12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292 |
- /*
- ** $Id: ltable.c $
- ** Lua tables (hash)
- ** See Copyright Notice in lua.h
- */
- #define ltable_c
- #define LUA_CORE
- #include "lprefix.h"
- /*
- ** Implementation of tables (aka arrays, objects, or hash tables).
- ** Tables keep its elements in two parts: an array part and a hash part.
- ** Non-negative integer keys are all candidates to be kept in the array
- ** part. The actual size of the array is the largest 'n' such that
- ** more than half the slots between 1 and n are in use.
- ** Hash uses a mix of chained scatter table with Brent's variation.
- ** A main invariant of these tables is that, if an element is not
- ** in its main position (i.e. the 'original' position that its hash gives
- ** to it), then the colliding element is in its own main position.
- ** Hence even when the load factor reaches 100%, performance remains good.
- */
- #include <math.h>
- #include <limits.h>
- #include <string.h>
- #include "lua.h"
- #include "ldebug.h"
- #include "ldo.h"
- #include "lgc.h"
- #include "lmem.h"
- #include "lobject.h"
- #include "lstate.h"
- #include "lstring.h"
- #include "ltable.h"
- #include "lvm.h"
- /*
- ** Only tables with hash parts larger than 2^LIMFORLAST has a 'lastfree'
- ** field that optimizes finding a free slot. That field is stored just
- ** before the array of nodes, in the same block. Smaller tables do a
- ** complete search when looking for a free slot.
- */
- #define LIMFORLAST 2 /* log2 of real limit */
- /*
- ** The union 'Limbox' stores 'lastfree' and ensures that what follows it
- ** is properly aligned to store a Node.
- */
- typedef struct { Node *dummy; Node follows_pNode; } Limbox_aux;
- typedef union {
- Node *lastfree;
- char padding[offsetof(Limbox_aux, follows_pNode)];
- } Limbox;
- #define haslastfree(t) ((t)->lsizenode > LIMFORLAST)
- #define getlastfree(t) ((cast(Limbox *, (t)->node) - 1)->lastfree)
- /*
- ** MAXABITS is the largest integer such that 2^MAXABITS fits in an
- ** unsigned int.
- */
- #define MAXABITS cast_int(sizeof(int) * CHAR_BIT - 1)
- /*
- ** MAXASIZEB is the maximum number of elements in the array part such
- ** that the size of the array fits in 'size_t'.
- */
- #define MAXASIZEB (MAX_SIZET/(sizeof(Value) + 1))
- /*
- ** MAXASIZE is the maximum size of the array part. It is the minimum
- ** between 2^MAXABITS and MAXASIZEB.
- */
- #define MAXASIZE \
- (((1u << MAXABITS) < MAXASIZEB) ? (1u << MAXABITS) : cast_uint(MAXASIZEB))
- /*
- ** MAXHBITS is the largest integer such that 2^MAXHBITS fits in a
- ** signed int.
- */
- #define MAXHBITS (MAXABITS - 1)
- /*
- ** MAXHSIZE is the maximum size of the hash part. It is the minimum
- ** between 2^MAXHBITS and the maximum size such that, measured in bytes,
- ** it fits in a 'size_t'.
- */
- #define MAXHSIZE luaM_limitN(1u << MAXHBITS, Node)
- /*
- ** When the original hash value is good, hashing by a power of 2
- ** avoids the cost of '%'.
- */
- #define hashpow2(t,n) (gnode(t, lmod((n), sizenode(t))))
- /*
- ** for other types, it is better to avoid modulo by power of 2, as
- ** they can have many 2 factors.
- */
- #define hashmod(t,n) (gnode(t, ((n) % ((sizenode(t)-1u)|1u))))
- #define hashstr(t,str) hashpow2(t, (str)->hash)
- #define hashboolean(t,p) hashpow2(t, p)
- #define hashpointer(t,p) hashmod(t, point2uint(p))
- #define dummynode (&dummynode_)
- static const Node dummynode_ = {
- {{NULL}, LUA_VEMPTY, /* value's value and type */
- LUA_VNIL, 0, {NULL}} /* key type, next, and key value */
- };
- static const TValue absentkey = {ABSTKEYCONSTANT};
- /*
- ** Hash for integers. To allow a good hash, use the remainder operator
- ** ('%'). If integer fits as a non-negative int, compute an int
- ** remainder, which is faster. Otherwise, use an unsigned-integer
- ** remainder, which uses all bits and ensures a non-negative result.
- */
- static Node *hashint (const Table *t, lua_Integer i) {
- lua_Unsigned ui = l_castS2U(i);
- if (ui <= cast_uint(INT_MAX))
- return gnode(t, cast_int(ui) % cast_int((sizenode(t)-1) | 1));
- else
- return hashmod(t, ui);
- }
- /*
- ** Hash for floating-point numbers.
- ** The main computation should be just
- ** n = frexp(n, &i); return (n * INT_MAX) + i
- ** but there are some numerical subtleties.
- ** In a two-complement representation, INT_MAX does not has an exact
- ** representation as a float, but INT_MIN does; because the absolute
- ** value of 'frexp' is smaller than 1 (unless 'n' is inf/NaN), the
- ** absolute value of the product 'frexp * -INT_MIN' is smaller or equal
- ** to INT_MAX. Next, the use of 'unsigned int' avoids overflows when
- ** adding 'i'; the use of '~u' (instead of '-u') avoids problems with
- ** INT_MIN.
- */
- #if !defined(l_hashfloat)
- static unsigned l_hashfloat (lua_Number n) {
- int i;
- lua_Integer ni;
- n = l_mathop(frexp)(n, &i) * -cast_num(INT_MIN);
- if (!lua_numbertointeger(n, &ni)) { /* is 'n' inf/-inf/NaN? */
- lua_assert(luai_numisnan(n) || l_mathop(fabs)(n) == cast_num(HUGE_VAL));
- return 0;
- }
- else { /* normal case */
- unsigned int u = cast_uint(i) + cast_uint(ni);
- return (u <= cast_uint(INT_MAX) ? u : ~u);
- }
- }
- #endif
- /*
- ** returns the 'main' position of an element in a table (that is,
- ** the index of its hash value).
- */
- static Node *mainpositionTV (const Table *t, const TValue *key) {
- switch (ttypetag(key)) {
- case LUA_VNUMINT: {
- lua_Integer i = ivalue(key);
- return hashint(t, i);
- }
- case LUA_VNUMFLT: {
- lua_Number n = fltvalue(key);
- return hashmod(t, l_hashfloat(n));
- }
- case LUA_VSHRSTR: {
- TString *ts = tsvalue(key);
- return hashstr(t, ts);
- }
- case LUA_VLNGSTR: {
- TString *ts = tsvalue(key);
- return hashpow2(t, luaS_hashlongstr(ts));
- }
- case LUA_VFALSE:
- return hashboolean(t, 0);
- case LUA_VTRUE:
- return hashboolean(t, 1);
- case LUA_VLIGHTUSERDATA: {
- void *p = pvalue(key);
- return hashpointer(t, p);
- }
- case LUA_VLCF: {
- lua_CFunction f = fvalue(key);
- return hashpointer(t, f);
- }
- default: {
- GCObject *o = gcvalue(key);
- return hashpointer(t, o);
- }
- }
- }
- l_sinline Node *mainpositionfromnode (const Table *t, Node *nd) {
- TValue key;
- getnodekey(cast(lua_State *, NULL), &key, nd);
- return mainpositionTV(t, &key);
- }
- /*
- ** Check whether key 'k1' is equal to the key in node 'n2'. This
- ** equality is raw, so there are no metamethods. Floats with integer
- ** values have been normalized, so integers cannot be equal to
- ** floats. It is assumed that 'eqshrstr' is simply pointer equality, so
- ** that short strings are handled in the default case.
- ** A true 'deadok' means to accept dead keys as equal to their original
- ** values. All dead keys are compared in the default case, by pointer
- ** identity. (Only collectable objects can produce dead keys.) Note that
- ** dead long strings are also compared by identity.
- ** Once a key is dead, its corresponding value may be collected, and
- ** then another value can be created with the same address. If this
- ** other value is given to 'next', 'equalkey' will signal a false
- ** positive. In a regular traversal, this situation should never happen,
- ** as all keys given to 'next' came from the table itself, and therefore
- ** could not have been collected. Outside a regular traversal, we
- ** have garbage in, garbage out. What is relevant is that this false
- ** positive does not break anything. (In particular, 'next' will return
- ** some other valid item on the table or nil.)
- */
- static int equalkey (const TValue *k1, const Node *n2, int deadok) {
- if ((rawtt(k1) != keytt(n2)) && /* not the same variants? */
- !(deadok && keyisdead(n2) && iscollectable(k1)))
- return 0; /* cannot be same key */
- switch (keytt(n2)) {
- case LUA_VNIL: case LUA_VFALSE: case LUA_VTRUE:
- return 1;
- case LUA_VNUMINT:
- return (ivalue(k1) == keyival(n2));
- case LUA_VNUMFLT:
- return luai_numeq(fltvalue(k1), fltvalueraw(keyval(n2)));
- case LUA_VLIGHTUSERDATA:
- return pvalue(k1) == pvalueraw(keyval(n2));
- case LUA_VLCF:
- return fvalue(k1) == fvalueraw(keyval(n2));
- case ctb(LUA_VLNGSTR):
- return luaS_eqlngstr(tsvalue(k1), keystrval(n2));
- default:
- return gcvalue(k1) == gcvalueraw(keyval(n2));
- }
- }
- /*
- ** True if value of 'alimit' is equal to the real size of the array
- ** part of table 't'. (Otherwise, the array part must be larger than
- ** 'alimit'.)
- */
- #define limitequalsasize(t) (isrealasize(t) || ispow2((t)->alimit))
- /*
- ** Returns the real size of the 'array' array
- */
- unsigned int luaH_realasize (const Table *t) {
- if (limitequalsasize(t))
- return t->alimit; /* this is the size */
- else {
- unsigned int size = t->alimit;
- /* compute the smallest power of 2 not smaller than 'size' */
- size |= (size >> 1);
- size |= (size >> 2);
- size |= (size >> 4);
- size |= (size >> 8);
- #if (UINT_MAX >> 14) > 3 /* unsigned int has more than 16 bits */
- size |= (size >> 16);
- #if (UINT_MAX >> 30) > 3
- size |= (size >> 32); /* unsigned int has more than 32 bits */
- #endif
- #endif
- size++;
- lua_assert(ispow2(size) && size/2 < t->alimit && t->alimit < size);
- return size;
- }
- }
- /*
- ** Check whether real size of the array is a power of 2.
- ** (If it is not, 'alimit' cannot be changed to any other value
- ** without changing the real size.)
- */
- static int ispow2realasize (const Table *t) {
- return (!isrealasize(t) || ispow2(t->alimit));
- }
- static unsigned int setlimittosize (Table *t) {
- t->alimit = luaH_realasize(t);
- setrealasize(t);
- return t->alimit;
- }
- #define limitasasize(t) check_exp(isrealasize(t), t->alimit)
- /*
- ** "Generic" get version. (Not that generic: not valid for integers,
- ** which may be in array part, nor for floats with integral values.)
- ** See explanation about 'deadok' in function 'equalkey'.
- */
- static const TValue *getgeneric (Table *t, const TValue *key, int deadok) {
- Node *n = mainpositionTV(t, key);
- for (;;) { /* check whether 'key' is somewhere in the chain */
- if (equalkey(key, n, deadok))
- return gval(n); /* that's it */
- else {
- int nx = gnext(n);
- if (nx == 0)
- return &absentkey; /* not found */
- n += nx;
- }
- }
- }
- /*
- ** returns the index for 'k' if 'k' is an appropriate key to live in
- ** the array part of a table, 0 otherwise.
- */
- static unsigned int arrayindex (lua_Integer k) {
- if (l_castS2U(k) - 1u < MAXASIZE) /* 'k' in [1, MAXASIZE]? */
- return cast_uint(k); /* 'key' is an appropriate array index */
- else
- return 0;
- }
- /*
- ** returns the index of a 'key' for table traversals. First goes all
- ** elements in the array part, then elements in the hash part. The
- ** beginning of a traversal is signaled by 0.
- */
- static unsigned findindex (lua_State *L, Table *t, TValue *key,
- unsigned asize) {
- unsigned int i;
- if (ttisnil(key)) return 0; /* first iteration */
- i = ttisinteger(key) ? arrayindex(ivalue(key)) : 0;
- if (i - 1u < asize) /* is 'key' inside array part? */
- return i; /* yes; that's the index */
- else {
- const TValue *n = getgeneric(t, key, 1);
- if (l_unlikely(isabstkey(n)))
- luaG_runerror(L, "invalid key to 'next'"); /* key not found */
- i = cast_uint(nodefromval(n) - gnode(t, 0)); /* key index in hash table */
- /* hash elements are numbered after array ones */
- return (i + 1) + asize;
- }
- }
- int luaH_next (lua_State *L, Table *t, StkId key) {
- unsigned int asize = luaH_realasize(t);
- unsigned int i = findindex(L, t, s2v(key), asize); /* find original key */
- for (; i < asize; i++) { /* try first array part */
- lu_byte tag = *getArrTag(t, i);
- if (!tagisempty(tag)) { /* a non-empty entry? */
- setivalue(s2v(key), cast_int(i) + 1);
- farr2val(t, i, tag, s2v(key + 1));
- return 1;
- }
- }
- for (i -= asize; i < sizenode(t); i++) { /* hash part */
- if (!isempty(gval(gnode(t, i)))) { /* a non-empty entry? */
- Node *n = gnode(t, i);
- getnodekey(L, s2v(key), n);
- setobj2s(L, key + 1, gval(n));
- return 1;
- }
- }
- return 0; /* no more elements */
- }
- static void freehash (lua_State *L, Table *t) {
- if (!isdummy(t)) {
- /* 'node' size in bytes */
- size_t bsize = cast_sizet(sizenode(t)) * sizeof(Node);
- char *arr = cast_charp(t->node);
- if (haslastfree(t)) {
- bsize += sizeof(Limbox);
- arr -= sizeof(Limbox);
- }
- luaM_freearray(L, arr, bsize);
- }
- }
- /*
- ** Check whether an integer key is in the array part. If 'alimit' is
- ** not the real size of the array, the key still can be in the array
- ** part. In this case, do the "Xmilia trick" to check whether 'key-1'
- ** is smaller than the real size.
- ** The trick works as follow: let 'p' be the integer such that
- ** '2^(p+1) >= alimit > 2^p', or '2^(p+1) > alimit-1 >= 2^p'. That is,
- ** 'p' is the highest 1-bit in 'alimit-1', and 2^(p+1) is the real size
- ** of the array. What we have to check becomes 'key-1 < 2^(p+1)'. We
- ** compute '(key-1) & ~(alimit-1)', which we call 'res'; it will have
- ** the 'p' bit cleared. (It may also clear other bits smaller than 'p',
- ** but no bit higher than 'p'.) If the key is outside the array, that
- ** is, 'key-1 >= 2^(p+1)', then 'res' will have some 1-bit higher than
- ** 'p', therefore it will be larger or equal to 'alimit', and the check
- ** will fail. If 'key-1 < 2^(p+1)', then 'res' has no 1-bit higher than
- ** 'p', and as the bit 'p' itself was cleared, 'res' will be smaller
- ** than 2^p, therefore smaller than 'alimit', and the check succeeds.
- ** As special cases, when 'alimit' is 0 the condition is trivially false,
- ** and when 'alimit' is 1 the condition simplifies to 'key-1 < alimit'.
- ** If key is 0 or negative, 'res' will have its higher bit on, so that
- ** it cannot be smaller than 'alimit'.
- */
- static int keyinarray (Table *t, lua_Integer key) {
- lua_Unsigned alimit = t->alimit;
- if (l_castS2U(key) - 1u < alimit) /* 'key' in [1, t->alimit]? */
- return 1;
- else if (!isrealasize(t) && /* key still may be in the array part? */
- (((l_castS2U(key) - 1u) & ~(alimit - 1u)) < alimit)) {
- t->alimit = cast_uint(key); /* probably '#t' is here now */
- return 1;
- }
- else
- return 0;
- }
- /*
- ** {=============================================================
- ** Rehash
- ** ==============================================================
- */
- /*
- ** Compute the optimal size for the array part of table 't'. 'nums' is a
- ** "count array" where 'nums[i]' is the number of integers in the table
- ** between 2^(i - 1) + 1 and 2^i. 'pna' enters with the total number of
- ** integer keys in the table and leaves with the number of keys that
- ** will go to the array part; return the optimal size. (The condition
- ** 'twotoi > 0' in the for loop stops the loop if 'twotoi' overflows.)
- */
- static unsigned computesizes (unsigned nums[], unsigned *pna) {
- int i;
- unsigned int twotoi; /* 2^i (candidate for optimal size) */
- unsigned int a = 0; /* number of elements smaller than 2^i */
- unsigned int na = 0; /* number of elements to go to array part */
- unsigned int optimal = 0; /* optimal size for array part */
- /* loop while keys can fill more than half of total size */
- for (i = 0, twotoi = 1;
- twotoi > 0 && *pna > twotoi / 2;
- i++, twotoi *= 2) {
- a += nums[i];
- if (a > twotoi/2) { /* more than half elements present? */
- optimal = twotoi; /* optimal size (till now) */
- na = a; /* all elements up to 'optimal' will go to array part */
- }
- }
- lua_assert((optimal == 0 || optimal / 2 < na) && na <= optimal);
- *pna = na;
- return optimal;
- }
- static unsigned countint (lua_Integer key, unsigned int *nums) {
- unsigned int k = arrayindex(key);
- if (k != 0) { /* is 'key' an appropriate array index? */
- nums[luaO_ceillog2(k)]++; /* count as such */
- return 1;
- }
- else
- return 0;
- }
- l_sinline int arraykeyisempty (const Table *t, lua_Unsigned key) {
- int tag = *getArrTag(t, key - 1);
- return tagisempty(tag);
- }
- /*
- ** Count keys in array part of table 't': Fill 'nums[i]' with
- ** number of keys that will go into corresponding slice and return
- ** total number of non-nil keys.
- */
- static unsigned numusearray (const Table *t, unsigned *nums) {
- int lg;
- unsigned int ttlg; /* 2^lg */
- unsigned int ause = 0; /* summation of 'nums' */
- unsigned int i = 1; /* count to traverse all array keys */
- unsigned int asize = limitasasize(t); /* real array size */
- /* traverse each slice */
- for (lg = 0, ttlg = 1; lg <= MAXABITS; lg++, ttlg *= 2) {
- unsigned int lc = 0; /* counter */
- unsigned int lim = ttlg;
- if (lim > asize) {
- lim = asize; /* adjust upper limit */
- if (i > lim)
- break; /* no more elements to count */
- }
- /* count elements in range (2^(lg - 1), 2^lg] */
- for (; i <= lim; i++) {
- if (!arraykeyisempty(t, i))
- lc++;
- }
- nums[lg] += lc;
- ause += lc;
- }
- return ause;
- }
- static unsigned numusehash (const Table *t, unsigned *nums, unsigned *pna) {
- unsigned totaluse = 0; /* total number of elements */
- unsigned ause = 0; /* elements added to 'nums' (can go to array part) */
- unsigned i = sizenode(t);
- while (i--) {
- Node *n = &t->node[i];
- if (!isempty(gval(n))) {
- if (keyisinteger(n))
- ause += countint(keyival(n), nums);
- totaluse++;
- }
- }
- *pna += ause;
- return totaluse;
- }
- /*
- ** Convert an "abstract size" (number of slots in an array) to
- ** "concrete size" (number of bytes in the array).
- */
- static size_t concretesize (unsigned int size) {
- return size * sizeof(Value) + size; /* space for the two arrays */
- }
- /*
- ** Resize the array part of a table. If new size is equal to the old,
- ** do nothing. Else, if new size is zero, free the old array. (It must
- ** be present, as the sizes are different.) Otherwise, allocate a new
- ** array, move the common elements to new proper position, and then
- ** frees old array.
- ** When array grows, we could reallocate it, but we still would need
- ** to move the elements to their new position, so the copy implicit
- ** in realloc is a waste. When array shrinks, it always erases some
- ** elements that should still be in the array, so we must reallocate in
- ** two steps anyway. It is simpler to always reallocate in two steps.
- */
- static Value *resizearray (lua_State *L , Table *t,
- unsigned oldasize,
- unsigned newasize) {
- if (oldasize == newasize)
- return t->array; /* nothing to be done */
- else if (newasize == 0) { /* erasing array? */
- Value *op = t->array - oldasize; /* original array's real address */
- luaM_freemem(L, op, concretesize(oldasize)); /* free it */
- return NULL;
- }
- else {
- size_t newasizeb = concretesize(newasize);
- Value *np = cast(Value *,
- luaM_reallocvector(L, NULL, 0, newasizeb, lu_byte));
- if (np == NULL) /* allocation error? */
- return NULL;
- if (oldasize > 0) {
- Value *op = t->array - oldasize; /* real original array */
- unsigned tomove = (oldasize < newasize) ? oldasize : newasize;
- lua_assert(tomove > 0);
- /* move common elements to new position */
- memcpy(np + newasize - tomove,
- op + oldasize - tomove,
- concretesize(tomove));
- luaM_freemem(L, op, concretesize(oldasize));
- }
- return np + newasize; /* shift pointer to the end of value segment */
- }
- }
- /*
- ** Creates an array for the hash part of a table with the given
- ** size, or reuses the dummy node if size is zero.
- ** The computation for size overflow is in two steps: the first
- ** comparison ensures that the shift in the second one does not
- ** overflow.
- */
- static void setnodevector (lua_State *L, Table *t, unsigned size) {
- if (size == 0) { /* no elements to hash part? */
- t->node = cast(Node *, dummynode); /* use common 'dummynode' */
- t->lsizenode = 0;
- setdummy(t); /* signal that it is using dummy node */
- }
- else {
- int i;
- int lsize = luaO_ceillog2(size);
- if (lsize > MAXHBITS || (1u << lsize) > MAXHSIZE)
- luaG_runerror(L, "table overflow");
- size = twoto(lsize);
- if (lsize <= LIMFORLAST) /* no 'lastfree' field? */
- t->node = luaM_newvector(L, size, Node);
- else {
- size_t bsize = size * sizeof(Node) + sizeof(Limbox);
- char *node = luaM_newblock(L, bsize);
- t->node = cast(Node *, node + sizeof(Limbox));
- getlastfree(t) = gnode(t, size); /* all positions are free */
- }
- t->lsizenode = cast_byte(lsize);
- setnodummy(t);
- for (i = 0; i < cast_int(size); i++) {
- Node *n = gnode(t, i);
- gnext(n) = 0;
- setnilkey(n);
- setempty(gval(n));
- }
- }
- }
- /*
- ** (Re)insert all elements from the hash part of 'ot' into table 't'.
- */
- static void reinsert (lua_State *L, Table *ot, Table *t) {
- unsigned j;
- unsigned size = sizenode(ot);
- for (j = 0; j < size; j++) {
- Node *old = gnode(ot, j);
- if (!isempty(gval(old))) {
- /* doesn't need barrier/invalidate cache, as entry was
- already present in the table */
- TValue k;
- getnodekey(L, &k, old);
- luaH_set(L, t, &k, gval(old));
- }
- }
- }
- /*
- ** Exchange the hash part of 't1' and 't2'. (In 'flags', only the
- ** dummy bit must be exchanged: The 'isrealasize' is not related
- ** to the hash part, and the metamethod bits do not change during
- ** a resize, so the "real" table can keep their values.)
- */
- static void exchangehashpart (Table *t1, Table *t2) {
- lu_byte lsizenode = t1->lsizenode;
- Node *node = t1->node;
- int bitdummy1 = t1->flags & BITDUMMY;
- t1->lsizenode = t2->lsizenode;
- t1->node = t2->node;
- t1->flags = cast_byte((t1->flags & NOTBITDUMMY) | (t2->flags & BITDUMMY));
- t2->lsizenode = lsizenode;
- t2->node = node;
- t2->flags = cast_byte((t2->flags & NOTBITDUMMY) | bitdummy1);
- }
- /*
- ** Re-insert into the new hash part of a table the elements from the
- ** vanishing slice of the array part.
- */
- static void reinsertOldSlice (lua_State *L, Table *t, unsigned oldasize,
- unsigned newasize) {
- unsigned i;
- t->alimit = newasize; /* pretend array has new size... */
- for (i = newasize; i < oldasize; i++) { /* traverse vanishing slice */
- lu_byte tag = *getArrTag(t, i);
- if (!tagisempty(tag)) { /* a non-empty entry? */
- TValue aux;
- farr2val(t, i, tag, &aux); /* copy entry into 'aux' */
- /* re-insert it into the table */
- luaH_setint(L, t, cast_int(i) + 1, &aux);
- }
- }
- t->alimit = oldasize; /* restore current size... */
- }
- /*
- ** Clear new slice of the array.
- */
- static void clearNewSlice (Table *t, unsigned oldasize, unsigned newasize) {
- for (; oldasize < newasize; oldasize++)
- *getArrTag(t, oldasize) = LUA_VEMPTY;
- }
- /*
- ** Resize table 't' for the new given sizes. Both allocations (for
- ** the hash part and for the array part) can fail, which creates some
- ** subtleties. If the first allocation, for the hash part, fails, an
- ** error is raised and that is it. Otherwise, it copies the elements from
- ** the shrinking part of the array (if it is shrinking) into the new
- ** hash. Then it reallocates the array part. If that fails, the table
- ** is in its original state; the function frees the new hash part and then
- ** raises the allocation error. Otherwise, it sets the new hash part
- ** into the table, initializes the new part of the array (if any) with
- ** nils and reinserts the elements of the old hash back into the new
- ** parts of the table.
- */
- void luaH_resize (lua_State *L, Table *t, unsigned newasize,
- unsigned nhsize) {
- Table newt; /* to keep the new hash part */
- unsigned int oldasize = setlimittosize(t);
- Value *newarray;
- if (newasize > MAXASIZE)
- luaG_runerror(L, "table overflow");
- /* create new hash part with appropriate size into 'newt' */
- newt.flags = 0;
- setnodevector(L, &newt, nhsize);
- if (newasize < oldasize) { /* will array shrink? */
- /* re-insert into the new hash the elements from vanishing slice */
- exchangehashpart(t, &newt); /* pretend table has new hash */
- reinsertOldSlice(L, t, oldasize, newasize);
- exchangehashpart(t, &newt); /* restore old hash (in case of errors) */
- }
- /* allocate new array */
- newarray = resizearray(L, t, oldasize, newasize);
- if (l_unlikely(newarray == NULL && newasize > 0)) { /* allocation failed? */
- freehash(L, &newt); /* release new hash part */
- luaM_error(L); /* raise error (with array unchanged) */
- }
- /* allocation ok; initialize new part of the array */
- exchangehashpart(t, &newt); /* 't' has the new hash ('newt' has the old) */
- t->array = newarray; /* set new array part */
- t->alimit = newasize;
- clearNewSlice(t, oldasize, newasize);
- /* re-insert elements from old hash part into new parts */
- reinsert(L, &newt, t); /* 'newt' now has the old hash */
- freehash(L, &newt); /* free old hash part */
- }
- void luaH_resizearray (lua_State *L, Table *t, unsigned int nasize) {
- unsigned nsize = allocsizenode(t);
- luaH_resize(L, t, nasize, nsize);
- }
- /*
- ** nums[i] = number of keys 'k' where 2^(i - 1) < k <= 2^i
- */
- static void rehash (lua_State *L, Table *t, const TValue *ek) {
- unsigned int asize; /* optimal size for array part */
- unsigned int na; /* number of keys in the array part */
- unsigned int nums[MAXABITS + 1];
- int i;
- unsigned totaluse;
- for (i = 0; i <= MAXABITS; i++) nums[i] = 0; /* reset counts */
- setlimittosize(t);
- na = numusearray(t, nums); /* count keys in array part */
- totaluse = na; /* all those keys are integer keys */
- totaluse += numusehash(t, nums, &na); /* count keys in hash part */
- /* count extra key */
- if (ttisinteger(ek))
- na += countint(ivalue(ek), nums);
- totaluse++;
- /* compute new size for array part */
- asize = computesizes(nums, &na);
- /* resize the table to new computed sizes */
- luaH_resize(L, t, asize, totaluse - na);
- }
- /*
- ** }=============================================================
- */
- Table *luaH_new (lua_State *L) {
- GCObject *o = luaC_newobj(L, LUA_VTABLE, sizeof(Table));
- Table *t = gco2t(o);
- t->metatable = NULL;
- t->flags = maskflags; /* table has no metamethod fields */
- t->array = NULL;
- t->alimit = 0;
- setnodevector(L, t, 0);
- return t;
- }
- size_t luaH_size (Table *t) {
- size_t sz = sizeof(Table)
- + luaH_realasize(t) * (sizeof(Value) + 1);
- if (!isdummy(t)) {
- sz += sizenode(t) * sizeof(Node);
- if (haslastfree(t))
- sz += sizeof(Limbox);
- }
- return sz;
- }
- /*
- ** Frees a table.
- */
- void luaH_free (lua_State *L, Table *t) {
- unsigned int realsize = luaH_realasize(t);
- freehash(L, t);
- resizearray(L, t, realsize, 0);
- luaM_free(L, t);
- }
- static Node *getfreepos (Table *t) {
- if (haslastfree(t)) { /* does it have 'lastfree' information? */
- /* look for a spot before 'lastfree', updating 'lastfree' */
- while (getlastfree(t) > t->node) {
- Node *free = --getlastfree(t);
- if (keyisnil(free))
- return free;
- }
- }
- else { /* no 'lastfree' information */
- if (!isdummy(t)) {
- unsigned i = sizenode(t);
- while (i--) { /* do a linear search */
- Node *free = gnode(t, i);
- if (keyisnil(free))
- return free;
- }
- }
- }
- return NULL; /* could not find a free place */
- }
- /*
- ** Inserts a new key into a hash table; first, check whether key's main
- ** position is free. If not, check whether colliding node is in its main
- ** position or not: if it is not, move colliding node to an empty place
- ** and put new key in its main position; otherwise (colliding node is in
- ** its main position), new key goes to an empty position.
- */
- static void luaH_newkey (lua_State *L, Table *t, const TValue *key,
- TValue *value) {
- Node *mp;
- TValue aux;
- if (l_unlikely(ttisnil(key)))
- luaG_runerror(L, "table index is nil");
- else if (ttisfloat(key)) {
- lua_Number f = fltvalue(key);
- lua_Integer k;
- if (luaV_flttointeger(f, &k, F2Ieq)) { /* does key fit in an integer? */
- setivalue(&aux, k);
- key = &aux; /* insert it as an integer */
- }
- else if (l_unlikely(luai_numisnan(f)))
- luaG_runerror(L, "table index is NaN");
- }
- if (ttisnil(value))
- return; /* do not insert nil values */
- mp = mainpositionTV(t, key);
- if (!isempty(gval(mp)) || isdummy(t)) { /* main position is taken? */
- Node *othern;
- Node *f = getfreepos(t); /* get a free place */
- if (f == NULL) { /* cannot find a free place? */
- rehash(L, t, key); /* grow table */
- /* whatever called 'newkey' takes care of TM cache */
- luaH_set(L, t, key, value); /* insert key into grown table */
- return;
- }
- lua_assert(!isdummy(t));
- othern = mainpositionfromnode(t, mp);
- if (othern != mp) { /* is colliding node out of its main position? */
- /* yes; move colliding node into free position */
- while (othern + gnext(othern) != mp) /* find previous */
- othern += gnext(othern);
- gnext(othern) = cast_int(f - othern); /* rechain to point to 'f' */
- *f = *mp; /* copy colliding node into free pos. (mp->next also goes) */
- if (gnext(mp) != 0) {
- gnext(f) += cast_int(mp - f); /* correct 'next' */
- gnext(mp) = 0; /* now 'mp' is free */
- }
- setempty(gval(mp));
- }
- else { /* colliding node is in its own main position */
- /* new node will go into free position */
- if (gnext(mp) != 0)
- gnext(f) = cast_int((mp + gnext(mp)) - f); /* chain new position */
- else lua_assert(gnext(f) == 0);
- gnext(mp) = cast_int(f - mp);
- mp = f;
- }
- }
- setnodekey(L, mp, key);
- luaC_barrierback(L, obj2gco(t), key);
- lua_assert(isempty(gval(mp)));
- setobj2t(L, gval(mp), value);
- }
- static const TValue *getintfromhash (Table *t, lua_Integer key) {
- Node *n = hashint(t, key);
- lua_assert(l_castS2U(key) - 1u >= luaH_realasize(t));
- for (;;) { /* check whether 'key' is somewhere in the chain */
- if (keyisinteger(n) && keyival(n) == key)
- return gval(n); /* that's it */
- else {
- int nx = gnext(n);
- if (nx == 0) break;
- n += nx;
- }
- }
- return &absentkey;
- }
- static int hashkeyisempty (Table *t, lua_Unsigned key) {
- const TValue *val = getintfromhash(t, l_castU2S(key));
- return isempty(val);
- }
- static lu_byte finishnodeget (const TValue *val, TValue *res) {
- if (!ttisnil(val)) {
- setobj(((lua_State*)NULL), res, val);
- }
- return ttypetag(val);
- }
- lu_byte luaH_getint (Table *t, lua_Integer key, TValue *res) {
- if (keyinarray(t, key)) {
- lu_byte tag = *getArrTag(t, key - 1);
- if (!tagisempty(tag))
- farr2val(t, key - 1, tag, res);
- return tag;
- }
- else
- return finishnodeget(getintfromhash(t, key), res);
- }
- /*
- ** search function for short strings
- */
- const TValue *luaH_Hgetshortstr (Table *t, TString *key) {
- Node *n = hashstr(t, key);
- lua_assert(key->tt == LUA_VSHRSTR);
- for (;;) { /* check whether 'key' is somewhere in the chain */
- if (keyisshrstr(n) && eqshrstr(keystrval(n), key))
- return gval(n); /* that's it */
- else {
- int nx = gnext(n);
- if (nx == 0)
- return &absentkey; /* not found */
- n += nx;
- }
- }
- }
- lu_byte luaH_getshortstr (Table *t, TString *key, TValue *res) {
- return finishnodeget(luaH_Hgetshortstr(t, key), res);
- }
- static const TValue *Hgetstr (Table *t, TString *key) {
- if (key->tt == LUA_VSHRSTR)
- return luaH_Hgetshortstr(t, key);
- else { /* for long strings, use generic case */
- TValue ko;
- setsvalue(cast(lua_State *, NULL), &ko, key);
- return getgeneric(t, &ko, 0);
- }
- }
- lu_byte luaH_getstr (Table *t, TString *key, TValue *res) {
- return finishnodeget(Hgetstr(t, key), res);
- }
- TString *luaH_getstrkey (Table *t, TString *key) {
- const TValue *o = Hgetstr(t, key);
- if (!isabstkey(o)) /* string already present? */
- return keystrval(nodefromval(o)); /* get saved copy */
- else
- return NULL;
- }
- /*
- ** main search function
- */
- lu_byte luaH_get (Table *t, const TValue *key, TValue *res) {
- const TValue *slot;
- switch (ttypetag(key)) {
- case LUA_VSHRSTR:
- slot = luaH_Hgetshortstr(t, tsvalue(key));
- break;
- case LUA_VNUMINT:
- return luaH_getint(t, ivalue(key), res);
- case LUA_VNIL:
- slot = &absentkey;
- break;
- case LUA_VNUMFLT: {
- lua_Integer k;
- if (luaV_flttointeger(fltvalue(key), &k, F2Ieq)) /* integral index? */
- return luaH_getint(t, k, res); /* use specialized version */
- /* else... */
- } /* FALLTHROUGH */
- default:
- slot = getgeneric(t, key, 0);
- break;
- }
- return finishnodeget(slot, res);
- }
- static int finishnodeset (Table *t, const TValue *slot, TValue *val) {
- if (!ttisnil(slot)) {
- setobj(((lua_State*)NULL), cast(TValue*, slot), val);
- return HOK; /* success */
- }
- else if (isabstkey(slot))
- return HNOTFOUND; /* no slot with that key */
- else /* return node encoded */
- return cast_int((cast(Node*, slot) - t->node)) + HFIRSTNODE;
- }
- static int rawfinishnodeset (const TValue *slot, TValue *val) {
- if (isabstkey(slot))
- return 0; /* no slot with that key */
- else {
- setobj(((lua_State*)NULL), cast(TValue*, slot), val);
- return 1; /* success */
- }
- }
- int luaH_psetint (Table *t, lua_Integer key, TValue *val) {
- if (keyinarray(t, key)) {
- lu_byte *tag = getArrTag(t, key - 1);
- if (!tagisempty(*tag) || checknoTM(t->metatable, TM_NEWINDEX)) {
- fval2arr(t, key - 1, tag, val);
- return HOK; /* success */
- }
- else
- return ~cast_int(key - 1); /* empty slot in the array part */
- }
- else
- return finishnodeset(t, getintfromhash(t, key), val);
- }
- int luaH_psetshortstr (Table *t, TString *key, TValue *val) {
- return finishnodeset(t, luaH_Hgetshortstr(t, key), val);
- }
- int luaH_psetstr (Table *t, TString *key, TValue *val) {
- return finishnodeset(t, Hgetstr(t, key), val);
- }
- int luaH_pset (Table *t, const TValue *key, TValue *val) {
- switch (ttypetag(key)) {
- case LUA_VSHRSTR: return luaH_psetshortstr(t, tsvalue(key), val);
- case LUA_VNUMINT: return luaH_psetint(t, ivalue(key), val);
- case LUA_VNIL: return HNOTFOUND;
- case LUA_VNUMFLT: {
- lua_Integer k;
- if (luaV_flttointeger(fltvalue(key), &k, F2Ieq)) /* integral index? */
- return luaH_psetint(t, k, val); /* use specialized version */
- /* else... */
- } /* FALLTHROUGH */
- default:
- return finishnodeset(t, getgeneric(t, key, 0), val);
- }
- }
- /*
- ** Finish a raw "set table" operation, where 'slot' is where the value
- ** should have been (the result of a previous "get table").
- ** Beware: when using this function you probably need to check a GC
- ** barrier and invalidate the TM cache.
- */
- void luaH_finishset (lua_State *L, Table *t, const TValue *key,
- TValue *value, int hres) {
- lua_assert(hres != HOK);
- if (hres == HNOTFOUND) {
- luaH_newkey(L, t, key, value);
- }
- else if (hres > 0) { /* regular Node? */
- setobj2t(L, gval(gnode(t, hres - HFIRSTNODE)), value);
- }
- else { /* array entry */
- hres = ~hres; /* real index */
- obj2arr(t, hres, value);
- }
- }
- /*
- ** beware: when using this function you probably need to check a GC
- ** barrier and invalidate the TM cache.
- */
- void luaH_set (lua_State *L, Table *t, const TValue *key, TValue *value) {
- int hres = luaH_pset(t, key, value);
- if (hres != HOK)
- luaH_finishset(L, t, key, value, hres);
- }
- /*
- ** Ditto for a GC barrier. (No need to invalidate the TM cache, as
- ** integers cannot be keys to metamethods.)
- */
- void luaH_setint (lua_State *L, Table *t, lua_Integer key, TValue *value) {
- if (keyinarray(t, key))
- obj2arr(t, key - 1, value);
- else {
- int ok = rawfinishnodeset(getintfromhash(t, key), value);
- if (!ok) {
- TValue k;
- setivalue(&k, key);
- luaH_newkey(L, t, &k, value);
- }
- }
- }
- /*
- ** Try to find a boundary in the hash part of table 't'. From the
- ** caller, we know that 'j' is zero or present and that 'j + 1' is
- ** present. We want to find a larger key that is absent from the
- ** table, so that we can do a binary search between the two keys to
- ** find a boundary. We keep doubling 'j' until we get an absent index.
- ** If the doubling would overflow, we try LUA_MAXINTEGER. If it is
- ** absent, we are ready for the binary search. ('j', being max integer,
- ** is larger or equal to 'i', but it cannot be equal because it is
- ** absent while 'i' is present; so 'j > i'.) Otherwise, 'j' is a
- ** boundary. ('j + 1' cannot be a present integer key because it is
- ** not a valid integer in Lua.)
- */
- static lua_Unsigned hash_search (Table *t, lua_Unsigned j) {
- lua_Unsigned i;
- if (j == 0) j++; /* the caller ensures 'j + 1' is present */
- do {
- i = j; /* 'i' is a present index */
- if (j <= l_castS2U(LUA_MAXINTEGER) / 2)
- j *= 2;
- else {
- j = LUA_MAXINTEGER;
- if (hashkeyisempty(t, j)) /* t[j] not present? */
- break; /* 'j' now is an absent index */
- else /* weird case */
- return j; /* well, max integer is a boundary... */
- }
- } while (!hashkeyisempty(t, j)); /* repeat until an absent t[j] */
- /* i < j && t[i] present && t[j] absent */
- while (j - i > 1u) { /* do a binary search between them */
- lua_Unsigned m = (i + j) / 2;
- if (hashkeyisempty(t, m)) j = m;
- else i = m;
- }
- return i;
- }
- static unsigned int binsearch (Table *array, unsigned int i, unsigned int j) {
- while (j - i > 1u) { /* binary search */
- unsigned int m = (i + j) / 2;
- if (arraykeyisempty(array, m)) j = m;
- else i = m;
- }
- return i;
- }
- /*
- ** Try to find a boundary in table 't'. (A 'boundary' is an integer index
- ** such that t[i] is present and t[i+1] is absent, or 0 if t[1] is absent
- ** and 'maxinteger' if t[maxinteger] is present.)
- ** (In the next explanation, we use Lua indices, that is, with base 1.
- ** The code itself uses base 0 when indexing the array part of the table.)
- ** The code starts with 'limit = t->alimit', a position in the array
- ** part that may be a boundary.
- **
- ** (1) If 't[limit]' is empty, there must be a boundary before it.
- ** As a common case (e.g., after 't[#t]=nil'), check whether 'limit-1'
- ** is present. If so, it is a boundary. Otherwise, do a binary search
- ** between 0 and limit to find a boundary. In both cases, try to
- ** use this boundary as the new 'alimit', as a hint for the next call.
- **
- ** (2) If 't[limit]' is not empty and the array has more elements
- ** after 'limit', try to find a boundary there. Again, try first
- ** the special case (which should be quite frequent) where 'limit+1'
- ** is empty, so that 'limit' is a boundary. Otherwise, check the
- ** last element of the array part. If it is empty, there must be a
- ** boundary between the old limit (present) and the last element
- ** (absent), which is found with a binary search. (This boundary always
- ** can be a new limit.)
- **
- ** (3) The last case is when there are no elements in the array part
- ** (limit == 0) or its last element (the new limit) is present.
- ** In this case, must check the hash part. If there is no hash part
- ** or 'limit+1' is absent, 'limit' is a boundary. Otherwise, call
- ** 'hash_search' to find a boundary in the hash part of the table.
- ** (In those cases, the boundary is not inside the array part, and
- ** therefore cannot be used as a new limit.)
- */
- lua_Unsigned luaH_getn (Table *t) {
- unsigned int limit = t->alimit;
- if (limit > 0 && arraykeyisempty(t, limit)) { /* (1)? */
- /* there must be a boundary before 'limit' */
- if (limit >= 2 && !arraykeyisempty(t, limit - 1)) {
- /* 'limit - 1' is a boundary; can it be a new limit? */
- if (ispow2realasize(t) && !ispow2(limit - 1)) {
- t->alimit = limit - 1;
- setnorealasize(t); /* now 'alimit' is not the real size */
- }
- return limit - 1;
- }
- else { /* must search for a boundary in [0, limit] */
- unsigned int boundary = binsearch(t, 0, limit);
- /* can this boundary represent the real size of the array? */
- if (ispow2realasize(t) && boundary > luaH_realasize(t) / 2) {
- t->alimit = boundary; /* use it as the new limit */
- setnorealasize(t);
- }
- return boundary;
- }
- }
- /* 'limit' is zero or present in table */
- if (!limitequalsasize(t)) { /* (2)? */
- /* 'limit' > 0 and array has more elements after 'limit' */
- if (arraykeyisempty(t, limit + 1)) /* 'limit + 1' is empty? */
- return limit; /* this is the boundary */
- /* else, try last element in the array */
- limit = luaH_realasize(t);
- if (arraykeyisempty(t, limit)) { /* empty? */
- /* there must be a boundary in the array after old limit,
- and it must be a valid new limit */
- unsigned int boundary = binsearch(t, t->alimit, limit);
- t->alimit = boundary;
- return boundary;
- }
- /* else, new limit is present in the table; check the hash part */
- }
- /* (3) 'limit' is the last element and either is zero or present in table */
- lua_assert(limit == luaH_realasize(t) &&
- (limit == 0 || !arraykeyisempty(t, limit)));
- if (isdummy(t) || hashkeyisempty(t, limit + 1))
- return limit; /* 'limit + 1' is absent */
- else /* 'limit + 1' is also present */
- return hash_search(t, limit);
- }
- #if defined(LUA_DEBUG)
- /* export these functions for the test library */
- Node *luaH_mainposition (const Table *t, const TValue *key) {
- return mainpositionTV(t, key);
- }
- #endif
|