lcode.c 53 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886
  1. /*
  2. ** $Id: lcode.c $
  3. ** Code generator for Lua
  4. ** See Copyright Notice in lua.h
  5. */
  6. #define lcode_c
  7. #define LUA_CORE
  8. #include "lprefix.h"
  9. #include <float.h>
  10. #include <limits.h>
  11. #include <math.h>
  12. #include <stdlib.h>
  13. #include "lua.h"
  14. #include "lcode.h"
  15. #include "ldebug.h"
  16. #include "ldo.h"
  17. #include "lgc.h"
  18. #include "llex.h"
  19. #include "lmem.h"
  20. #include "lobject.h"
  21. #include "lopcodes.h"
  22. #include "lparser.h"
  23. #include "lstring.h"
  24. #include "ltable.h"
  25. #include "lvm.h"
  26. /* (note that expressions VJMP also have jumps.) */
  27. #define hasjumps(e) ((e)->t != (e)->f)
  28. static int codesJ (FuncState *fs, OpCode o, int sj, int k);
  29. /* semantic error */
  30. l_noret luaK_semerror (LexState *ls, const char *msg) {
  31. ls->t.token = 0; /* remove "near <token>" from final message */
  32. luaX_syntaxerror(ls, msg);
  33. }
  34. /*
  35. ** If expression is a numeric constant, fills 'v' with its value
  36. ** and returns 1. Otherwise, returns 0.
  37. */
  38. static int tonumeral (const expdesc *e, TValue *v) {
  39. if (hasjumps(e))
  40. return 0; /* not a numeral */
  41. switch (e->k) {
  42. case VKINT:
  43. if (v) setivalue(v, e->u.ival);
  44. return 1;
  45. case VKFLT:
  46. if (v) setfltvalue(v, e->u.nval);
  47. return 1;
  48. default: return 0;
  49. }
  50. }
  51. /*
  52. ** Get the constant value from a constant expression
  53. */
  54. static TValue *const2val (FuncState *fs, const expdesc *e) {
  55. lua_assert(e->k == VCONST);
  56. return &fs->ls->dyd->actvar.arr[e->u.info].k;
  57. }
  58. /*
  59. ** If expression is a constant, fills 'v' with its value
  60. ** and returns 1. Otherwise, returns 0.
  61. */
  62. int luaK_exp2const (FuncState *fs, const expdesc *e, TValue *v) {
  63. if (hasjumps(e))
  64. return 0; /* not a constant */
  65. switch (e->k) {
  66. case VFALSE:
  67. setbfvalue(v);
  68. return 1;
  69. case VTRUE:
  70. setbtvalue(v);
  71. return 1;
  72. case VNIL:
  73. setnilvalue(v);
  74. return 1;
  75. case VKSTR: {
  76. setsvalue(fs->ls->L, v, e->u.strval);
  77. return 1;
  78. }
  79. case VCONST: {
  80. setobj(fs->ls->L, v, const2val(fs, e));
  81. return 1;
  82. }
  83. default: return tonumeral(e, v);
  84. }
  85. }
  86. /*
  87. ** Return the previous instruction of the current code. If there
  88. ** may be a jump target between the current instruction and the
  89. ** previous one, return an invalid instruction (to avoid wrong
  90. ** optimizations).
  91. */
  92. static Instruction *previousinstruction (FuncState *fs) {
  93. static const Instruction invalidinstruction = ~(Instruction)0;
  94. if (fs->pc > fs->lasttarget)
  95. return &fs->f->code[fs->pc - 1]; /* previous instruction */
  96. else
  97. return cast(Instruction*, &invalidinstruction);
  98. }
  99. /*
  100. ** Create a OP_LOADNIL instruction, but try to optimize: if the previous
  101. ** instruction is also OP_LOADNIL and ranges are compatible, adjust
  102. ** range of previous instruction instead of emitting a new one. (For
  103. ** instance, 'local a; local b' will generate a single opcode.)
  104. */
  105. void luaK_nil (FuncState *fs, int from, int n) {
  106. int l = from + n - 1; /* last register to set nil */
  107. Instruction *previous = previousinstruction(fs);
  108. if (GET_OPCODE(*previous) == OP_LOADNIL) { /* previous is LOADNIL? */
  109. int pfrom = GETARG_A(*previous); /* get previous range */
  110. int pl = pfrom + GETARG_B(*previous);
  111. if ((pfrom <= from && from <= pl + 1) ||
  112. (from <= pfrom && pfrom <= l + 1)) { /* can connect both? */
  113. if (pfrom < from) from = pfrom; /* from = min(from, pfrom) */
  114. if (pl > l) l = pl; /* l = max(l, pl) */
  115. SETARG_A(*previous, from);
  116. SETARG_B(*previous, l - from);
  117. return;
  118. } /* else go through */
  119. }
  120. luaK_codeABC(fs, OP_LOADNIL, from, n - 1, 0); /* else no optimization */
  121. }
  122. /*
  123. ** Gets the destination address of a jump instruction. Used to traverse
  124. ** a list of jumps.
  125. */
  126. static int getjump (FuncState *fs, int pc) {
  127. int offset = GETARG_sJ(fs->f->code[pc]);
  128. if (offset == NO_JUMP) /* point to itself represents end of list */
  129. return NO_JUMP; /* end of list */
  130. else
  131. return (pc+1)+offset; /* turn offset into absolute position */
  132. }
  133. /*
  134. ** Fix jump instruction at position 'pc' to jump to 'dest'.
  135. ** (Jump addresses are relative in Lua)
  136. */
  137. static void fixjump (FuncState *fs, int pc, int dest) {
  138. Instruction *jmp = &fs->f->code[pc];
  139. int offset = dest - (pc + 1);
  140. lua_assert(dest != NO_JUMP);
  141. if (!(-OFFSET_sJ <= offset && offset <= MAXARG_sJ - OFFSET_sJ))
  142. luaX_syntaxerror(fs->ls, "control structure too long");
  143. lua_assert(GET_OPCODE(*jmp) == OP_JMP);
  144. SETARG_sJ(*jmp, offset);
  145. }
  146. /*
  147. ** Concatenate jump-list 'l2' into jump-list 'l1'
  148. */
  149. void luaK_concat (FuncState *fs, int *l1, int l2) {
  150. if (l2 == NO_JUMP) return; /* nothing to concatenate? */
  151. else if (*l1 == NO_JUMP) /* no original list? */
  152. *l1 = l2; /* 'l1' points to 'l2' */
  153. else {
  154. int list = *l1;
  155. int next;
  156. while ((next = getjump(fs, list)) != NO_JUMP) /* find last element */
  157. list = next;
  158. fixjump(fs, list, l2); /* last element links to 'l2' */
  159. }
  160. }
  161. /*
  162. ** Create a jump instruction and return its position, so its destination
  163. ** can be fixed later (with 'fixjump').
  164. */
  165. int luaK_jump (FuncState *fs) {
  166. return codesJ(fs, OP_JMP, NO_JUMP, 0);
  167. }
  168. /*
  169. ** Code a 'return' instruction
  170. */
  171. void luaK_ret (FuncState *fs, int first, int nret) {
  172. OpCode op;
  173. switch (nret) {
  174. case 0: op = OP_RETURN0; break;
  175. case 1: op = OP_RETURN1; break;
  176. default: op = OP_RETURN; break;
  177. }
  178. if (nret + 1 > MAXARG_B)
  179. luaX_syntaxerror(fs->ls, "too many returns");
  180. luaK_codeABC(fs, op, first, nret + 1, 0);
  181. }
  182. /*
  183. ** Code a "conditional jump", that is, a test or comparison opcode
  184. ** followed by a jump. Return jump position.
  185. */
  186. static int condjump (FuncState *fs, OpCode op, int A, int B, int C, int k) {
  187. luaK_codeABCk(fs, op, A, B, C, k);
  188. return luaK_jump(fs);
  189. }
  190. /*
  191. ** returns current 'pc' and marks it as a jump target (to avoid wrong
  192. ** optimizations with consecutive instructions not in the same basic block).
  193. */
  194. int luaK_getlabel (FuncState *fs) {
  195. fs->lasttarget = fs->pc;
  196. return fs->pc;
  197. }
  198. /*
  199. ** Returns the position of the instruction "controlling" a given
  200. ** jump (that is, its condition), or the jump itself if it is
  201. ** unconditional.
  202. */
  203. static Instruction *getjumpcontrol (FuncState *fs, int pc) {
  204. Instruction *pi = &fs->f->code[pc];
  205. if (pc >= 1 && testTMode(GET_OPCODE(*(pi-1))))
  206. return pi-1;
  207. else
  208. return pi;
  209. }
  210. /*
  211. ** Patch destination register for a TESTSET instruction.
  212. ** If instruction in position 'node' is not a TESTSET, return 0 ("fails").
  213. ** Otherwise, if 'reg' is not 'NO_REG', set it as the destination
  214. ** register. Otherwise, change instruction to a simple 'TEST' (produces
  215. ** no register value)
  216. */
  217. static int patchtestreg (FuncState *fs, int node, int reg) {
  218. Instruction *i = getjumpcontrol(fs, node);
  219. if (GET_OPCODE(*i) != OP_TESTSET)
  220. return 0; /* cannot patch other instructions */
  221. if (reg != NO_REG && reg != GETARG_B(*i))
  222. SETARG_A(*i, reg);
  223. else {
  224. /* no register to put value or register already has the value;
  225. change instruction to simple test */
  226. *i = CREATE_ABCk(OP_TEST, GETARG_B(*i), 0, 0, GETARG_k(*i));
  227. }
  228. return 1;
  229. }
  230. /*
  231. ** Traverse a list of tests ensuring no one produces a value
  232. */
  233. static void removevalues (FuncState *fs, int list) {
  234. for (; list != NO_JUMP; list = getjump(fs, list))
  235. patchtestreg(fs, list, NO_REG);
  236. }
  237. /*
  238. ** Traverse a list of tests, patching their destination address and
  239. ** registers: tests producing values jump to 'vtarget' (and put their
  240. ** values in 'reg'), other tests jump to 'dtarget'.
  241. */
  242. static void patchlistaux (FuncState *fs, int list, int vtarget, int reg,
  243. int dtarget) {
  244. while (list != NO_JUMP) {
  245. int next = getjump(fs, list);
  246. if (patchtestreg(fs, list, reg))
  247. fixjump(fs, list, vtarget);
  248. else
  249. fixjump(fs, list, dtarget); /* jump to default target */
  250. list = next;
  251. }
  252. }
  253. /*
  254. ** Path all jumps in 'list' to jump to 'target'.
  255. ** (The assert means that we cannot fix a jump to a forward address
  256. ** because we only know addresses once code is generated.)
  257. */
  258. void luaK_patchlist (FuncState *fs, int list, int target) {
  259. lua_assert(target <= fs->pc);
  260. patchlistaux(fs, list, target, NO_REG, target);
  261. }
  262. void luaK_patchtohere (FuncState *fs, int list) {
  263. int hr = luaK_getlabel(fs); /* mark "here" as a jump target */
  264. luaK_patchlist(fs, list, hr);
  265. }
  266. /* limit for difference between lines in relative line info. */
  267. #define LIMLINEDIFF 0x80
  268. /*
  269. ** Save line info for a new instruction. If difference from last line
  270. ** does not fit in a byte, of after that many instructions, save a new
  271. ** absolute line info; (in that case, the special value 'ABSLINEINFO'
  272. ** in 'lineinfo' signals the existence of this absolute information.)
  273. ** Otherwise, store the difference from last line in 'lineinfo'.
  274. */
  275. static void savelineinfo (FuncState *fs, Proto *f, int line) {
  276. int linedif = line - fs->previousline;
  277. int pc = fs->pc - 1; /* last instruction coded */
  278. if (abs(linedif) >= LIMLINEDIFF || fs->iwthabs++ >= MAXIWTHABS) {
  279. luaM_growvector(fs->ls->L, f->abslineinfo, fs->nabslineinfo,
  280. f->sizeabslineinfo, AbsLineInfo, INT_MAX, "lines");
  281. f->abslineinfo[fs->nabslineinfo].pc = pc;
  282. f->abslineinfo[fs->nabslineinfo++].line = line;
  283. linedif = ABSLINEINFO; /* signal that there is absolute information */
  284. fs->iwthabs = 1; /* restart counter */
  285. }
  286. luaM_growvector(fs->ls->L, f->lineinfo, pc, f->sizelineinfo, ls_byte,
  287. INT_MAX, "opcodes");
  288. f->lineinfo[pc] = cast(ls_byte, linedif);
  289. fs->previousline = line; /* last line saved */
  290. }
  291. /*
  292. ** Remove line information from the last instruction.
  293. ** If line information for that instruction is absolute, set 'iwthabs'
  294. ** above its max to force the new (replacing) instruction to have
  295. ** absolute line info, too.
  296. */
  297. static void removelastlineinfo (FuncState *fs) {
  298. Proto *f = fs->f;
  299. int pc = fs->pc - 1; /* last instruction coded */
  300. if (f->lineinfo[pc] != ABSLINEINFO) { /* relative line info? */
  301. fs->previousline -= f->lineinfo[pc]; /* correct last line saved */
  302. fs->iwthabs--; /* undo previous increment */
  303. }
  304. else { /* absolute line information */
  305. lua_assert(f->abslineinfo[fs->nabslineinfo - 1].pc == pc);
  306. fs->nabslineinfo--; /* remove it */
  307. fs->iwthabs = MAXIWTHABS + 1; /* force next line info to be absolute */
  308. }
  309. }
  310. /*
  311. ** Remove the last instruction created, correcting line information
  312. ** accordingly.
  313. */
  314. static void removelastinstruction (FuncState *fs) {
  315. removelastlineinfo(fs);
  316. fs->pc--;
  317. }
  318. /*
  319. ** Emit instruction 'i', checking for array sizes and saving also its
  320. ** line information. Return 'i' position.
  321. */
  322. int luaK_code (FuncState *fs, Instruction i) {
  323. Proto *f = fs->f;
  324. /* put new instruction in code array */
  325. luaM_growvector(fs->ls->L, f->code, fs->pc, f->sizecode, Instruction,
  326. INT_MAX, "opcodes");
  327. f->code[fs->pc++] = i;
  328. savelineinfo(fs, f, fs->ls->lastline);
  329. return fs->pc - 1; /* index of new instruction */
  330. }
  331. /*
  332. ** Format and emit an 'iABC' instruction. (Assertions check consistency
  333. ** of parameters versus opcode.)
  334. */
  335. int luaK_codeABCk (FuncState *fs, OpCode o, int A, int B, int C, int k) {
  336. lua_assert(getOpMode(o) == iABC);
  337. lua_assert(A <= MAXARG_A && B <= MAXARG_B &&
  338. C <= MAXARG_C && (k & ~1) == 0);
  339. return luaK_code(fs, CREATE_ABCk(o, A, B, C, k));
  340. }
  341. int luaK_codevABCk (FuncState *fs, OpCode o, int A, int B, int C, int k) {
  342. lua_assert(getOpMode(o) == ivABC);
  343. lua_assert(A <= MAXARG_A && B <= MAXARG_vB &&
  344. C <= MAXARG_vC && (k & ~1) == 0);
  345. return luaK_code(fs, CREATE_vABCk(o, A, B, C, k));
  346. }
  347. /*
  348. ** Format and emit an 'iABx' instruction.
  349. */
  350. int luaK_codeABx (FuncState *fs, OpCode o, int A, int Bc) {
  351. lua_assert(getOpMode(o) == iABx);
  352. lua_assert(A <= MAXARG_A && Bc <= MAXARG_Bx);
  353. return luaK_code(fs, CREATE_ABx(o, A, Bc));
  354. }
  355. /*
  356. ** Format and emit an 'iAsBx' instruction.
  357. */
  358. static int codeAsBx (FuncState *fs, OpCode o, int A, int Bc) {
  359. int b = Bc + OFFSET_sBx;
  360. lua_assert(getOpMode(o) == iAsBx);
  361. lua_assert(A <= MAXARG_A && b <= MAXARG_Bx);
  362. return luaK_code(fs, CREATE_ABx(o, A, b));
  363. }
  364. /*
  365. ** Format and emit an 'isJ' instruction.
  366. */
  367. static int codesJ (FuncState *fs, OpCode o, int sj, int k) {
  368. int j = sj + OFFSET_sJ;
  369. lua_assert(getOpMode(o) == isJ);
  370. lua_assert(j <= MAXARG_sJ && (k & ~1) == 0);
  371. return luaK_code(fs, CREATE_sJ(o, j, k));
  372. }
  373. /*
  374. ** Emit an "extra argument" instruction (format 'iAx')
  375. */
  376. static int codeextraarg (FuncState *fs, int A) {
  377. lua_assert(A <= MAXARG_Ax);
  378. return luaK_code(fs, CREATE_Ax(OP_EXTRAARG, A));
  379. }
  380. /*
  381. ** Emit a "load constant" instruction, using either 'OP_LOADK'
  382. ** (if constant index 'k' fits in 18 bits) or an 'OP_LOADKX'
  383. ** instruction with "extra argument".
  384. */
  385. static int luaK_codek (FuncState *fs, int reg, int k) {
  386. if (k <= MAXARG_Bx)
  387. return luaK_codeABx(fs, OP_LOADK, reg, k);
  388. else {
  389. int p = luaK_codeABx(fs, OP_LOADKX, reg, 0);
  390. codeextraarg(fs, k);
  391. return p;
  392. }
  393. }
  394. /*
  395. ** Check register-stack level, keeping track of its maximum size
  396. ** in field 'maxstacksize'
  397. */
  398. void luaK_checkstack (FuncState *fs, int n) {
  399. int newstack = fs->freereg + n;
  400. if (newstack > fs->f->maxstacksize) {
  401. if (newstack > MAX_FSTACK)
  402. luaX_syntaxerror(fs->ls,
  403. "function or expression needs too many registers");
  404. fs->f->maxstacksize = cast_byte(newstack);
  405. }
  406. }
  407. /*
  408. ** Reserve 'n' registers in register stack
  409. */
  410. void luaK_reserveregs (FuncState *fs, int n) {
  411. luaK_checkstack(fs, n);
  412. fs->freereg = cast_byte(fs->freereg + n);
  413. }
  414. /*
  415. ** Free register 'reg', if it is neither a constant index nor
  416. ** a local variable.
  417. )
  418. */
  419. static void freereg (FuncState *fs, int reg) {
  420. if (reg >= luaY_nvarstack(fs)) {
  421. fs->freereg--;
  422. lua_assert(reg == fs->freereg);
  423. }
  424. }
  425. /*
  426. ** Free two registers in proper order
  427. */
  428. static void freeregs (FuncState *fs, int r1, int r2) {
  429. if (r1 > r2) {
  430. freereg(fs, r1);
  431. freereg(fs, r2);
  432. }
  433. else {
  434. freereg(fs, r2);
  435. freereg(fs, r1);
  436. }
  437. }
  438. /*
  439. ** Free register used by expression 'e' (if any)
  440. */
  441. static void freeexp (FuncState *fs, expdesc *e) {
  442. if (e->k == VNONRELOC)
  443. freereg(fs, e->u.info);
  444. }
  445. /*
  446. ** Free registers used by expressions 'e1' and 'e2' (if any) in proper
  447. ** order.
  448. */
  449. static void freeexps (FuncState *fs, expdesc *e1, expdesc *e2) {
  450. int r1 = (e1->k == VNONRELOC) ? e1->u.info : -1;
  451. int r2 = (e2->k == VNONRELOC) ? e2->u.info : -1;
  452. freeregs(fs, r1, r2);
  453. }
  454. /*
  455. ** Add constant 'v' to prototype's list of constants (field 'k').
  456. ** Use scanner's table to cache position of constants in constant list
  457. ** and try to reuse constants. Because some values should not be used
  458. ** as keys (nil cannot be a key, integer keys can collapse with float
  459. ** keys), the caller must provide a useful 'key' for indexing the cache.
  460. ** Note that all functions share the same table, so entering or exiting
  461. ** a function can make some indices wrong.
  462. */
  463. static int addk (FuncState *fs, TValue *key, TValue *v) {
  464. TValue val;
  465. lua_State *L = fs->ls->L;
  466. Proto *f = fs->f;
  467. int tag = luaH_get(fs->ls->h, key, &val); /* query scanner table */
  468. int k, oldsize;
  469. if (tag == LUA_VNUMINT) { /* is there an index there? */
  470. k = cast_int(ivalue(&val));
  471. /* correct value? (warning: must distinguish floats from integers!) */
  472. if (k < fs->nk && ttypetag(&f->k[k]) == ttypetag(v) &&
  473. luaV_rawequalobj(&f->k[k], v))
  474. return k; /* reuse index */
  475. }
  476. /* constant not found; create a new entry */
  477. oldsize = f->sizek;
  478. k = fs->nk;
  479. /* numerical value does not need GC barrier;
  480. table has no metatable, so it does not need to invalidate cache */
  481. setivalue(&val, k);
  482. luaH_set(L, fs->ls->h, key, &val);
  483. luaM_growvector(L, f->k, k, f->sizek, TValue, MAXARG_Ax, "constants");
  484. while (oldsize < f->sizek) setnilvalue(&f->k[oldsize++]);
  485. setobj(L, &f->k[k], v);
  486. fs->nk++;
  487. luaC_barrier(L, f, v);
  488. return k;
  489. }
  490. /*
  491. ** Add a string to list of constants and return its index.
  492. */
  493. static int stringK (FuncState *fs, TString *s) {
  494. TValue o;
  495. setsvalue(fs->ls->L, &o, s);
  496. return addk(fs, &o, &o); /* use string itself as key */
  497. }
  498. /*
  499. ** Add an integer to list of constants and return its index.
  500. */
  501. static int luaK_intK (FuncState *fs, lua_Integer n) {
  502. TValue o;
  503. setivalue(&o, n);
  504. return addk(fs, &o, &o); /* use integer itself as key */
  505. }
  506. /*
  507. ** Add a float to list of constants and return its index. Floats
  508. ** with integral values need a different key, to avoid collision
  509. ** with actual integers. To that, we add to the number its smaller
  510. ** power-of-two fraction that is still significant in its scale.
  511. ** For doubles, that would be 1/2^52.
  512. ** (This method is not bulletproof: there may be another float
  513. ** with that value, and for floats larger than 2^53 the result is
  514. ** still an integer. At worst, this only wastes an entry with
  515. ** a duplicate.)
  516. */
  517. static int luaK_numberK (FuncState *fs, lua_Number r) {
  518. TValue o;
  519. lua_Integer ik;
  520. setfltvalue(&o, r);
  521. if (!luaV_flttointeger(r, &ik, F2Ieq)) /* not an integral value? */
  522. return addk(fs, &o, &o); /* use number itself as key */
  523. else { /* must build an alternative key */
  524. const int nbm = l_floatatt(MANT_DIG);
  525. const lua_Number q = l_mathop(ldexp)(l_mathop(1.0), -nbm + 1);
  526. const lua_Number k = (ik == 0) ? q : r + r*q; /* new key */
  527. TValue kv;
  528. setfltvalue(&kv, k);
  529. /* result is not an integral value, unless value is too large */
  530. lua_assert(!luaV_flttointeger(k, &ik, F2Ieq) ||
  531. l_mathop(fabs)(r) >= l_mathop(1e6));
  532. return addk(fs, &kv, &o);
  533. }
  534. }
  535. /*
  536. ** Add a false to list of constants and return its index.
  537. */
  538. static int boolF (FuncState *fs) {
  539. TValue o;
  540. setbfvalue(&o);
  541. return addk(fs, &o, &o); /* use boolean itself as key */
  542. }
  543. /*
  544. ** Add a true to list of constants and return its index.
  545. */
  546. static int boolT (FuncState *fs) {
  547. TValue o;
  548. setbtvalue(&o);
  549. return addk(fs, &o, &o); /* use boolean itself as key */
  550. }
  551. /*
  552. ** Add nil to list of constants and return its index.
  553. */
  554. static int nilK (FuncState *fs) {
  555. TValue k, v;
  556. setnilvalue(&v);
  557. /* cannot use nil as key; instead use table itself to represent nil */
  558. sethvalue(fs->ls->L, &k, fs->ls->h);
  559. return addk(fs, &k, &v);
  560. }
  561. /*
  562. ** Check whether 'i' can be stored in an 'sC' operand. Equivalent to
  563. ** (0 <= int2sC(i) && int2sC(i) <= MAXARG_C) but without risk of
  564. ** overflows in the hidden addition inside 'int2sC'.
  565. */
  566. static int fitsC (lua_Integer i) {
  567. return (l_castS2U(i) + OFFSET_sC <= cast_uint(MAXARG_C));
  568. }
  569. /*
  570. ** Check whether 'i' can be stored in an 'sBx' operand.
  571. */
  572. static int fitsBx (lua_Integer i) {
  573. return (-OFFSET_sBx <= i && i <= MAXARG_Bx - OFFSET_sBx);
  574. }
  575. void luaK_int (FuncState *fs, int reg, lua_Integer i) {
  576. if (fitsBx(i))
  577. codeAsBx(fs, OP_LOADI, reg, cast_int(i));
  578. else
  579. luaK_codek(fs, reg, luaK_intK(fs, i));
  580. }
  581. static void luaK_float (FuncState *fs, int reg, lua_Number f) {
  582. lua_Integer fi;
  583. if (luaV_flttointeger(f, &fi, F2Ieq) && fitsBx(fi))
  584. codeAsBx(fs, OP_LOADF, reg, cast_int(fi));
  585. else
  586. luaK_codek(fs, reg, luaK_numberK(fs, f));
  587. }
  588. /*
  589. ** Convert a constant in 'v' into an expression description 'e'
  590. */
  591. static void const2exp (TValue *v, expdesc *e) {
  592. switch (ttypetag(v)) {
  593. case LUA_VNUMINT:
  594. e->k = VKINT; e->u.ival = ivalue(v);
  595. break;
  596. case LUA_VNUMFLT:
  597. e->k = VKFLT; e->u.nval = fltvalue(v);
  598. break;
  599. case LUA_VFALSE:
  600. e->k = VFALSE;
  601. break;
  602. case LUA_VTRUE:
  603. e->k = VTRUE;
  604. break;
  605. case LUA_VNIL:
  606. e->k = VNIL;
  607. break;
  608. case LUA_VSHRSTR: case LUA_VLNGSTR:
  609. e->k = VKSTR; e->u.strval = tsvalue(v);
  610. break;
  611. default: lua_assert(0);
  612. }
  613. }
  614. /*
  615. ** Fix an expression to return the number of results 'nresults'.
  616. ** 'e' must be a multi-ret expression (function call or vararg).
  617. */
  618. void luaK_setreturns (FuncState *fs, expdesc *e, int nresults) {
  619. Instruction *pc = &getinstruction(fs, e);
  620. if (nresults + 1 > MAXARG_C)
  621. luaX_syntaxerror(fs->ls, "too many multiple results");
  622. if (e->k == VCALL) /* expression is an open function call? */
  623. SETARG_C(*pc, nresults + 1);
  624. else {
  625. lua_assert(e->k == VVARARG);
  626. SETARG_C(*pc, nresults + 1);
  627. SETARG_A(*pc, fs->freereg);
  628. luaK_reserveregs(fs, 1);
  629. }
  630. }
  631. /*
  632. ** Convert a VKSTR to a VK
  633. */
  634. static void str2K (FuncState *fs, expdesc *e) {
  635. lua_assert(e->k == VKSTR);
  636. e->u.info = stringK(fs, e->u.strval);
  637. e->k = VK;
  638. }
  639. /*
  640. ** Fix an expression to return one result.
  641. ** If expression is not a multi-ret expression (function call or
  642. ** vararg), it already returns one result, so nothing needs to be done.
  643. ** Function calls become VNONRELOC expressions (as its result comes
  644. ** fixed in the base register of the call), while vararg expressions
  645. ** become VRELOC (as OP_VARARG puts its results where it wants).
  646. ** (Calls are created returning one result, so that does not need
  647. ** to be fixed.)
  648. */
  649. void luaK_setoneret (FuncState *fs, expdesc *e) {
  650. if (e->k == VCALL) { /* expression is an open function call? */
  651. /* already returns 1 value */
  652. lua_assert(GETARG_C(getinstruction(fs, e)) == 2);
  653. e->k = VNONRELOC; /* result has fixed position */
  654. e->u.info = GETARG_A(getinstruction(fs, e));
  655. }
  656. else if (e->k == VVARARG) {
  657. SETARG_C(getinstruction(fs, e), 2);
  658. e->k = VRELOC; /* can relocate its simple result */
  659. }
  660. }
  661. /*
  662. ** Ensure that expression 'e' is not a variable (nor a <const>).
  663. ** (Expression still may have jump lists.)
  664. */
  665. void luaK_dischargevars (FuncState *fs, expdesc *e) {
  666. switch (e->k) {
  667. case VCONST: {
  668. const2exp(const2val(fs, e), e);
  669. break;
  670. }
  671. case VLOCAL: { /* already in a register */
  672. int temp = e->u.var.ridx;
  673. e->u.info = temp; /* (can't do a direct assignment; values overlap) */
  674. e->k = VNONRELOC; /* becomes a non-relocatable value */
  675. break;
  676. }
  677. case VUPVAL: { /* move value to some (pending) register */
  678. e->u.info = luaK_codeABC(fs, OP_GETUPVAL, 0, e->u.info, 0);
  679. e->k = VRELOC;
  680. break;
  681. }
  682. case VINDEXUP: {
  683. e->u.info = luaK_codeABC(fs, OP_GETTABUP, 0, e->u.ind.t, e->u.ind.idx);
  684. e->k = VRELOC;
  685. break;
  686. }
  687. case VINDEXI: {
  688. freereg(fs, e->u.ind.t);
  689. e->u.info = luaK_codeABC(fs, OP_GETI, 0, e->u.ind.t, e->u.ind.idx);
  690. e->k = VRELOC;
  691. break;
  692. }
  693. case VINDEXSTR: {
  694. freereg(fs, e->u.ind.t);
  695. e->u.info = luaK_codeABC(fs, OP_GETFIELD, 0, e->u.ind.t, e->u.ind.idx);
  696. e->k = VRELOC;
  697. break;
  698. }
  699. case VINDEXED: {
  700. freeregs(fs, e->u.ind.t, e->u.ind.idx);
  701. e->u.info = luaK_codeABC(fs, OP_GETTABLE, 0, e->u.ind.t, e->u.ind.idx);
  702. e->k = VRELOC;
  703. break;
  704. }
  705. case VVARARG: case VCALL: {
  706. luaK_setoneret(fs, e);
  707. break;
  708. }
  709. default: break; /* there is one value available (somewhere) */
  710. }
  711. }
  712. /*
  713. ** Ensure expression value is in register 'reg', making 'e' a
  714. ** non-relocatable expression.
  715. ** (Expression still may have jump lists.)
  716. */
  717. static void discharge2reg (FuncState *fs, expdesc *e, int reg) {
  718. luaK_dischargevars(fs, e);
  719. switch (e->k) {
  720. case VNIL: {
  721. luaK_nil(fs, reg, 1);
  722. break;
  723. }
  724. case VFALSE: {
  725. luaK_codeABC(fs, OP_LOADFALSE, reg, 0, 0);
  726. break;
  727. }
  728. case VTRUE: {
  729. luaK_codeABC(fs, OP_LOADTRUE, reg, 0, 0);
  730. break;
  731. }
  732. case VKSTR: {
  733. str2K(fs, e);
  734. } /* FALLTHROUGH */
  735. case VK: {
  736. luaK_codek(fs, reg, e->u.info);
  737. break;
  738. }
  739. case VKFLT: {
  740. luaK_float(fs, reg, e->u.nval);
  741. break;
  742. }
  743. case VKINT: {
  744. luaK_int(fs, reg, e->u.ival);
  745. break;
  746. }
  747. case VRELOC: {
  748. Instruction *pc = &getinstruction(fs, e);
  749. SETARG_A(*pc, reg); /* instruction will put result in 'reg' */
  750. break;
  751. }
  752. case VNONRELOC: {
  753. if (reg != e->u.info)
  754. luaK_codeABC(fs, OP_MOVE, reg, e->u.info, 0);
  755. break;
  756. }
  757. default: {
  758. lua_assert(e->k == VJMP);
  759. return; /* nothing to do... */
  760. }
  761. }
  762. e->u.info = reg;
  763. e->k = VNONRELOC;
  764. }
  765. /*
  766. ** Ensure expression value is in a register, making 'e' a
  767. ** non-relocatable expression.
  768. ** (Expression still may have jump lists.)
  769. */
  770. static void discharge2anyreg (FuncState *fs, expdesc *e) {
  771. if (e->k != VNONRELOC) { /* no fixed register yet? */
  772. luaK_reserveregs(fs, 1); /* get a register */
  773. discharge2reg(fs, e, fs->freereg-1); /* put value there */
  774. }
  775. }
  776. static int code_loadbool (FuncState *fs, int A, OpCode op) {
  777. luaK_getlabel(fs); /* those instructions may be jump targets */
  778. return luaK_codeABC(fs, op, A, 0, 0);
  779. }
  780. /*
  781. ** check whether list has any jump that do not produce a value
  782. ** or produce an inverted value
  783. */
  784. static int need_value (FuncState *fs, int list) {
  785. for (; list != NO_JUMP; list = getjump(fs, list)) {
  786. Instruction i = *getjumpcontrol(fs, list);
  787. if (GET_OPCODE(i) != OP_TESTSET) return 1;
  788. }
  789. return 0; /* not found */
  790. }
  791. /*
  792. ** Ensures final expression result (which includes results from its
  793. ** jump lists) is in register 'reg'.
  794. ** If expression has jumps, need to patch these jumps either to
  795. ** its final position or to "load" instructions (for those tests
  796. ** that do not produce values).
  797. */
  798. static void exp2reg (FuncState *fs, expdesc *e, int reg) {
  799. discharge2reg(fs, e, reg);
  800. if (e->k == VJMP) /* expression itself is a test? */
  801. luaK_concat(fs, &e->t, e->u.info); /* put this jump in 't' list */
  802. if (hasjumps(e)) {
  803. int final; /* position after whole expression */
  804. int p_f = NO_JUMP; /* position of an eventual LOAD false */
  805. int p_t = NO_JUMP; /* position of an eventual LOAD true */
  806. if (need_value(fs, e->t) || need_value(fs, e->f)) {
  807. int fj = (e->k == VJMP) ? NO_JUMP : luaK_jump(fs);
  808. p_f = code_loadbool(fs, reg, OP_LFALSESKIP); /* skip next inst. */
  809. p_t = code_loadbool(fs, reg, OP_LOADTRUE);
  810. /* jump around these booleans if 'e' is not a test */
  811. luaK_patchtohere(fs, fj);
  812. }
  813. final = luaK_getlabel(fs);
  814. patchlistaux(fs, e->f, final, reg, p_f);
  815. patchlistaux(fs, e->t, final, reg, p_t);
  816. }
  817. e->f = e->t = NO_JUMP;
  818. e->u.info = reg;
  819. e->k = VNONRELOC;
  820. }
  821. /*
  822. ** Ensures final expression result is in next available register.
  823. */
  824. void luaK_exp2nextreg (FuncState *fs, expdesc *e) {
  825. luaK_dischargevars(fs, e);
  826. freeexp(fs, e);
  827. luaK_reserveregs(fs, 1);
  828. exp2reg(fs, e, fs->freereg - 1);
  829. }
  830. /*
  831. ** Ensures final expression result is in some (any) register
  832. ** and return that register.
  833. */
  834. int luaK_exp2anyreg (FuncState *fs, expdesc *e) {
  835. luaK_dischargevars(fs, e);
  836. if (e->k == VNONRELOC) { /* expression already has a register? */
  837. if (!hasjumps(e)) /* no jumps? */
  838. return e->u.info; /* result is already in a register */
  839. if (e->u.info >= luaY_nvarstack(fs)) { /* reg. is not a local? */
  840. exp2reg(fs, e, e->u.info); /* put final result in it */
  841. return e->u.info;
  842. }
  843. /* else expression has jumps and cannot change its register
  844. to hold the jump values, because it is a local variable.
  845. Go through to the default case. */
  846. }
  847. luaK_exp2nextreg(fs, e); /* default: use next available register */
  848. return e->u.info;
  849. }
  850. /*
  851. ** Ensures final expression result is either in a register
  852. ** or in an upvalue.
  853. */
  854. void luaK_exp2anyregup (FuncState *fs, expdesc *e) {
  855. if (e->k != VUPVAL || hasjumps(e))
  856. luaK_exp2anyreg(fs, e);
  857. }
  858. /*
  859. ** Ensures final expression result is either in a register
  860. ** or it is a constant.
  861. */
  862. void luaK_exp2val (FuncState *fs, expdesc *e) {
  863. if (e->k == VJMP || hasjumps(e))
  864. luaK_exp2anyreg(fs, e);
  865. else
  866. luaK_dischargevars(fs, e);
  867. }
  868. /*
  869. ** Try to make 'e' a K expression with an index in the range of R/K
  870. ** indices. Return true iff succeeded.
  871. */
  872. static int luaK_exp2K (FuncState *fs, expdesc *e) {
  873. if (!hasjumps(e)) {
  874. int info;
  875. switch (e->k) { /* move constants to 'k' */
  876. case VTRUE: info = boolT(fs); break;
  877. case VFALSE: info = boolF(fs); break;
  878. case VNIL: info = nilK(fs); break;
  879. case VKINT: info = luaK_intK(fs, e->u.ival); break;
  880. case VKFLT: info = luaK_numberK(fs, e->u.nval); break;
  881. case VKSTR: info = stringK(fs, e->u.strval); break;
  882. case VK: info = e->u.info; break;
  883. default: return 0; /* not a constant */
  884. }
  885. if (info <= MAXINDEXRK) { /* does constant fit in 'argC'? */
  886. e->k = VK; /* make expression a 'K' expression */
  887. e->u.info = info;
  888. return 1;
  889. }
  890. }
  891. /* else, expression doesn't fit; leave it unchanged */
  892. return 0;
  893. }
  894. /*
  895. ** Ensures final expression result is in a valid R/K index
  896. ** (that is, it is either in a register or in 'k' with an index
  897. ** in the range of R/K indices).
  898. ** Returns 1 iff expression is K.
  899. */
  900. static int exp2RK (FuncState *fs, expdesc *e) {
  901. if (luaK_exp2K(fs, e))
  902. return 1;
  903. else { /* not a constant in the right range: put it in a register */
  904. luaK_exp2anyreg(fs, e);
  905. return 0;
  906. }
  907. }
  908. static void codeABRK (FuncState *fs, OpCode o, int A, int B,
  909. expdesc *ec) {
  910. int k = exp2RK(fs, ec);
  911. luaK_codeABCk(fs, o, A, B, ec->u.info, k);
  912. }
  913. /*
  914. ** Generate code to store result of expression 'ex' into variable 'var'.
  915. */
  916. void luaK_storevar (FuncState *fs, expdesc *var, expdesc *ex) {
  917. switch (var->k) {
  918. case VLOCAL: {
  919. freeexp(fs, ex);
  920. exp2reg(fs, ex, var->u.var.ridx); /* compute 'ex' into proper place */
  921. return;
  922. }
  923. case VUPVAL: {
  924. int e = luaK_exp2anyreg(fs, ex);
  925. luaK_codeABC(fs, OP_SETUPVAL, e, var->u.info, 0);
  926. break;
  927. }
  928. case VINDEXUP: {
  929. codeABRK(fs, OP_SETTABUP, var->u.ind.t, var->u.ind.idx, ex);
  930. break;
  931. }
  932. case VINDEXI: {
  933. codeABRK(fs, OP_SETI, var->u.ind.t, var->u.ind.idx, ex);
  934. break;
  935. }
  936. case VINDEXSTR: {
  937. codeABRK(fs, OP_SETFIELD, var->u.ind.t, var->u.ind.idx, ex);
  938. break;
  939. }
  940. case VINDEXED: {
  941. codeABRK(fs, OP_SETTABLE, var->u.ind.t, var->u.ind.idx, ex);
  942. break;
  943. }
  944. default: lua_assert(0); /* invalid var kind to store */
  945. }
  946. freeexp(fs, ex);
  947. }
  948. /*
  949. ** Emit SELF instruction (convert expression 'e' into 'e:key(e,').
  950. */
  951. void luaK_self (FuncState *fs, expdesc *e, expdesc *key) {
  952. int ereg;
  953. luaK_exp2anyreg(fs, e);
  954. ereg = e->u.info; /* register where 'e' was placed */
  955. freeexp(fs, e);
  956. e->u.info = fs->freereg; /* base register for op_self */
  957. e->k = VNONRELOC; /* self expression has a fixed register */
  958. luaK_reserveregs(fs, 2); /* function and 'self' produced by op_self */
  959. codeABRK(fs, OP_SELF, e->u.info, ereg, key);
  960. freeexp(fs, key);
  961. }
  962. /*
  963. ** Negate condition 'e' (where 'e' is a comparison).
  964. */
  965. static void negatecondition (FuncState *fs, expdesc *e) {
  966. Instruction *pc = getjumpcontrol(fs, e->u.info);
  967. lua_assert(testTMode(GET_OPCODE(*pc)) && GET_OPCODE(*pc) != OP_TESTSET &&
  968. GET_OPCODE(*pc) != OP_TEST);
  969. SETARG_k(*pc, (GETARG_k(*pc) ^ 1));
  970. }
  971. /*
  972. ** Emit instruction to jump if 'e' is 'cond' (that is, if 'cond'
  973. ** is true, code will jump if 'e' is true.) Return jump position.
  974. ** Optimize when 'e' is 'not' something, inverting the condition
  975. ** and removing the 'not'.
  976. */
  977. static int jumponcond (FuncState *fs, expdesc *e, int cond) {
  978. if (e->k == VRELOC) {
  979. Instruction ie = getinstruction(fs, e);
  980. if (GET_OPCODE(ie) == OP_NOT) {
  981. removelastinstruction(fs); /* remove previous OP_NOT */
  982. return condjump(fs, OP_TEST, GETARG_B(ie), 0, 0, !cond);
  983. }
  984. /* else go through */
  985. }
  986. discharge2anyreg(fs, e);
  987. freeexp(fs, e);
  988. return condjump(fs, OP_TESTSET, NO_REG, e->u.info, 0, cond);
  989. }
  990. /*
  991. ** Emit code to go through if 'e' is true, jump otherwise.
  992. */
  993. void luaK_goiftrue (FuncState *fs, expdesc *e) {
  994. int pc; /* pc of new jump */
  995. luaK_dischargevars(fs, e);
  996. switch (e->k) {
  997. case VJMP: { /* condition? */
  998. negatecondition(fs, e); /* jump when it is false */
  999. pc = e->u.info; /* save jump position */
  1000. break;
  1001. }
  1002. case VK: case VKFLT: case VKINT: case VKSTR: case VTRUE: {
  1003. pc = NO_JUMP; /* always true; do nothing */
  1004. break;
  1005. }
  1006. default: {
  1007. pc = jumponcond(fs, e, 0); /* jump when false */
  1008. break;
  1009. }
  1010. }
  1011. luaK_concat(fs, &e->f, pc); /* insert new jump in false list */
  1012. luaK_patchtohere(fs, e->t); /* true list jumps to here (to go through) */
  1013. e->t = NO_JUMP;
  1014. }
  1015. /*
  1016. ** Emit code to go through if 'e' is false, jump otherwise.
  1017. */
  1018. void luaK_goiffalse (FuncState *fs, expdesc *e) {
  1019. int pc; /* pc of new jump */
  1020. luaK_dischargevars(fs, e);
  1021. switch (e->k) {
  1022. case VJMP: {
  1023. pc = e->u.info; /* already jump if true */
  1024. break;
  1025. }
  1026. case VNIL: case VFALSE: {
  1027. pc = NO_JUMP; /* always false; do nothing */
  1028. break;
  1029. }
  1030. default: {
  1031. pc = jumponcond(fs, e, 1); /* jump if true */
  1032. break;
  1033. }
  1034. }
  1035. luaK_concat(fs, &e->t, pc); /* insert new jump in 't' list */
  1036. luaK_patchtohere(fs, e->f); /* false list jumps to here (to go through) */
  1037. e->f = NO_JUMP;
  1038. }
  1039. /*
  1040. ** Code 'not e', doing constant folding.
  1041. */
  1042. static void codenot (FuncState *fs, expdesc *e) {
  1043. switch (e->k) {
  1044. case VNIL: case VFALSE: {
  1045. e->k = VTRUE; /* true == not nil == not false */
  1046. break;
  1047. }
  1048. case VK: case VKFLT: case VKINT: case VKSTR: case VTRUE: {
  1049. e->k = VFALSE; /* false == not "x" == not 0.5 == not 1 == not true */
  1050. break;
  1051. }
  1052. case VJMP: {
  1053. negatecondition(fs, e);
  1054. break;
  1055. }
  1056. case VRELOC:
  1057. case VNONRELOC: {
  1058. discharge2anyreg(fs, e);
  1059. freeexp(fs, e);
  1060. e->u.info = luaK_codeABC(fs, OP_NOT, 0, e->u.info, 0);
  1061. e->k = VRELOC;
  1062. break;
  1063. }
  1064. default: lua_assert(0); /* cannot happen */
  1065. }
  1066. /* interchange true and false lists */
  1067. { int temp = e->f; e->f = e->t; e->t = temp; }
  1068. removevalues(fs, e->f); /* values are useless when negated */
  1069. removevalues(fs, e->t);
  1070. }
  1071. /*
  1072. ** Check whether expression 'e' is a short literal string
  1073. */
  1074. static int isKstr (FuncState *fs, expdesc *e) {
  1075. return (e->k == VK && !hasjumps(e) && e->u.info <= MAXARG_B &&
  1076. ttisshrstring(&fs->f->k[e->u.info]));
  1077. }
  1078. /*
  1079. ** Check whether expression 'e' is a literal integer.
  1080. */
  1081. static int isKint (expdesc *e) {
  1082. return (e->k == VKINT && !hasjumps(e));
  1083. }
  1084. /*
  1085. ** Check whether expression 'e' is a literal integer in
  1086. ** proper range to fit in register C
  1087. */
  1088. static int isCint (expdesc *e) {
  1089. return isKint(e) && (l_castS2U(e->u.ival) <= l_castS2U(MAXARG_C));
  1090. }
  1091. /*
  1092. ** Check whether expression 'e' is a literal integer in
  1093. ** proper range to fit in register sC
  1094. */
  1095. static int isSCint (expdesc *e) {
  1096. return isKint(e) && fitsC(e->u.ival);
  1097. }
  1098. /*
  1099. ** Check whether expression 'e' is a literal integer or float in
  1100. ** proper range to fit in a register (sB or sC).
  1101. */
  1102. static int isSCnumber (expdesc *e, int *pi, int *isfloat) {
  1103. lua_Integer i;
  1104. if (e->k == VKINT)
  1105. i = e->u.ival;
  1106. else if (e->k == VKFLT && luaV_flttointeger(e->u.nval, &i, F2Ieq))
  1107. *isfloat = 1;
  1108. else
  1109. return 0; /* not a number */
  1110. if (!hasjumps(e) && fitsC(i)) {
  1111. *pi = int2sC(cast_int(i));
  1112. return 1;
  1113. }
  1114. else
  1115. return 0;
  1116. }
  1117. /*
  1118. ** Create expression 't[k]'. 't' must have its final result already in a
  1119. ** register or upvalue. Upvalues can only be indexed by literal strings.
  1120. ** Keys can be literal strings in the constant table or arbitrary
  1121. ** values in registers.
  1122. */
  1123. void luaK_indexed (FuncState *fs, expdesc *t, expdesc *k) {
  1124. if (k->k == VKSTR)
  1125. str2K(fs, k);
  1126. lua_assert(!hasjumps(t) &&
  1127. (t->k == VLOCAL || t->k == VNONRELOC || t->k == VUPVAL));
  1128. if (t->k == VUPVAL && !isKstr(fs, k)) /* upvalue indexed by non 'Kstr'? */
  1129. luaK_exp2anyreg(fs, t); /* put it in a register */
  1130. if (t->k == VUPVAL) {
  1131. lu_byte temp = cast_byte(t->u.info); /* upvalue index */
  1132. lua_assert(isKstr(fs, k));
  1133. t->u.ind.t = temp; /* (can't do a direct assignment; values overlap) */
  1134. t->u.ind.idx = cast(short, k->u.info); /* literal short string */
  1135. t->k = VINDEXUP;
  1136. }
  1137. else {
  1138. /* register index of the table */
  1139. t->u.ind.t = cast_byte((t->k == VLOCAL) ? t->u.var.ridx: t->u.info);
  1140. if (isKstr(fs, k)) {
  1141. t->u.ind.idx = cast(short, k->u.info); /* literal short string */
  1142. t->k = VINDEXSTR;
  1143. }
  1144. else if (isCint(k)) { /* int. constant in proper range? */
  1145. t->u.ind.idx = cast(short, k->u.ival);
  1146. t->k = VINDEXI;
  1147. }
  1148. else {
  1149. t->u.ind.idx = cast(short, luaK_exp2anyreg(fs, k)); /* register */
  1150. t->k = VINDEXED;
  1151. }
  1152. }
  1153. }
  1154. /*
  1155. ** Return false if folding can raise an error.
  1156. ** Bitwise operations need operands convertible to integers; division
  1157. ** operations cannot have 0 as divisor.
  1158. */
  1159. static int validop (int op, TValue *v1, TValue *v2) {
  1160. switch (op) {
  1161. case LUA_OPBAND: case LUA_OPBOR: case LUA_OPBXOR:
  1162. case LUA_OPSHL: case LUA_OPSHR: case LUA_OPBNOT: { /* conversion errors */
  1163. lua_Integer i;
  1164. return (luaV_tointegerns(v1, &i, LUA_FLOORN2I) &&
  1165. luaV_tointegerns(v2, &i, LUA_FLOORN2I));
  1166. }
  1167. case LUA_OPDIV: case LUA_OPIDIV: case LUA_OPMOD: /* division by 0 */
  1168. return (nvalue(v2) != 0);
  1169. default: return 1; /* everything else is valid */
  1170. }
  1171. }
  1172. /*
  1173. ** Try to "constant-fold" an operation; return 1 iff successful.
  1174. ** (In this case, 'e1' has the final result.)
  1175. */
  1176. static int constfolding (FuncState *fs, int op, expdesc *e1,
  1177. const expdesc *e2) {
  1178. TValue v1, v2, res;
  1179. if (!tonumeral(e1, &v1) || !tonumeral(e2, &v2) || !validop(op, &v1, &v2))
  1180. return 0; /* non-numeric operands or not safe to fold */
  1181. luaO_rawarith(fs->ls->L, op, &v1, &v2, &res); /* does operation */
  1182. if (ttisinteger(&res)) {
  1183. e1->k = VKINT;
  1184. e1->u.ival = ivalue(&res);
  1185. }
  1186. else { /* folds neither NaN nor 0.0 (to avoid problems with -0.0) */
  1187. lua_Number n = fltvalue(&res);
  1188. if (luai_numisnan(n) || n == 0)
  1189. return 0;
  1190. e1->k = VKFLT;
  1191. e1->u.nval = n;
  1192. }
  1193. return 1;
  1194. }
  1195. /*
  1196. ** Convert a BinOpr to an OpCode (ORDER OPR - ORDER OP)
  1197. */
  1198. l_sinline OpCode binopr2op (BinOpr opr, BinOpr baser, OpCode base) {
  1199. lua_assert(baser <= opr &&
  1200. ((baser == OPR_ADD && opr <= OPR_SHR) ||
  1201. (baser == OPR_LT && opr <= OPR_LE)));
  1202. return cast(OpCode, (cast_int(opr) - cast_int(baser)) + cast_int(base));
  1203. }
  1204. /*
  1205. ** Convert a UnOpr to an OpCode (ORDER OPR - ORDER OP)
  1206. */
  1207. l_sinline OpCode unopr2op (UnOpr opr) {
  1208. return cast(OpCode, (cast_int(opr) - cast_int(OPR_MINUS)) +
  1209. cast_int(OP_UNM));
  1210. }
  1211. /*
  1212. ** Convert a BinOpr to a tag method (ORDER OPR - ORDER TM)
  1213. */
  1214. l_sinline TMS binopr2TM (BinOpr opr) {
  1215. lua_assert(OPR_ADD <= opr && opr <= OPR_SHR);
  1216. return cast(TMS, (cast_int(opr) - cast_int(OPR_ADD)) + cast_int(TM_ADD));
  1217. }
  1218. /*
  1219. ** Emit code for unary expressions that "produce values"
  1220. ** (everything but 'not').
  1221. ** Expression to produce final result will be encoded in 'e'.
  1222. */
  1223. static void codeunexpval (FuncState *fs, OpCode op, expdesc *e, int line) {
  1224. int r = luaK_exp2anyreg(fs, e); /* opcodes operate only on registers */
  1225. freeexp(fs, e);
  1226. e->u.info = luaK_codeABC(fs, op, 0, r, 0); /* generate opcode */
  1227. e->k = VRELOC; /* all those operations are relocatable */
  1228. luaK_fixline(fs, line);
  1229. }
  1230. /*
  1231. ** Emit code for binary expressions that "produce values"
  1232. ** (everything but logical operators 'and'/'or' and comparison
  1233. ** operators).
  1234. ** Expression to produce final result will be encoded in 'e1'.
  1235. */
  1236. static void finishbinexpval (FuncState *fs, expdesc *e1, expdesc *e2,
  1237. OpCode op, int v2, int flip, int line,
  1238. OpCode mmop, TMS event) {
  1239. int v1 = luaK_exp2anyreg(fs, e1);
  1240. int pc = luaK_codeABCk(fs, op, 0, v1, v2, 0);
  1241. freeexps(fs, e1, e2);
  1242. e1->u.info = pc;
  1243. e1->k = VRELOC; /* all those operations are relocatable */
  1244. luaK_fixline(fs, line);
  1245. luaK_codeABCk(fs, mmop, v1, v2, event, flip); /* to call metamethod */
  1246. luaK_fixline(fs, line);
  1247. }
  1248. /*
  1249. ** Emit code for binary expressions that "produce values" over
  1250. ** two registers.
  1251. */
  1252. static void codebinexpval (FuncState *fs, BinOpr opr,
  1253. expdesc *e1, expdesc *e2, int line) {
  1254. OpCode op = binopr2op(opr, OPR_ADD, OP_ADD);
  1255. int v2 = luaK_exp2anyreg(fs, e2); /* make sure 'e2' is in a register */
  1256. /* 'e1' must be already in a register or it is a constant */
  1257. lua_assert((VNIL <= e1->k && e1->k <= VKSTR) ||
  1258. e1->k == VNONRELOC || e1->k == VRELOC);
  1259. lua_assert(OP_ADD <= op && op <= OP_SHR);
  1260. finishbinexpval(fs, e1, e2, op, v2, 0, line, OP_MMBIN, binopr2TM(opr));
  1261. }
  1262. /*
  1263. ** Code binary operators with immediate operands.
  1264. */
  1265. static void codebini (FuncState *fs, OpCode op,
  1266. expdesc *e1, expdesc *e2, int flip, int line,
  1267. TMS event) {
  1268. int v2 = int2sC(cast_int(e2->u.ival)); /* immediate operand */
  1269. lua_assert(e2->k == VKINT);
  1270. finishbinexpval(fs, e1, e2, op, v2, flip, line, OP_MMBINI, event);
  1271. }
  1272. /*
  1273. ** Code binary operators with K operand.
  1274. */
  1275. static void codebinK (FuncState *fs, BinOpr opr,
  1276. expdesc *e1, expdesc *e2, int flip, int line) {
  1277. TMS event = binopr2TM(opr);
  1278. int v2 = e2->u.info; /* K index */
  1279. OpCode op = binopr2op(opr, OPR_ADD, OP_ADDK);
  1280. finishbinexpval(fs, e1, e2, op, v2, flip, line, OP_MMBINK, event);
  1281. }
  1282. /* Try to code a binary operator negating its second operand.
  1283. ** For the metamethod, 2nd operand must keep its original value.
  1284. */
  1285. static int finishbinexpneg (FuncState *fs, expdesc *e1, expdesc *e2,
  1286. OpCode op, int line, TMS event) {
  1287. if (!isKint(e2))
  1288. return 0; /* not an integer constant */
  1289. else {
  1290. lua_Integer i2 = e2->u.ival;
  1291. if (!(fitsC(i2) && fitsC(-i2)))
  1292. return 0; /* not in the proper range */
  1293. else { /* operating a small integer constant */
  1294. int v2 = cast_int(i2);
  1295. finishbinexpval(fs, e1, e2, op, int2sC(-v2), 0, line, OP_MMBINI, event);
  1296. /* correct metamethod argument */
  1297. SETARG_B(fs->f->code[fs->pc - 1], int2sC(v2));
  1298. return 1; /* successfully coded */
  1299. }
  1300. }
  1301. }
  1302. static void swapexps (expdesc *e1, expdesc *e2) {
  1303. expdesc temp = *e1; *e1 = *e2; *e2 = temp; /* swap 'e1' and 'e2' */
  1304. }
  1305. /*
  1306. ** Code binary operators with no constant operand.
  1307. */
  1308. static void codebinNoK (FuncState *fs, BinOpr opr,
  1309. expdesc *e1, expdesc *e2, int flip, int line) {
  1310. if (flip)
  1311. swapexps(e1, e2); /* back to original order */
  1312. codebinexpval(fs, opr, e1, e2, line); /* use standard operators */
  1313. }
  1314. /*
  1315. ** Code arithmetic operators ('+', '-', ...). If second operand is a
  1316. ** constant in the proper range, use variant opcodes with K operands.
  1317. */
  1318. static void codearith (FuncState *fs, BinOpr opr,
  1319. expdesc *e1, expdesc *e2, int flip, int line) {
  1320. if (tonumeral(e2, NULL) && luaK_exp2K(fs, e2)) /* K operand? */
  1321. codebinK(fs, opr, e1, e2, flip, line);
  1322. else /* 'e2' is neither an immediate nor a K operand */
  1323. codebinNoK(fs, opr, e1, e2, flip, line);
  1324. }
  1325. /*
  1326. ** Code commutative operators ('+', '*'). If first operand is a
  1327. ** numeric constant, change order of operands to try to use an
  1328. ** immediate or K operator.
  1329. */
  1330. static void codecommutative (FuncState *fs, BinOpr op,
  1331. expdesc *e1, expdesc *e2, int line) {
  1332. int flip = 0;
  1333. if (tonumeral(e1, NULL)) { /* is first operand a numeric constant? */
  1334. swapexps(e1, e2); /* change order */
  1335. flip = 1;
  1336. }
  1337. if (op == OPR_ADD && isSCint(e2)) /* immediate operand? */
  1338. codebini(fs, OP_ADDI, e1, e2, flip, line, TM_ADD);
  1339. else
  1340. codearith(fs, op, e1, e2, flip, line);
  1341. }
  1342. /*
  1343. ** Code bitwise operations; they are all commutative, so the function
  1344. ** tries to put an integer constant as the 2nd operand (a K operand).
  1345. */
  1346. static void codebitwise (FuncState *fs, BinOpr opr,
  1347. expdesc *e1, expdesc *e2, int line) {
  1348. int flip = 0;
  1349. if (e1->k == VKINT) {
  1350. swapexps(e1, e2); /* 'e2' will be the constant operand */
  1351. flip = 1;
  1352. }
  1353. if (e2->k == VKINT && luaK_exp2K(fs, e2)) /* K operand? */
  1354. codebinK(fs, opr, e1, e2, flip, line);
  1355. else /* no constants */
  1356. codebinNoK(fs, opr, e1, e2, flip, line);
  1357. }
  1358. /*
  1359. ** Emit code for order comparisons. When using an immediate operand,
  1360. ** 'isfloat' tells whether the original value was a float.
  1361. */
  1362. static void codeorder (FuncState *fs, BinOpr opr, expdesc *e1, expdesc *e2) {
  1363. int r1, r2;
  1364. int im;
  1365. int isfloat = 0;
  1366. OpCode op;
  1367. if (isSCnumber(e2, &im, &isfloat)) {
  1368. /* use immediate operand */
  1369. r1 = luaK_exp2anyreg(fs, e1);
  1370. r2 = im;
  1371. op = binopr2op(opr, OPR_LT, OP_LTI);
  1372. }
  1373. else if (isSCnumber(e1, &im, &isfloat)) {
  1374. /* transform (A < B) to (B > A) and (A <= B) to (B >= A) */
  1375. r1 = luaK_exp2anyreg(fs, e2);
  1376. r2 = im;
  1377. op = binopr2op(opr, OPR_LT, OP_GTI);
  1378. }
  1379. else { /* regular case, compare two registers */
  1380. r1 = luaK_exp2anyreg(fs, e1);
  1381. r2 = luaK_exp2anyreg(fs, e2);
  1382. op = binopr2op(opr, OPR_LT, OP_LT);
  1383. }
  1384. freeexps(fs, e1, e2);
  1385. e1->u.info = condjump(fs, op, r1, r2, isfloat, 1);
  1386. e1->k = VJMP;
  1387. }
  1388. /*
  1389. ** Emit code for equality comparisons ('==', '~=').
  1390. ** 'e1' was already put as RK by 'luaK_infix'.
  1391. */
  1392. static void codeeq (FuncState *fs, BinOpr opr, expdesc *e1, expdesc *e2) {
  1393. int r1, r2;
  1394. int im;
  1395. int isfloat = 0; /* not needed here, but kept for symmetry */
  1396. OpCode op;
  1397. if (e1->k != VNONRELOC) {
  1398. lua_assert(e1->k == VK || e1->k == VKINT || e1->k == VKFLT);
  1399. swapexps(e1, e2);
  1400. }
  1401. r1 = luaK_exp2anyreg(fs, e1); /* 1st expression must be in register */
  1402. if (isSCnumber(e2, &im, &isfloat)) {
  1403. op = OP_EQI;
  1404. r2 = im; /* immediate operand */
  1405. }
  1406. else if (exp2RK(fs, e2)) { /* 2nd expression is constant? */
  1407. op = OP_EQK;
  1408. r2 = e2->u.info; /* constant index */
  1409. }
  1410. else {
  1411. op = OP_EQ; /* will compare two registers */
  1412. r2 = luaK_exp2anyreg(fs, e2);
  1413. }
  1414. freeexps(fs, e1, e2);
  1415. e1->u.info = condjump(fs, op, r1, r2, isfloat, (opr == OPR_EQ));
  1416. e1->k = VJMP;
  1417. }
  1418. /*
  1419. ** Apply prefix operation 'op' to expression 'e'.
  1420. */
  1421. void luaK_prefix (FuncState *fs, UnOpr opr, expdesc *e, int line) {
  1422. static const expdesc ef = {VKINT, {0}, NO_JUMP, NO_JUMP};
  1423. luaK_dischargevars(fs, e);
  1424. switch (opr) {
  1425. case OPR_MINUS: case OPR_BNOT: /* use 'ef' as fake 2nd operand */
  1426. if (constfolding(fs, cast_int(opr + LUA_OPUNM), e, &ef))
  1427. break;
  1428. /* else */ /* FALLTHROUGH */
  1429. case OPR_LEN:
  1430. codeunexpval(fs, unopr2op(opr), e, line);
  1431. break;
  1432. case OPR_NOT: codenot(fs, e); break;
  1433. default: lua_assert(0);
  1434. }
  1435. }
  1436. /*
  1437. ** Process 1st operand 'v' of binary operation 'op' before reading
  1438. ** 2nd operand.
  1439. */
  1440. void luaK_infix (FuncState *fs, BinOpr op, expdesc *v) {
  1441. luaK_dischargevars(fs, v);
  1442. switch (op) {
  1443. case OPR_AND: {
  1444. luaK_goiftrue(fs, v); /* go ahead only if 'v' is true */
  1445. break;
  1446. }
  1447. case OPR_OR: {
  1448. luaK_goiffalse(fs, v); /* go ahead only if 'v' is false */
  1449. break;
  1450. }
  1451. case OPR_CONCAT: {
  1452. luaK_exp2nextreg(fs, v); /* operand must be on the stack */
  1453. break;
  1454. }
  1455. case OPR_ADD: case OPR_SUB:
  1456. case OPR_MUL: case OPR_DIV: case OPR_IDIV:
  1457. case OPR_MOD: case OPR_POW:
  1458. case OPR_BAND: case OPR_BOR: case OPR_BXOR:
  1459. case OPR_SHL: case OPR_SHR: {
  1460. if (!tonumeral(v, NULL))
  1461. luaK_exp2anyreg(fs, v);
  1462. /* else keep numeral, which may be folded or used as an immediate
  1463. operand */
  1464. break;
  1465. }
  1466. case OPR_EQ: case OPR_NE: {
  1467. if (!tonumeral(v, NULL))
  1468. exp2RK(fs, v);
  1469. /* else keep numeral, which may be an immediate operand */
  1470. break;
  1471. }
  1472. case OPR_LT: case OPR_LE:
  1473. case OPR_GT: case OPR_GE: {
  1474. int dummy, dummy2;
  1475. if (!isSCnumber(v, &dummy, &dummy2))
  1476. luaK_exp2anyreg(fs, v);
  1477. /* else keep numeral, which may be an immediate operand */
  1478. break;
  1479. }
  1480. default: lua_assert(0);
  1481. }
  1482. }
  1483. /*
  1484. ** Create code for '(e1 .. e2)'.
  1485. ** For '(e1 .. e2.1 .. e2.2)' (which is '(e1 .. (e2.1 .. e2.2))',
  1486. ** because concatenation is right associative), merge both CONCATs.
  1487. */
  1488. static void codeconcat (FuncState *fs, expdesc *e1, expdesc *e2, int line) {
  1489. Instruction *ie2 = previousinstruction(fs);
  1490. if (GET_OPCODE(*ie2) == OP_CONCAT) { /* is 'e2' a concatenation? */
  1491. int n = GETARG_B(*ie2); /* # of elements concatenated in 'e2' */
  1492. lua_assert(e1->u.info + 1 == GETARG_A(*ie2));
  1493. freeexp(fs, e2);
  1494. SETARG_A(*ie2, e1->u.info); /* correct first element ('e1') */
  1495. SETARG_B(*ie2, n + 1); /* will concatenate one more element */
  1496. }
  1497. else { /* 'e2' is not a concatenation */
  1498. luaK_codeABC(fs, OP_CONCAT, e1->u.info, 2, 0); /* new concat opcode */
  1499. freeexp(fs, e2);
  1500. luaK_fixline(fs, line);
  1501. }
  1502. }
  1503. /*
  1504. ** Finalize code for binary operation, after reading 2nd operand.
  1505. */
  1506. void luaK_posfix (FuncState *fs, BinOpr opr,
  1507. expdesc *e1, expdesc *e2, int line) {
  1508. luaK_dischargevars(fs, e2);
  1509. if (foldbinop(opr) && constfolding(fs, cast_int(opr + LUA_OPADD), e1, e2))
  1510. return; /* done by folding */
  1511. switch (opr) {
  1512. case OPR_AND: {
  1513. lua_assert(e1->t == NO_JUMP); /* list closed by 'luaK_infix' */
  1514. luaK_concat(fs, &e2->f, e1->f);
  1515. *e1 = *e2;
  1516. break;
  1517. }
  1518. case OPR_OR: {
  1519. lua_assert(e1->f == NO_JUMP); /* list closed by 'luaK_infix' */
  1520. luaK_concat(fs, &e2->t, e1->t);
  1521. *e1 = *e2;
  1522. break;
  1523. }
  1524. case OPR_CONCAT: { /* e1 .. e2 */
  1525. luaK_exp2nextreg(fs, e2);
  1526. codeconcat(fs, e1, e2, line);
  1527. break;
  1528. }
  1529. case OPR_ADD: case OPR_MUL: {
  1530. codecommutative(fs, opr, e1, e2, line);
  1531. break;
  1532. }
  1533. case OPR_SUB: {
  1534. if (finishbinexpneg(fs, e1, e2, OP_ADDI, line, TM_SUB))
  1535. break; /* coded as (r1 + -I) */
  1536. /* ELSE */
  1537. } /* FALLTHROUGH */
  1538. case OPR_DIV: case OPR_IDIV: case OPR_MOD: case OPR_POW: {
  1539. codearith(fs, opr, e1, e2, 0, line);
  1540. break;
  1541. }
  1542. case OPR_BAND: case OPR_BOR: case OPR_BXOR: {
  1543. codebitwise(fs, opr, e1, e2, line);
  1544. break;
  1545. }
  1546. case OPR_SHL: {
  1547. if (isSCint(e1)) {
  1548. swapexps(e1, e2);
  1549. codebini(fs, OP_SHLI, e1, e2, 1, line, TM_SHL); /* I << r2 */
  1550. }
  1551. else if (finishbinexpneg(fs, e1, e2, OP_SHRI, line, TM_SHL)) {
  1552. /* coded as (r1 >> -I) */;
  1553. }
  1554. else /* regular case (two registers) */
  1555. codebinexpval(fs, opr, e1, e2, line);
  1556. break;
  1557. }
  1558. case OPR_SHR: {
  1559. if (isSCint(e2))
  1560. codebini(fs, OP_SHRI, e1, e2, 0, line, TM_SHR); /* r1 >> I */
  1561. else /* regular case (two registers) */
  1562. codebinexpval(fs, opr, e1, e2, line);
  1563. break;
  1564. }
  1565. case OPR_EQ: case OPR_NE: {
  1566. codeeq(fs, opr, e1, e2);
  1567. break;
  1568. }
  1569. case OPR_GT: case OPR_GE: {
  1570. /* '(a > b)' <=> '(b < a)'; '(a >= b)' <=> '(b <= a)' */
  1571. swapexps(e1, e2);
  1572. opr = cast(BinOpr, (opr - OPR_GT) + OPR_LT);
  1573. } /* FALLTHROUGH */
  1574. case OPR_LT: case OPR_LE: {
  1575. codeorder(fs, opr, e1, e2);
  1576. break;
  1577. }
  1578. default: lua_assert(0);
  1579. }
  1580. }
  1581. /*
  1582. ** Change line information associated with current position, by removing
  1583. ** previous info and adding it again with new line.
  1584. */
  1585. void luaK_fixline (FuncState *fs, int line) {
  1586. removelastlineinfo(fs);
  1587. savelineinfo(fs, fs->f, line);
  1588. }
  1589. void luaK_settablesize (FuncState *fs, int pc, int ra, int asize, int hsize) {
  1590. Instruction *inst = &fs->f->code[pc];
  1591. int extra = asize / (MAXARG_vC + 1); /* higher bits of array size */
  1592. int rc = asize % (MAXARG_vC + 1); /* lower bits of array size */
  1593. int k = (extra > 0); /* true iff needs extra argument */
  1594. hsize = (hsize != 0) ? luaO_ceillog2(cast_uint(hsize)) + 1 : 0;
  1595. *inst = CREATE_vABCk(OP_NEWTABLE, ra, hsize, rc, k);
  1596. *(inst + 1) = CREATE_Ax(OP_EXTRAARG, extra);
  1597. }
  1598. /*
  1599. ** Emit a SETLIST instruction.
  1600. ** 'base' is register that keeps table;
  1601. ** 'nelems' is #table plus those to be stored now;
  1602. ** 'tostore' is number of values (in registers 'base + 1',...) to add to
  1603. ** table (or LUA_MULTRET to add up to stack top).
  1604. */
  1605. void luaK_setlist (FuncState *fs, int base, int nelems, int tostore) {
  1606. lua_assert(tostore != 0);
  1607. if (tostore == LUA_MULTRET)
  1608. tostore = 0;
  1609. if (nelems <= MAXARG_vC)
  1610. luaK_codevABCk(fs, OP_SETLIST, base, tostore, nelems, 0);
  1611. else {
  1612. int extra = nelems / (MAXARG_vC + 1);
  1613. nelems %= (MAXARG_vC + 1);
  1614. luaK_codevABCk(fs, OP_SETLIST, base, tostore, nelems, 1);
  1615. codeextraarg(fs, extra);
  1616. }
  1617. fs->freereg = cast_byte(base + 1); /* free registers with list values */
  1618. }
  1619. /*
  1620. ** return the final target of a jump (skipping jumps to jumps)
  1621. */
  1622. static int finaltarget (Instruction *code, int i) {
  1623. int count;
  1624. for (count = 0; count < 100; count++) { /* avoid infinite loops */
  1625. Instruction pc = code[i];
  1626. if (GET_OPCODE(pc) != OP_JMP)
  1627. break;
  1628. else
  1629. i += GETARG_sJ(pc) + 1;
  1630. }
  1631. return i;
  1632. }
  1633. /*
  1634. ** Do a final pass over the code of a function, doing small peephole
  1635. ** optimizations and adjustments.
  1636. */
  1637. #include "lopnames.h"
  1638. void luaK_finish (FuncState *fs) {
  1639. int i;
  1640. Proto *p = fs->f;
  1641. for (i = 0; i < fs->pc; i++) {
  1642. Instruction *pc = &p->code[i];
  1643. /* avoid "not used" warnings when assert is off (for 'onelua.c') */
  1644. (void)luaP_isOT; (void)luaP_isIT;
  1645. lua_assert(i == 0 || luaP_isOT(*(pc - 1)) == luaP_isIT(*pc));
  1646. switch (GET_OPCODE(*pc)) {
  1647. case OP_RETURN0: case OP_RETURN1: {
  1648. if (!(fs->needclose || (p->flag & PF_ISVARARG)))
  1649. break; /* no extra work */
  1650. /* else use OP_RETURN to do the extra work */
  1651. SET_OPCODE(*pc, OP_RETURN);
  1652. } /* FALLTHROUGH */
  1653. case OP_RETURN: case OP_TAILCALL: {
  1654. if (fs->needclose)
  1655. SETARG_k(*pc, 1); /* signal that it needs to close */
  1656. if (p->flag & PF_ISVARARG)
  1657. SETARG_C(*pc, p->numparams + 1); /* signal that it is vararg */
  1658. break;
  1659. }
  1660. case OP_JMP: {
  1661. int target = finaltarget(p->code, i);
  1662. fixjump(fs, i, target);
  1663. break;
  1664. }
  1665. default: break;
  1666. }
  1667. }
  1668. }