lcode.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531
  1. /*
  2. ** $Id: lcode.c,v 1.12 2000/03/15 20:50:33 roberto Exp roberto $
  3. ** Code generator for Lua
  4. ** See Copyright Notice in lua.h
  5. */
  6. #define LUA_REENTRANT
  7. #include "lcode.h"
  8. #include "ldo.h"
  9. #include "llex.h"
  10. #include "lmem.h"
  11. #include "lobject.h"
  12. #include "lopcodes.h"
  13. #include "lparser.h"
  14. #include "lstring.h"
  15. void luaK_error (LexState *ls, const char *msg) {
  16. luaX_error(ls, msg, ls->token);
  17. }
  18. /*
  19. ** Returns the address of the previous instruction, for optimizations.
  20. ** If there is a jump target between this and the current instruction,
  21. ** returns the address of a dummy instruction to avoid wrong optimizations.
  22. */
  23. static Instruction *previous_instruction (FuncState *fs) {
  24. if (fs->pc > fs->lasttarget) /* no jumps to current position? */
  25. return &fs->f->code[fs->pc-1]; /* returns previous instruction */
  26. else {
  27. static Instruction dummy = CREATE_0(OP_END);
  28. return &dummy; /* no optimizations after an `END' */
  29. }
  30. }
  31. static int luaK_primitivecode (FuncState *fs, Instruction i) {
  32. luaM_growvector(fs->L, fs->f->code, fs->pc, 1, Instruction, codeEM, MAX_INT);
  33. fs->f->code[fs->pc] = i;
  34. return fs->pc++;
  35. }
  36. static void luaK_minus (FuncState *fs) {
  37. Instruction *previous = previous_instruction(fs);
  38. switch(GET_OPCODE(*previous)) {
  39. case OP_PUSHINT: SETARG_S(*previous, -GETARG_S(*previous)); return;
  40. case OP_PUSHNUM: SET_OPCODE(*previous, OP_PUSHNEGNUM); return;
  41. case OP_PUSHNEGNUM: SET_OPCODE(*previous, OP_PUSHNUM); return;
  42. default: luaK_primitivecode(fs, CREATE_0(OP_MINUS));
  43. }
  44. }
  45. static void luaK_gettable (FuncState *fs) {
  46. Instruction *previous = previous_instruction(fs);
  47. luaK_deltastack(fs, -1);
  48. switch(GET_OPCODE(*previous)) {
  49. case OP_PUSHSTRING: SET_OPCODE(*previous, OP_GETDOTTED); break;
  50. default: luaK_primitivecode(fs, CREATE_0(OP_GETTABLE));
  51. }
  52. }
  53. static void luaK_add (FuncState *fs) {
  54. Instruction *previous = previous_instruction(fs);
  55. luaK_deltastack(fs, -1);
  56. switch(GET_OPCODE(*previous)) {
  57. case OP_PUSHINT: SET_OPCODE(*previous, OP_ADDI); break;
  58. default: luaK_primitivecode(fs, CREATE_0(OP_ADD));
  59. }
  60. }
  61. static void luaK_sub (FuncState *fs) {
  62. Instruction *previous = previous_instruction(fs);
  63. luaK_deltastack(fs, -1);
  64. switch(GET_OPCODE(*previous)) {
  65. case OP_PUSHINT:
  66. SET_OPCODE(*previous, OP_ADDI);
  67. SETARG_S(*previous, -GETARG_S(*previous));
  68. break;
  69. default: luaK_primitivecode(fs, CREATE_0(OP_SUB));
  70. }
  71. }
  72. static void luaK_conc (FuncState *fs) {
  73. Instruction *previous = previous_instruction(fs);
  74. luaK_deltastack(fs, -1);
  75. switch(GET_OPCODE(*previous)) {
  76. case OP_CONC: SETARG_U(*previous, GETARG_U(*previous)+1); break;
  77. default: luaK_primitivecode(fs, CREATE_U(OP_CONC, 2));
  78. }
  79. }
  80. static void luaK_eq (FuncState *fs) {
  81. Instruction *previous = previous_instruction(fs);
  82. if (*previous == CREATE_U(OP_PUSHNIL, 1)) {
  83. *previous = CREATE_0(OP_NOT);
  84. luaK_deltastack(fs, -1); /* undo effect of PUSHNIL */
  85. }
  86. else
  87. luaK_S(fs, OP_IFEQJMP, 0, -2);
  88. }
  89. static void luaK_neq (FuncState *fs) {
  90. Instruction *previous = previous_instruction(fs);
  91. if (*previous == CREATE_U(OP_PUSHNIL, 1)) {
  92. fs->pc--; /* remove PUSHNIL */
  93. luaK_deltastack(fs, -1); /* undo effect of PUSHNIL */
  94. luaK_getlabel(fs); /* previous instruction could be a (closed) call */
  95. }
  96. else
  97. luaK_S(fs, OP_IFNEQJMP, 0, -2);
  98. }
  99. void luaK_retcode (FuncState *fs, int nlocals, int nexps) {
  100. Instruction *previous = previous_instruction(fs);
  101. if (nexps > 0 && GET_OPCODE(*previous) == OP_CALL) {
  102. LUA_ASSERT(fs->L, GETARG_B(*previous) == MULT_RET, "call should be open");
  103. SET_OPCODE(*previous, OP_TAILCALL);
  104. SETARG_B(*previous, nlocals);
  105. }
  106. else
  107. luaK_primitivecode(fs, CREATE_U(OP_RETURN, nlocals));
  108. }
  109. static void luaK_pushnil (FuncState *fs, int n) {
  110. Instruction *previous = previous_instruction(fs);
  111. luaK_deltastack(fs, n);
  112. switch(GET_OPCODE(*previous)) {
  113. case OP_PUSHNIL: SETARG_U(*previous, GETARG_U(*previous)+n); break;
  114. default: luaK_primitivecode(fs, CREATE_U(OP_PUSHNIL, n));
  115. }
  116. }
  117. int luaK_code (FuncState *fs, Instruction i, int delta) {
  118. luaK_deltastack(fs, delta);
  119. return luaK_primitivecode(fs, i);
  120. }
  121. void luaK_fixjump (FuncState *fs, int pc, int dest) {
  122. Instruction *jmp = &fs->f->code[pc];
  123. if (dest == NO_JUMP)
  124. SETARG_S(*jmp, 0); /* absolute value to represent end of list */
  125. else { /* jump is relative to position following jump instruction */
  126. int offset = dest-(pc+1);
  127. if (offset < -MAXARG_S || offset > MAXARG_S)
  128. luaK_error(fs->ls, "control structure too long");
  129. SETARG_S(*jmp, offset);
  130. }
  131. }
  132. static int luaK_getjump (FuncState *fs, int pc) {
  133. int offset = GETARG_S(fs->f->code[pc]);
  134. if (offset == 0)
  135. return NO_JUMP; /* end of list */
  136. else
  137. return (pc+1)+offset; /* turn offset into absolute position */
  138. }
  139. /*
  140. ** returns current `pc' and marks it as a jump target (to avoid wrong
  141. ** optimizations with consecutive instructions not in the same basic block).
  142. */
  143. int luaK_getlabel (FuncState *fs) {
  144. fs->lasttarget = fs->pc;
  145. return fs->pc;
  146. }
  147. void luaK_deltastack (FuncState *fs, int delta) {
  148. fs->stacksize += delta;
  149. if (delta > 0 && fs->stacksize > fs->f->maxstacksize) {
  150. if (fs->stacksize > MAXSTACK)
  151. luaK_error(fs->ls, "function or expression too complex");
  152. fs->f->maxstacksize = fs->stacksize;
  153. }
  154. }
  155. void luaK_kstr (LexState *ls, int c) {
  156. luaK_U(ls->fs, OP_PUSHSTRING, c, 1);
  157. }
  158. #ifndef LOOKBACKNUMS
  159. #define LOOKBACKNUMS 20 /* arbitrary limit */
  160. #endif
  161. static int real_constant (FuncState *fs, Number r) {
  162. /* check whether `r' has appeared within the last LOOKBACKNUMS entries */
  163. Proto *f = fs->f;
  164. int c = f->nknum;
  165. int lim = c < LOOKBACKNUMS ? 0 : c-LOOKBACKNUMS;
  166. while (--c >= lim)
  167. if (f->knum[c] == r) return c;
  168. /* not found; create a new entry */
  169. luaM_growvector(fs->L, f->knum, f->nknum, 1, Number, constantEM, MAXARG_U);
  170. c = f->nknum++;
  171. f->knum[c] = r;
  172. return c;
  173. }
  174. void luaK_number (FuncState *fs, Number f) {
  175. if (f <= (Number)MAXARG_S && (int)f == f)
  176. luaK_S(fs, OP_PUSHINT, (int)f, 1); /* f has a short integer value */
  177. else
  178. luaK_U(fs, OP_PUSHNUM, real_constant(fs, f), 1);
  179. }
  180. void luaK_adjuststack (FuncState *fs, int n) {
  181. if (n > 0)
  182. luaK_U(fs, OP_POP, n, -n);
  183. else if (n < 0)
  184. luaK_pushnil(fs, -n);
  185. }
  186. int luaK_lastisopen (FuncState *fs) {
  187. /* check whether last instruction is an (open) function call */
  188. Instruction *i = previous_instruction(fs);
  189. if (GET_OPCODE(*i) == OP_CALL) {
  190. LUA_ASSERT(fs->L, GETARG_B(*i) == MULT_RET, "call should be open");
  191. return 1;
  192. }
  193. else return 0;
  194. }
  195. void luaK_setcallreturns (FuncState *fs, int nresults) {
  196. Instruction *i = previous_instruction(fs);
  197. if (GET_OPCODE(*i) == OP_CALL) { /* expression is a function call? */
  198. LUA_ASSERT(fs->L, GETARG_B(*i) == MULT_RET, "call should be open");
  199. SETARG_B(*i, nresults); /* set nresults */
  200. luaK_deltastack(fs, nresults); /* push results */
  201. }
  202. }
  203. static void assertglobal (FuncState *fs, int index) {
  204. luaS_assertglobal(fs->L, fs->f->kstr[index]);
  205. }
  206. static int discharge (FuncState *fs, expdesc *var) {
  207. switch (var->k) {
  208. case VLOCAL:
  209. luaK_U(fs, OP_PUSHLOCAL, var->u.index, 1);
  210. break;
  211. case VGLOBAL:
  212. luaK_U(fs, OP_GETGLOBAL, var->u.index, 1);
  213. assertglobal(fs, var->u.index); /* make sure that there is a global */
  214. break;
  215. case VINDEXED:
  216. luaK_gettable(fs);
  217. break;
  218. case VEXP:
  219. return 0; /* nothing to do */
  220. }
  221. var->k = VEXP;
  222. var->u.l.t = var->u.l.f = NO_JUMP;
  223. return 1;
  224. }
  225. static void discharge1 (FuncState *fs, expdesc *var) {
  226. discharge(fs, var);
  227. /* if it has jumps it is already discharged */
  228. if (var->u.l.t == NO_JUMP && var->u.l.f == NO_JUMP)
  229. luaK_setcallreturns(fs, 1); /* call must return 1 value */
  230. }
  231. void luaK_storevar (LexState *ls, const expdesc *var) {
  232. FuncState *fs = ls->fs;
  233. switch (var->k) {
  234. case VLOCAL:
  235. luaK_U(fs, OP_SETLOCAL, var->u.index, -1);
  236. break;
  237. case VGLOBAL:
  238. luaK_U(fs, OP_SETGLOBAL, var->u.index, -1);
  239. assertglobal(fs, var->u.index); /* make sure that there is a global */
  240. break;
  241. case VINDEXED:
  242. luaK_0(fs, OP_SETTABLEPOP, -3);
  243. break;
  244. default:
  245. LUA_INTERNALERROR(ls->L, "invalid var kind to store");
  246. }
  247. }
  248. static OpCode invertjump (OpCode op) {
  249. switch (op) {
  250. case OP_IFNEQJMP: return OP_IFEQJMP;
  251. case OP_IFEQJMP: return OP_IFNEQJMP;
  252. case OP_IFLTJMP: return OP_IFGEJMP;
  253. case OP_IFLEJMP: return OP_IFGTJMP;
  254. case OP_IFGTJMP: return OP_IFLEJMP;
  255. case OP_IFGEJMP: return OP_IFLTJMP;
  256. case OP_IFTJMP: case OP_ONTJMP: return OP_IFFJMP;
  257. case OP_IFFJMP: case OP_ONFJMP: return OP_IFTJMP;
  258. default:
  259. LUA_INTERNALERROR(NULL, "invalid jump instruction");
  260. return OP_END; /* to avoid warnings */
  261. }
  262. }
  263. static void luaK_jump (FuncState *fs, OpCode jump) {
  264. Instruction *previous = previous_instruction(fs);
  265. luaK_deltastack(fs, -1);
  266. if (*previous == CREATE_0(OP_NOT))
  267. *previous = CREATE_S(invertjump(jump), 0);
  268. else
  269. luaK_primitivecode(fs, CREATE_S(jump, 0));
  270. }
  271. static void insert_last (FuncState *fs, int *list) {
  272. int first = *list;
  273. *list = fs->pc-1; /* insert last instruction in the list */
  274. luaK_fixjump(fs, *list, first);
  275. }
  276. static void luaK_patchlistaux (FuncState *fs, int list, int target,
  277. OpCode special, int special_target) {
  278. Instruction *code = fs->f->code;
  279. while (list != NO_JUMP) {
  280. int next = luaK_getjump(fs, list);
  281. Instruction *i = &code[list];
  282. OpCode op = GET_OPCODE(*i);
  283. if (op == special) /* this `op' already has a value */
  284. luaK_fixjump(fs, list, special_target);
  285. else {
  286. luaK_fixjump(fs, list, target); /* do the patch */
  287. if (op == OP_ONTJMP) /* remove eventual values */
  288. SET_OPCODE(*i, OP_IFTJMP);
  289. else if (op == OP_ONFJMP)
  290. SET_OPCODE(*i, OP_IFFJMP);
  291. }
  292. list = next;
  293. }
  294. }
  295. void luaK_patchlist (FuncState *fs, int list, int target) {
  296. luaK_patchlistaux(fs, list, target, OP_END, 0);
  297. }
  298. static int need_value (FuncState *fs, int list, OpCode hasvalue) {
  299. /* check whether list has a jump without a value */
  300. for (; list != NO_JUMP; list = luaK_getjump(fs, list))
  301. if (GET_OPCODE(fs->f->code[list]) != hasvalue) return 1;
  302. return 0; /* not found */
  303. }
  304. static void concatlists (FuncState *fs, int *l1, int l2) {
  305. if (*l1 == NO_JUMP)
  306. *l1 = l2;
  307. else {
  308. int list = *l1;
  309. for (;;) { /* traverse `l1' */
  310. int next = luaK_getjump(fs, list);
  311. if (next == NO_JUMP) { /* end of list? */
  312. luaK_fixjump(fs, list, l2);
  313. return;
  314. }
  315. list = next;
  316. }
  317. }
  318. }
  319. void luaK_goiftrue (FuncState *fs, expdesc *v, int keepvalue) {
  320. Instruction *previous;
  321. discharge1(fs, v);
  322. previous = &fs->f->code[fs->pc-1];
  323. if (ISJUMP(GET_OPCODE(*previous)))
  324. SET_OPCODE(*previous, invertjump(GET_OPCODE(*previous)));
  325. else {
  326. OpCode jump = keepvalue ? OP_ONFJMP : OP_IFFJMP;
  327. luaK_jump(fs, jump);
  328. }
  329. insert_last(fs, &v->u.l.f);
  330. luaK_patchlist(fs, v->u.l.t, luaK_getlabel(fs));
  331. v->u.l.t = NO_JUMP;
  332. }
  333. void luaK_goiffalse (FuncState *fs, expdesc *v, int keepvalue) {
  334. Instruction previous;
  335. discharge1(fs, v);
  336. previous = fs->f->code[fs->pc-1];
  337. if (!ISJUMP(GET_OPCODE(previous))) {
  338. OpCode jump = keepvalue ? OP_ONTJMP : OP_IFTJMP;
  339. luaK_jump(fs, jump);
  340. }
  341. insert_last(fs, &v->u.l.t);
  342. luaK_patchlist(fs, v->u.l.f, luaK_getlabel(fs));
  343. v->u.l.f = NO_JUMP;
  344. }
  345. void luaK_tostack (LexState *ls, expdesc *v, int onlyone) {
  346. FuncState *fs = ls->fs;
  347. if (discharge(fs, v)) return;
  348. else { /* is an expression */
  349. OpCode previous = GET_OPCODE(fs->f->code[fs->pc-1]);
  350. if (!ISJUMP(previous) && v->u.l.f == NO_JUMP && v->u.l.t == NO_JUMP) {
  351. /* it is an expression without jumps */
  352. if (onlyone && v->k == VEXP)
  353. luaK_setcallreturns(fs, 1); /* call must return 1 value */
  354. return;
  355. }
  356. else { /* expression has jumps... */
  357. int p_nil = 0; /* position of an eventual PUSHNIL */
  358. int p_1 = 0; /* position of an eventual PUSHINT */
  359. int final; /* position after whole expression */
  360. if (ISJUMP(previous)) {
  361. insert_last(fs, &v->u.l.t); /* put `previous' in true list */
  362. p_nil = luaK_0(fs, OP_PUSHNILJMP, 0);
  363. p_1 = luaK_S(fs, OP_PUSHINT, 1, 1);
  364. }
  365. else { /* still may need a PUSHNIL or a PUSHINT */
  366. int need_nil = need_value(fs, v->u.l.f, OP_ONFJMP);
  367. int need_1 = need_value(fs, v->u.l.t, OP_ONTJMP);
  368. if (need_nil && need_1) {
  369. luaK_S(fs, OP_JMP, 2, 0); /* skip both pushes */
  370. p_nil = luaK_0(fs, OP_PUSHNILJMP, 0);
  371. p_1 = luaK_S(fs, OP_PUSHINT, 1, 0);
  372. }
  373. else if (need_nil || need_1) {
  374. luaK_S(fs, OP_JMP, 1, 0); /* skip one push */
  375. if (need_nil)
  376. p_nil = luaK_U(fs, OP_PUSHNIL, 1, 0);
  377. else /* need_1 */
  378. p_1 = luaK_S(fs, OP_PUSHINT, 1, 0);
  379. }
  380. }
  381. final = luaK_getlabel(fs);
  382. luaK_patchlistaux(fs, v->u.l.f, p_nil, OP_ONFJMP, final);
  383. luaK_patchlistaux(fs, v->u.l.t, p_1, OP_ONTJMP, final);
  384. v->u.l.f = v->u.l.t = NO_JUMP;
  385. }
  386. }
  387. }
  388. void luaK_prefix (LexState *ls, int op, expdesc *v) {
  389. FuncState *fs = ls->fs;
  390. if (op == '-') {
  391. luaK_tostack(ls, v, 1);
  392. luaK_minus(fs);
  393. }
  394. else { /* op == NOT */
  395. Instruction *previous;
  396. discharge1(fs, v);
  397. previous = &fs->f->code[fs->pc-1];
  398. if (ISJUMP(GET_OPCODE(*previous)))
  399. SET_OPCODE(*previous, invertjump(GET_OPCODE(*previous)));
  400. else
  401. luaK_0(fs, OP_NOT, 0);
  402. /* interchange true and false lists */
  403. { int temp = v->u.l.f; v->u.l.f = v->u.l.t; v->u.l.t = temp; }
  404. }
  405. }
  406. void luaK_infix (LexState *ls, int op, expdesc *v) {
  407. FuncState *fs = ls->fs;
  408. if (op == TK_AND)
  409. luaK_goiftrue(fs, v, 1);
  410. else if (op == TK_OR)
  411. luaK_goiffalse(fs, v, 1);
  412. else
  413. luaK_tostack(ls, v, 1); /* all other binary operators need a value */
  414. }
  415. void luaK_posfix (LexState *ls, int op, expdesc *v1, expdesc *v2) {
  416. FuncState *fs = ls->fs;
  417. if (op == TK_AND) {
  418. LUA_ASSERT(ls->L, v1->u.l.t == NO_JUMP, "list must be closed");
  419. discharge1(fs, v2);
  420. v1->u.l.t = v2->u.l.t;
  421. concatlists(fs, &v1->u.l.f, v2->u.l.f);
  422. }
  423. else if (op == TK_OR) {
  424. LUA_ASSERT(ls->L, v1->u.l.f == NO_JUMP, "list must be closed");
  425. discharge1(fs, v2);
  426. v1->u.l.f = v2->u.l.f;
  427. concatlists(fs, &v1->u.l.t, v2->u.l.t);
  428. }
  429. else {
  430. luaK_tostack(ls, v2, 1); /* `v2' must be a value */
  431. switch (op) {
  432. case '+': luaK_add(fs); break;
  433. case '-': luaK_sub(fs); break;
  434. case '*': luaK_0(fs, OP_MULT, -1); break;
  435. case '/': luaK_0(fs, OP_DIV, -1); break;
  436. case '^': luaK_0(fs, OP_POW, -1); break;
  437. case TK_CONC: luaK_conc(fs); break;
  438. case TK_EQ: luaK_eq(fs); break;
  439. case TK_NE: luaK_neq(fs); break;
  440. case '>': luaK_S(fs, OP_IFGTJMP, 0, -2); break;
  441. case '<': luaK_S(fs, OP_IFLTJMP, 0, -2); break;
  442. case TK_GE: luaK_S(fs, OP_IFGEJMP, 0, -2); break;
  443. case TK_LE: luaK_S(fs, OP_IFLEJMP, 0, -2); break;
  444. }
  445. }
  446. }