_exp2anyreg(fs, t); /* put it in a register */
  1146. if (t->k == VUPVAL) {
  1147. lu_byte temp = cast_byte(t->u.info); /* upvalue index */
  1148. lua_assert(isKstr(fs, k));
  1149. t->u.ind.t = temp; /* (can't do a direct assignment; values overlap) */
  1150. t->u.ind.idx = cast(short, k->u.info); /* literal short string */
  1151. t->k = VINDEXUP;
  1152. }
  1153. else {
  1154. /* register index of the table */
  1155. t->u.ind.t = cast_byte((t->k == VLOCAL) ? t->u.var.ridx: t->u.info);
  1156. if (isKstr(fs, k)) {
  1157. t->u.ind.idx = cast(short, k->u.info); /* literal short string */
  1158. t->k = VINDEXSTR;
  1159. }
  1160. else if (isCint(k)) { /* int. constant in proper range? */
  1161. t->u.ind.idx = cast(short, k->u.ival);
  1162. t->k = VINDEXI;
  1163. }
  1164. else {
  1165. t->u.ind.idx = cast(short, luaK_exp2anyreg(fs, k)); /* register */
  1166. t->k = VINDEXED;
  1167. }
  1168. }
  1169. }
  1170. /*
  1171. ** Return false if folding can raise an error.
  1172. ** Bitwise operations need operands convertible to integers; division
  1173. ** operations cannot have 0 as divisor.
  1174. */
  1175. static int validop (int op, TValue *v1, TValue *v2) {
  1176. switch (op) {
  1177. case LUA_OPBAND: case LUA_OPBOR: case LUA_OPBXOR:
  1178. case LUA_OPSHL: case LUA_OPSHR: case LUA_OPBNOT: { /* conversion errors */
  1179. lua_Integer i;
  1180. return (luaV_tointegerns(v1, &i, LUA_FLOORN2I) &&
  1181. luaV_tointegerns(v2, &i, LUA_FLOORN2I));
  1182. }
  1183. case LUA_OPDIV: case LUA_OPIDIV: case LUA_OPMOD: /* division by 0 */
  1184. return (nvalue(v2) != 0);
  1185. default: return 1; /* everything else is valid */
  1186. }
  1187. }
  1188. /*
  1189. ** Try to "constant-fold" an operation; return 1 iff successful.
  1190. ** (In this case, 'e1' has the final result.)
  1191. */
  1192. static int constfolding (FuncState *fs, int op, expdesc *e1,
  1193. const expdesc *e2) {
  1194. TValue v1, v2, res;
  1195. if (!tonumeral(e1, &v1) || !tonumeral(e2, &v2) || !validop(op, &v1, &v2))
  1196. return 0; /* non-numeric operands or not safe to fold */
  1197. luaO_rawarith(fs->ls->L, op, &v1, &v2, &res); /* does operation */
  1198. if (ttisinteger(&res)) {
  1199. e1->k = VKINT;
  1200. e1->u.ival = ivalue(&res);
  1201. }
  1202. else { /* folds neither NaN nor 0.0 (to avoid problems with -0.0) */
  1203. lua_Number n = fltvalue(&res);
  1204. if (luai_numisnan(n) || n == 0)
  1205. return 0;
  1206. e1->k = VKFLT;
  1207. e1->u.nval = n;
  1208. }
  1209. return 1;
  1210. }
  1211. /*
  1212. ** Convert a BinOpr to an OpCode (ORDER OPR - ORDER OP)
  1213. */
  1214. l_sinline OpCode binopr2op (BinOpr opr, BinOpr baser, OpCode base) {
  1215. lua_assert(baser <= opr &&
  1216. ((baser == OPR_ADD && opr <= OPR_SHR) ||
  1217. (baser == OPR_LT && opr <= OPR_LE)));
  1218. return cast(OpCode, (cast_int(opr) - cast_int(baser)) + cast_int(base));
  1219. }
  1220. /*
  1221. ** Convert a UnOpr to an OpCode (ORDER OPR - ORDER OP)
  1222. */
  1223. l_sinline OpCode unopr2op (UnOpr opr) {
  1224. return cast(OpCode, (cast_int(opr) - cast_int(OPR_MINUS)) +
  1225. cast_int(OP_UNM));
  1226. }
  1227. /*
  1228. ** Convert a BinOpr to a tag method (ORDER OPR - ORDER TM)
  1229. */
  1230. l_sinline TMS binopr2TM (BinOpr opr) {
  1231. lua_assert(OPR_ADD <= opr && opr <= OPR_SHR);
  1232. return cast(TMS, (cast_int(opr) - cast_int(OPR_ADD)) + cast_int(TM_ADD));
  1233. }
  1234. /*
  1235. ** Emit code for unary expressions that "produce values"
  1236. ** (everything but 'not').
  1237. ** Expression to produce final result will be encoded in 'e'.
  1238. */
  1239. static void codeunexpval (FuncState *fs, OpCode op, expdesc *e, int line) {
  1240. int r = luaK_exp2anyreg(fs, e); /* opcodes operate only on registers */
  1241. freeexp(fs, e);
  1242. e->u.info = luaK_codeABC(fs, op, 0, r, 0); /* generate opcode */
  1243. e->k = VRELOC; /* all those operations are relocatable */
  1244. luaK_fixline(fs, line);
  1245. }
  1246. /*
  1247. ** Emit code for binary expressions that "produce values"
  1248. ** (everything but logical operators 'and'/'or' and comparison
  1249. ** operators).
  1250. ** Expression to produce final result will be encoded in 'e1'.
  1251. */
  1252. static void finishbinexpval (FuncState *fs, expdesc *e1, expdesc *e2,
  1253. OpCode op, int v2, int flip, int line,
  1254. OpCode mmop, TMS event) {
  1255. int v1 = luaK_exp2anyreg(fs, e1);
  1256. int pc = luaK_codeABCk(fs, op, 0, v1, v2, 0);
  1257. freeexps(fs, e1, e2);
  1258. e1->u.info = pc;
  1259. e1->k = VRELOC; /* all those operations are relocatable */
  1260. luaK_fixline(fs, line);
  1261. luaK_codeABCk(fs, mmop, v1, v2, cast_int(event), flip); /* metamethod */
  1262. luaK_fixline(fs, line);
  1263. }
  1264. /*
  1265. ** Emit code for binary expressions that "produce values" over
  1266. ** two registers.
  1267. */
  1268. static void codebinexpval (FuncState *fs, BinOpr opr,
  1269. expdesc *e1, expdesc *e2, int line) {
  1270. OpCode op = binopr2op(opr, OPR_ADD, OP_ADD);
  1271. int v2 = luaK_exp2anyreg(fs, e2); /* make sure 'e2' is in a register */
  1272. /* 'e1' must be already in a register or it is a constant */
  1273. lua_assert((VNIL <= e1->k && e1->k <= VKSTR) ||
  1274. e1->k == VNONRELOC || e1->k == VRELOC);
  1275. lua_assert(OP_ADD <= op && op <= OP_SHR);
  1276. finishbinexpval(fs, e1, e2, op, v2, 0, line, OP_MMBIN, binopr2TM(opr));
  1277. }
  1278. /*
  1279. ** Code binary operators with immediate operands.
  1280. */
  1281. static void codebini (FuncState *fs, OpCode op,
  1282. expdesc *e1, expdesc *e2, int flip, int line,
  1283. TMS event) {
  1284. int v2 = int2sC(cast_int(e2->u.ival)); /* immediate operand */
  1285. lua_assert(e2->k == VKINT);
  1286. finishbinexpval(fs, e1, e2, op, v2, flip, line, OP_MMBINI, event);
  1287. }
  1288. /*
  1289. ** Code binary operators with K operand.
  1290. */
  1291. static void codebinK (FuncState *fs, BinOpr opr,
  1292. expdesc *e1, expdesc *e2, int flip, int line) {
  1293. TMS event = binopr2TM(opr);
  1294. int v2 = e2->u.info; /* K index */
  1295. OpCode op = binopr2op(opr, OPR_ADD, OP_ADDK);
  1296. finishbinexpval(fs, e1, e2, op, v2, flip, line, OP_MMBINK, event);
  1297. }
  1298. /* Try to code a binary operator negating its second operand.
  1299. ** For the metamethod, 2nd operand must keep its original value.
  1300. */
  1301. static int finishbinexpneg (FuncState *fs, expdesc *e1, expdesc *e2,
  1302. OpCode op, int line, TMS event) {
  1303. if (!isKint(e2))
  1304. return 0; /* not an integer constant */
  1305. else {
  1306. lua_Integer i2 = e2->u.ival;
  1307. if (!(fitsC(i2) && fitsC(-i2)))
  1308. return 0; /* not in the proper range */
  1309. else { /* operating a small integer constant */
  1310. int v2 = cast_int(i2);
  1311. finishbinexpval(fs, e1, e2, op, int2sC(-v2), 0, line, OP_MMBINI, event);
  1312. /* correct metamethod argument */
  1313. SETARG_B(fs->f->code[fs->pc - 1], int2sC(v2));
  1314. return 1; /* successfully coded */
  1315. }
  1316. }
  1317. }
  1318. static void swapexps (expdesc *e1, expdesc *e2) {
  1319. expdesc temp = *e1; *e1 = *e2; *e2 = temp; /* swap 'e1' and 'e2' */
  1320. }
  1321. /*
  1322. ** Code binary operators with no constant operand.
  1323. */
  1324. static void codebinNoK (FuncState *fs, BinOpr opr,
  1325. expdesc *e1, expdesc *e2, int flip, int line) {
  1326. if (flip)
  1327. swapexps(e1, e2); /* back to original order */
  1328. codebinexpval(fs, opr, e1, e2, line); /* use standard operators */
  1329. }
  1330. /*
  1331. ** Code arithmetic operators ('+', '-', ...). If second operand is a
  1332. ** constant in the proper range, use variant opcodes with K operands.
  1333. */
  1334. static void codearith (FuncState *fs, BinOpr opr,
  1335. expdesc *e1, expdesc *e2, int flip, int line) {
  1336. if (tonumeral(e2, NULL) && luaK_exp2K(fs, e2)) /* K operand? */
  1337. codebinK(fs, opr, e1, e2, flip, line);
  1338. else /* 'e2' is neither an immediate nor a K operand */
  1339. codebinNoK(fs, opr, e1, e2, flip, line);
  1340. }
  1341. /*
  1342. ** Code commutative operators ('+', '*'). If first operand is a
  1343. ** numeric constant, change order of operands to try to use an
  1344. ** immediate or K operator.
  1345. */
  1346. static void codecommutative (FuncState *fs, BinOpr op,
  1347. expdesc *e1, expdesc *e2, int line) {
  1348. int flip = 0;
  1349. if (tonumeral(e1, NULL)) { /* is first operand a numeric constant? */
  1350. swapexps(e1, e2); /* change order */
  1351. flip = 1;
  1352. }
  1353. if (op == OPR_ADD && isSCint(e2)) /* immediate operand? */
  1354. codebini(fs, OP_ADDI, e1, e2, flip, line, TM_ADD);
  1355. else
  1356. codearith(fs, op, e1, e2, flip, line);
  1357. }
  1358. /*
  1359. ** Code bitwise operations; they are all commutative, so the function
  1360. ** tries to put an integer constant as the 2nd operand (a K operand).
  1361. */
  1362. static void codebitwise (FuncState *fs, BinOpr opr,
  1363. expdesc *e1, expdesc *e2, int line) {
  1364. int flip = 0;
  1365. if (e1->k == VKINT) {
  1366. swapexps(e1, e2); /* 'e2' will be the constant operand */
  1367. flip = 1;
  1368. }
  1369. if (e2->k == VKINT && luaK_exp2K(fs, e2)) /* K operand? */
  1370. codebinK(fs, opr, e1, e2, flip, line);
  1371. else /* no constants */
  1372. codebinNoK(fs, opr, e1, e2, flip, line);
  1373. }
  1374. /*
  1375. ** Emit code for order comparisons. When using an immediate operand,
  1376. ** 'isfloat' tells whether the original value was a float.
  1377. */
  1378. static void codeorder (FuncState *fs, BinOpr opr, expdesc *e1, expdesc *e2) {
  1379. int r1, r2;
  1380. int im;
  1381. int isfloat = 0;
  1382. OpCode op;
  1383. if (isSCnumber(e2, &im, &isfloat)) {
  1384. /* use immediate operand */
  1385. r1 = luaK_exp2anyreg(fs, e1);
  1386. r2 = im;
  1387. op = binopr2op(opr, OPR_LT, OP_LTI);
  1388. }
  1389. else if (isSCnumber(e1, &im, &isfloat)) {
  1390. /* transform (A < B) to (B > A) and (A <= B) to (B >= A) */
  1391. r1 = luaK_exp2anyreg(fs, e2);
  1392. r2 = im;
  1393. op = binopr2op(opr, OPR_LT, OP_GTI);
  1394. }
  1395. else { /* regular case, compare two registers */
  1396. r1 = luaK_exp2anyreg(fs, e1);
  1397. r2 = luaK_exp2anyreg(fs, e2);
  1398. op = binopr2op(opr, OPR_LT, OP_LT);
  1399. }
  1400. freeexps(fs, e1, e2);
  1401. e1->u.info = condjump(fs, op, r1, r2, isfloat, 1);
  1402. e1->k = VJMP;
  1403. }
  1404. /*
  1405. ** Emit code for equality comparisons ('==', '~=').
  1406. ** 'e1' was already put as RK by 'luaK_infix'.
  1407. */
  1408. static void codeeq (FuncState *fs, BinOpr opr, expdesc *e1, expdesc *e2) {
  1409. int r1, r2;
  1410. int im;
  1411. int isfloat = 0; /* not needed here, but kept for symmetry */
  1412. OpCode op;
  1413. if (e1->k != VNONRELOC) {
  1414. lua_assert(e1->k == VK || e1->k == VKINT || e1->k == VKFLT);
  1415. swapexps(e1, e2);
  1416. }
  1417. r1 = luaK_exp2anyreg(fs, e1); /* 1st expression must be in register */
  1418. if (isSCnumber(e2, &im, &isfloat)) {
  1419. op = OP_EQI;
  1420. r2 = im; /* immediate operand */
  1421. }
  1422. else if (exp2RK(fs, e2)) { /* 2nd expression is constant? */
  1423. op = OP_EQK;
  1424. r2 = e2->u.info; /* constant index */
  1425. }
  1426. else {
  1427. op = OP_EQ; /* will compare two registers */
  1428. r2 = luaK_exp2anyreg(fs, e2);
  1429. }
  1430. freeexps(fs, e1, e2);
  1431. e1->u.info = condjump(fs, op, r1, r2, isfloat, (opr == OPR_EQ));
  1432. e1->k = VJMP;
  1433. }
  1434. /*
  1435. ** Apply prefix operation 'op' to expression 'e'.
  1436. */
  1437. void luaK_prefix (FuncState *fs, UnOpr opr, expdesc *e, int line) {
  1438. static const expdesc ef = {VKINT, {0}, NO_JUMP, NO_JUMP};
  1439. luaK_dischargevars(fs, e);
  1440. switch (opr) {
  1441. case OPR_MINUS: case OPR_BNOT: /* use 'ef' as fake 2nd operand */
  1442. if (constfolding(fs, cast_int(opr + LUA_OPUNM), e, &ef))
  1443. break;
  1444. /* else */ /* FALLTHROUGH */
  1445. case OPR_LEN:
  1446. codeunexpval(fs, unopr2op(opr), e, line);
  1447. break;
  1448. case OPR_NOT: codenot(fs, e); break;
  1449. default: lua_assert(0);
  1450. }
  1451. }
  1452. /*
  1453. ** Process 1st operand 'v' of binary operation 'op' before reading
  1454. ** 2nd operand.
  1455. */
  1456. void luaK_infix (FuncState *fs, BinOpr op, expdesc *v) {
  1457. luaK_dischargevars(fs, v);
  1458. switch (op) {
  1459. case OPR_AND: {
  1460. luaK_goiftrue(fs, v); /* go ahead only if 'v' is true */
  1461. break;
  1462. }
  1463. case OPR_OR: {
  1464. luaK_goiffalse(fs, v); /* go ahead only if 'v' is false */
  1465. break;
  1466. }
  1467. case OPR_CONCAT: {
  1468. luaK_exp2nextreg(fs, v); /* operand must be on the stack */
  1469. break;
  1470. }
  1471. case OPR_ADD: case OPR_SUB:
  1472. case OPR_MUL: case OPR_DIV: case OPR_IDIV:
  1473. case OPR_MOD: case OPR_POW:
  1474. case OPR_BAND: case OPR_BOR: case OPR_BXOR:
  1475. case OPR_SHL: case OPR_SHR: {
  1476. if (!tonumeral(v, NULL))
  1477. luaK_exp2anyreg(fs, v);
  1478. /* else keep numeral, which may be folded or used as an immediate
  1479. operand */
  1480. break;
  1481. }
  1482. case OPR_EQ: case OPR_NE: {
  1483. if (!tonumeral(v, NULL))
  1484. exp2RK(fs, v);
  1485. /* else keep numeral, which may be an immediate operand */
  1486. break;
  1487. }
  1488. case OPR_LT: case OPR_LE:
  1489. case OPR_GT: case OPR_GE: {
  1490. int dummy, dummy2;
  1491. if (!isSCnumber(v, &dummy, &dummy2))
  1492. luaK_exp2anyreg(fs, v);
  1493. /* else keep numeral, which may be an immediate operand */
  1494. break;
  1495. }
  1496. default: lua_assert(0);
  1497. }
  1498. }
  1499. /*
  1500. ** Create code for '(e1 .. e2)'.
  1501. ** For '(e1 .. e2.1 .. e2.2)' (which is '(e1 .. (e2.1 .. e2.2))',
  1502. ** because concatenation is right associative), merge both CONCATs.
  1503. */
  1504. static void codeconcat (FuncState *fs, expdesc *e1, expdesc *e2, int line) {
  1505. Instruction *ie2 = previousinstruction(fs);
  1506. if (GET_OPCODE(*ie2) == OP_CONCAT) { /* is 'e2' a concatenation? */
  1507. int n = GETARG_B(*ie2); /* # of elements concatenated in 'e2' */
  1508. lua_assert(e1->u.info + 1 == GETARG_A(*ie2));
  1509. freeexp(fs, e2);
  1510. SETARG_A(*ie2, e1->u.info); /* correct first element ('e1') */
  1511. SETARG_B(*ie2, n + 1); /* will concatenate one more element */
  1512. }
  1513. else { /* 'e2' is not a concatenation */
  1514. luaK_codeABC(fs, OP_CONCAT, e1->u.info, 2, 0); /* new concat opcode */
  1515. freeexp(fs, e2);
  1516. luaK_fixline(fs, line);
  1517. }
  1518. }
  1519. /*
  1520. ** Finalize code for binary operation, after reading 2nd operand.
  1521. */
  1522. void luaK_posfix (FuncState *fs, BinOpr opr,
  1523. expdesc *e1, expdesc *e2, int line) {
  1524. luaK_dischargevars(fs, e2);
  1525. if (foldbinop(opr) && constfolding(fs, cast_int(opr + LUA_OPADD), e1, e2))
  1526. return; /* done by folding */
  1527. switch (opr) {
  1528. case OPR_AND: {
  1529. lua_assert(e1->t == NO_JUMP); /* list closed by 'luaK_infix' */
  1530. luaK_concat(fs, &e2->f, e1->f);
  1531. *e1 = *e2;
  1532. break;
  1533. }
  1534. case OPR_OR: {
  1535. lua_assert(e1->f == NO_JUMP); /* list closed by 'luaK_infix' */
  1536. luaK_concat(fs, &e2->t, e1->t);
  1537. *e1 = *e2;
  1538. break;
  1539. }
  1540. case OPR_CONCAT: { /* e1 .. e2 */
  1541. luaK_exp2nextreg(fs, e2);
  1542. codeconcat(fs, e1, e2, line);
  1543. break;
  1544. }
  1545. case OPR_ADD: case OPR_MUL: {
  1546. codecommutative(fs, opr, e1, e2, line);
  1547. break;
  1548. }
  1549. case OPR_SUB: {
  1550. if (finishbinexpneg(fs, e1, e2, OP_ADDI, line, TM_SUB))
  1551. break; /* coded as (r1 + -I) */
  1552. /* ELSE */
  1553. } /* FALLTHROUGH */
  1554. case OPR_DIV: case OPR_IDIV: case OPR_MOD: case OPR_POW: {
  1555. codearith(fs, opr, e1, e2, 0, line);
  1556. break;
  1557. }
  1558. case OPR_BAND: case OPR_BOR: case OPR_BXOR: {
  1559. codebitwise(fs, opr, e1, e2, line);
  1560. break;
  1561. }
  1562. case OPR_SHL: {
  1563. if (isSCint(e1)) {
  1564. swapexps(e1, e2);
  1565. codebini(fs, OP_SHLI, e1, e2, 1, line, TM_SHL); /* I << r2 */
  1566. }
  1567. else if (finishbinexpneg(fs, e1, e2, OP_SHRI, line, TM_SHL)) {
  1568. /* coded as (r1 >> -I) */;
  1569. }
  1570. else /* regular case (two registers) */
  1571. codebinexpval(fs, opr, e1, e2, line);
  1572. break;
  1573. }
  1574. case OPR_SHR: {
  1575. if (isSCint(e2))
  1576. codebini(fs, OP_SHRI, e1, e2, 0, line, TM_SHR); /* r1 >> I */
  1577. else /* regular case (two registers) */
  1578. codebinexpval(fs, opr, e1, e2, line);
  1579. break;
  1580. }
  1581. case OPR_EQ: case OPR_NE: {
  1582. codeeq(fs, opr, e1, e2);
  1583. break;
  1584. }
  1585. case OPR_GT: case OPR_GE: {
  1586. /* '(a > b)' <=> '(b < a)'; '(a >= b)' <=> '(b <= a)' */
  1587. swapexps(e1, e2);
  1588. opr = cast(BinOpr, (opr - OPR_GT) + OPR_LT);
  1589. } /* FALLTHROUGH */
  1590. case OPR_LT: case OPR_LE: {
  1591. codeorder(fs, opr, e1, e2);
  1592. break;
  1593. }
  1594. default: lua_assert(0);
  1595. }
  1596. }
  1597. /*
  1598. ** Change line information associated with current position, by removing
  1599. ** previous info and adding it again with new line.
  1600. */
  1601. void luaK_fixline (FuncState *fs, int line) {
  1602. removelastlineinfo(fs);
  1603. savelineinfo(fs, fs->f, line);
  1604. }
  1605. void luaK_settablesize (FuncState *fs, int pc, int ra, int asize, int hsize) {
  1606. Instruction *inst = &fs->f->code[pc];
  1607. int extra = asize / (MAXARG_vC + 1); /* higher bits of array size */
  1608. int rc = asize % (MAXARG_vC + 1); /* lower bits of array size */
  1609. int k = (extra > 0); /* true iff needs extra argument */
  1610. hsize = (hsize != 0) ? luaO_ceillog2(cast_uint(hsize)) + 1 : 0;
  1611. *inst = CREATE_vABCk(OP_NEWTABLE, ra, hsize, rc, k);
  1612. *(inst + 1) = CREATE_Ax(OP_EXTRAARG, extra);
  1613. }
  1614. /*
  1615. ** Emit a SETLIST instruction.
  1616. ** 'base' is register that keeps table;
  1617. ** 'nelems' is #table plus those to be stored now;
  1618. ** 'tostore' is number of values (in registers 'base + 1',...) to add to
  1619. ** table (or LUA_MULTRET to add up to stack top).
  1620. */
  1621. void luaK_setlist (FuncState *fs, int base, int nelems, int tostore) {
  1622. lua_assert(tostore != 0);
  1623. if (tostore == LUA_MULTRET)
  1624. tostore = 0;
  1625. if (nelems <= MAXARG_vC)
  1626. luaK_codevABCk(fs, OP_SETLIST, base, tostore, nelems, 0);
  1627. else {
  1628. int extra = nelems / (MAXARG_vC + 1);
  1629. nelems %= (MAXARG_vC + 1);
  1630. luaK_codevABCk(fs, OP_SETLIST, base, tostore, nelems, 1);
  1631. codeextraarg(fs, extra);
  1632. }
  1633. fs->freereg = cast_byte(base + 1); /* free registers with list values */
  1634. }
  1635. /*
  1636. ** return the final target of a jump (skipping jumps to jumps)
  1637. */
  1638. static int finaltarget (Instruction *code, int i) {
  1639. int count;
  1640. for (count = 0; count < 100; count++) { /* avoid infinite loops */
  1641. Instruction pc = code[i];
  1642. if (GET_OPCODE(pc) != OP_JMP)
  1643. break;
  1644. else
  1645. i += GETARG_sJ(pc) + 1;
  1646. }
  1647. return i;
  1648. }
  1649. /*
  1650. ** Do a final pass over the code of a function, doing small peephole
  1651. ** optimizations and adjustments.
  1652. */
  1653. #include "lopnames.h"
  1654. void luaK_finish (FuncState *fs) {
  1655. int i;
  1656. Proto *p = fs->f;
  1657. for (i = 0; i < fs->pc; i++) {
  1658. Instruction *pc = &p->code[i];
  1659. /* avoid "not used" warnings when assert is off (for 'onelua.c') */
  1660. (void)luaP_isOT; (void)luaP_isIT;
  1661. lua_assert(i == 0 || luaP_isOT(*(pc - 1)) == luaP_isIT(*pc));
  1662. switch (GET_OPCODE(*pc)) {
  1663. case OP_RETURN0: case OP_RETURN1: {
  1664. if (!(fs->needclose || (p->flag & PF_ISVARARG)))
  1665. break; /* no extra work */
  1666. /* else use OP_RETURN to do the extra work */
  1667. SET_OPCODE(*pc, OP_RETURN);
  1668. } /* FALLTHROUGH */
  1669. case OP_RETURN: case OP_TAILCALL: {
  1670. if (fs->needclose)
  1671. SETARG_k(*pc, 1); /* signal that it needs to close */
  1672. if (p->flag & PF_ISVARARG)
  1673. SETARG_C(*pc, p->numparams + 1); /* signal that it is vararg */
  1674. break;
  1675. }
  1676. case OP_JMP: {
  1677. int target = finaltarget(p->code, i);
  1678. fixjump(fs, i, target);
  1679. break;
  1680. }
  1681. default: break;
  1682. }
  1683. }
  1684. }