lcode.c 36 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291
  1. /*
  2. ** $Id: lcode.c,v 2.117 2017/04/26 17:46:52 roberto Exp roberto $
  3. ** Code generator for Lua
  4. ** See Copyright Notice in lua.h
  5. */
  6. #define lcode_c
  7. #define LUA_CORE
  8. #include "lprefix.h"
  9. #include <math.h>
  10. #include <stdlib.h>
  11. #include "lua.h"
  12. #include "lcode.h"
  13. #include "ldebug.h"
  14. #include "ldo.h"
  15. #include "lgc.h"
  16. #include "llex.h"
  17. #include "lmem.h"
  18. #include "lobject.h"
  19. #include "lopcodes.h"
  20. #include "lparser.h"
  21. #include "lstring.h"
  22. #include "ltable.h"
  23. #include "lvm.h"
  24. /* Maximum number of registers in a Lua function (must fit in 8 bits) */
  25. #define MAXREGS 255
  26. #define hasjumps(e) ((e)->t != (e)->f)
  27. /*
  28. ** If expression is a numeric constant, fills 'v' with its value
  29. ** and returns 1. Otherwise, returns 0.
  30. */
  31. static int tonumeral(const expdesc *e, TValue *v) {
  32. if (hasjumps(e))
  33. return 0; /* not a numeral */
  34. switch (e->k) {
  35. case VKINT:
  36. if (v) setivalue(v, e->u.ival);
  37. return 1;
  38. case VKFLT:
  39. if (v) setfltvalue(v, e->u.nval);
  40. return 1;
  41. default: return 0;
  42. }
  43. }
  44. /*
  45. ** Create a OP_LOADNIL instruction, but try to optimize: if the previous
  46. ** instruction is also OP_LOADNIL and ranges are compatible, adjust
  47. ** range of previous instruction instead of emitting a new one. (For
  48. ** instance, 'local a; local b' will generate a single opcode.)
  49. */
  50. void luaK_nil (FuncState *fs, int from, int n) {
  51. Instruction *previous;
  52. int l = from + n - 1; /* last register to set nil */
  53. if (fs->pc > fs->lasttarget) { /* no jumps to current position? */
  54. previous = &fs->f->code[fs->pc-1];
  55. if (GET_OPCODE(*previous) == OP_LOADNIL) { /* previous is LOADNIL? */
  56. int pfrom = GETARG_A(*previous); /* get previous range */
  57. int pl = pfrom + GETARG_B(*previous);
  58. if ((pfrom <= from && from <= pl + 1) ||
  59. (from <= pfrom && pfrom <= l + 1)) { /* can connect both? */
  60. if (pfrom < from) from = pfrom; /* from = min(from, pfrom) */
  61. if (pl > l) l = pl; /* l = max(l, pl) */
  62. SETARG_A(*previous, from);
  63. SETARG_B(*previous, l - from);
  64. return;
  65. }
  66. } /* else go through */
  67. }
  68. luaK_codeABC(fs, OP_LOADNIL, from, n - 1, 0); /* else no optimization */
  69. }
  70. /*
  71. ** Gets the destination address of a jump instruction. Used to traverse
  72. ** a list of jumps.
  73. */
  74. static int getjump (FuncState *fs, int pc) {
  75. int offset = GETARG_sBx(fs->f->code[pc]);
  76. if (offset == NO_JUMP) /* point to itself represents end of list */
  77. return NO_JUMP; /* end of list */
  78. else
  79. return (pc+1)+offset; /* turn offset into absolute position */
  80. }
  81. /*
  82. ** Fix jump instruction at position 'pc' to jump to 'dest'.
  83. ** (Jump addresses are relative in Lua)
  84. */
  85. static void fixjump (FuncState *fs, int pc, int dest) {
  86. Instruction *jmp = &fs->f->code[pc];
  87. int offset = dest - (pc + 1);
  88. lua_assert(dest != NO_JUMP);
  89. if (abs(offset) > MAXARG_sBx)
  90. luaX_syntaxerror(fs->ls, "control structure too long");
  91. SETARG_sBx(*jmp, offset);
  92. }
  93. /*
  94. ** Concatenate jump-list 'l2' into jump-list 'l1'
  95. */
  96. void luaK_concat (FuncState *fs, int *l1, int l2) {
  97. if (l2 == NO_JUMP) return; /* nothing to concatenate? */
  98. else if (*l1 == NO_JUMP) /* no original list? */
  99. *l1 = l2; /* 'l1' points to 'l2' */
  100. else {
  101. int list = *l1;
  102. int next;
  103. while ((next = getjump(fs, list)) != NO_JUMP) /* find last element */
  104. list = next;
  105. fixjump(fs, list, l2); /* last element links to 'l2' */
  106. }
  107. }
  108. /*
  109. ** Create a jump instruction and return its position, so its destination
  110. ** can be fixed later (with 'fixjump'). If there are jumps to
  111. ** this position (kept in 'jpc'), link them all together so that
  112. ** 'patchlistaux' will fix all them directly to the final destination.
  113. */
  114. int luaK_jump (FuncState *fs) {
  115. int jpc = fs->jpc; /* save list of jumps to here */
  116. int j;
  117. fs->jpc = NO_JUMP; /* no more jumps to here */
  118. j = luaK_codeAsBx(fs, OP_JMP, 0, NO_JUMP);
  119. luaK_concat(fs, &j, jpc); /* keep them on hold */
  120. return j;
  121. }
  122. /*
  123. ** Code a 'return' instruction
  124. */
  125. void luaK_ret (FuncState *fs, int first, int nret) {
  126. luaK_codeABC(fs, OP_RETURN, first, nret+1, 0);
  127. }
  128. /*
  129. ** Code a "conditional jump", that is, a test or comparison opcode
  130. ** followed by a jump. Return jump position.
  131. */
  132. static int condjump (FuncState *fs, OpCode op, int A, int B, int C) {
  133. luaK_codeABC(fs, op, A, B, C);
  134. return luaK_jump(fs);
  135. }
  136. /*
  137. ** returns current 'pc' and marks it as a jump target (to avoid wrong
  138. ** optimizations with consecutive instructions not in the same basic block).
  139. */
  140. int luaK_getlabel (FuncState *fs) {
  141. fs->lasttarget = fs->pc;
  142. return fs->pc;
  143. }
  144. /*
  145. ** Returns the position of the instruction "controlling" a given
  146. ** jump (that is, its condition), or the jump itself if it is
  147. ** unconditional.
  148. */
  149. static Instruction *getjumpcontrol (FuncState *fs, int pc) {
  150. Instruction *pi = &fs->f->code[pc];
  151. if (pc >= 1 && testTMode(GET_OPCODE(*(pi-1))))
  152. return pi-1;
  153. else
  154. return pi;
  155. }
  156. /*
  157. ** Patch destination register for a TESTSET instruction.
  158. ** If instruction in position 'node' is not a TESTSET, return 0 ("fails").
  159. ** Otherwise, if 'reg' is not 'NO_REG', set it as the destination
  160. ** register. Otherwise, change instruction to a simple 'TEST' (produces
  161. ** no register value)
  162. */
  163. static int patchtestreg (FuncState *fs, int node, int reg) {
  164. Instruction *i = getjumpcontrol(fs, node);
  165. if (GET_OPCODE(*i) != OP_TESTSET)
  166. return 0; /* cannot patch other instructions */
  167. if (reg != NO_REG && reg != GETARG_B(*i))
  168. SETARG_A(*i, reg);
  169. else {
  170. /* no register to put value or register already has the value;
  171. change instruction to simple test */
  172. *i = CREATE_ABC(OP_TEST, GETARG_B(*i), 0, GETARG_C(*i));
  173. }
  174. return 1;
  175. }
  176. /*
  177. ** Traverse a list of tests ensuring no one produces a value
  178. */
  179. static void removevalues (FuncState *fs, int list) {
  180. for (; list != NO_JUMP; list = getjump(fs, list))
  181. patchtestreg(fs, list, NO_REG);
  182. }
  183. /*
  184. ** Traverse a list of tests, patching their destination address and
  185. ** registers: tests producing values jump to 'vtarget' (and put their
  186. ** values in 'reg'), other tests jump to 'dtarget'.
  187. */
  188. static void patchlistaux (FuncState *fs, int list, int vtarget, int reg,
  189. int dtarget) {
  190. while (list != NO_JUMP) {
  191. int next = getjump(fs, list);
  192. if (patchtestreg(fs, list, reg))
  193. fixjump(fs, list, vtarget);
  194. else
  195. fixjump(fs, list, dtarget); /* jump to default target */
  196. list = next;
  197. }
  198. }
  199. /*
  200. ** Ensure all pending jumps to current position are fixed (jumping
  201. ** to current position with no values) and reset list of pending
  202. ** jumps
  203. */
  204. static void dischargejpc (FuncState *fs) {
  205. patchlistaux(fs, fs->jpc, fs->pc, NO_REG, fs->pc);
  206. fs->jpc = NO_JUMP;
  207. }
  208. /*
  209. ** Add elements in 'list' to list of pending jumps to "here"
  210. ** (current position)
  211. */
  212. void luaK_patchtohere (FuncState *fs, int list) {
  213. luaK_getlabel(fs); /* mark "here" as a jump target */
  214. luaK_concat(fs, &fs->jpc, list);
  215. }
  216. /*
  217. ** Path all jumps in 'list' to jump to 'target'.
  218. ** (The assert means that we cannot fix a jump to a forward address
  219. ** because we only know addresses once code is generated.)
  220. */
  221. void luaK_patchlist (FuncState *fs, int list, int target) {
  222. if (target == fs->pc) /* 'target' is current position? */
  223. luaK_patchtohere(fs, list); /* add list to pending jumps */
  224. else {
  225. lua_assert(target < fs->pc);
  226. patchlistaux(fs, list, target, NO_REG, target);
  227. }
  228. }
  229. /*
  230. ** Path all jumps in 'list' to close upvalues up to given 'level'
  231. ** (The assertion checks that jumps either were closing nothing
  232. ** or were closing higher levels, from inner blocks.)
  233. */
  234. void luaK_patchclose (FuncState *fs, int list, int level) {
  235. level++; /* argument is +1 to reserve 0 as non-op */
  236. for (; list != NO_JUMP; list = getjump(fs, list)) {
  237. lua_assert(GET_OPCODE(fs->f->code[list]) == OP_JMP &&
  238. (GETARG_A(fs->f->code[list]) == 0 ||
  239. GETARG_A(fs->f->code[list]) >= level));
  240. SETARG_A(fs->f->code[list], level);
  241. }
  242. }
  243. /*
  244. ** Emit instruction 'i', checking for array sizes and saving also its
  245. ** line information. Return 'i' position.
  246. */
  247. static int luaK_code (FuncState *fs, Instruction i) {
  248. Proto *f = fs->f;
  249. dischargejpc(fs); /* 'pc' will change */
  250. /* put new instruction in code array */
  251. luaM_growvector(fs->ls->L, f->code, fs->pc, f->sizecode, Instruction,
  252. MAX_INT, "opcodes");
  253. f->code[fs->pc] = i;
  254. /* save corresponding line information */
  255. luaM_growvector(fs->ls->L, f->lineinfo, fs->pc, f->sizelineinfo, int,
  256. MAX_INT, "opcodes");
  257. f->lineinfo[fs->pc] = fs->ls->lastline;
  258. return fs->pc++;
  259. }
  260. /*
  261. ** Format and emit an 'iABC' instruction. (Assertions check consistency
  262. ** of parameters versus opcode.)
  263. */
  264. int luaK_codeABC (FuncState *fs, OpCode o, int a, int b, int c) {
  265. lua_assert(getOpMode(o) == iABC);
  266. lua_assert(getBMode(o) != OpArgN || b == 0);
  267. lua_assert(getCMode(o) != OpArgN || c == 0);
  268. lua_assert(a <= MAXARG_A && b <= MAXARG_B && c <= MAXARG_C);
  269. return luaK_code(fs, CREATE_ABC(o, a, b, c));
  270. }
  271. /*
  272. ** Format and emit an 'iABx' instruction.
  273. */
  274. int luaK_codeABx (FuncState *fs, OpCode o, int a, unsigned int bc) {
  275. lua_assert(getOpMode(o) == iABx || getOpMode(o) == iAsBx);
  276. lua_assert(getCMode(o) == OpArgN);
  277. lua_assert(a <= MAXARG_A && bc <= MAXARG_Bx);
  278. return luaK_code(fs, CREATE_ABx(o, a, bc));
  279. }
  280. /*
  281. ** Emit an "extra argument" instruction (format 'iAx')
  282. */
  283. static int codeextraarg (FuncState *fs, int a) {
  284. lua_assert(a <= MAXARG_Ax);
  285. return luaK_code(fs, CREATE_Ax(OP_EXTRAARG, a));
  286. }
  287. /*
  288. ** Emit a "load constant" instruction, using either 'OP_LOADK'
  289. ** (if constant index 'k' fits in 18 bits) or an 'OP_LOADKX'
  290. ** instruction with "extra argument".
  291. */
  292. static int luaK_codek (FuncState *fs, int reg, int k) {
  293. if (k <= MAXARG_Bx)
  294. return luaK_codeABx(fs, OP_LOADK, reg, k);
  295. else {
  296. int p = luaK_codeABx(fs, OP_LOADKX, reg, 0);
  297. codeextraarg(fs, k);
  298. return p;
  299. }
  300. }
  301. /*
  302. ** Check register-stack level, keeping track of its maximum size
  303. ** in field 'maxstacksize'
  304. */
  305. void luaK_checkstack (FuncState *fs, int n) {
  306. int newstack = fs->freereg + n;
  307. if (newstack > fs->f->maxstacksize) {
  308. if (newstack >= MAXREGS)
  309. luaX_syntaxerror(fs->ls,
  310. "function or expression needs too many registers");
  311. fs->f->maxstacksize = cast_byte(newstack);
  312. }
  313. }
  314. /*
  315. ** Reserve 'n' registers in register stack
  316. */
  317. void luaK_reserveregs (FuncState *fs, int n) {
  318. luaK_checkstack(fs, n);
  319. fs->freereg += n;
  320. }
  321. /*
  322. ** Free register 'reg', if it is neither a constant index nor
  323. ** a local variable.
  324. )
  325. */
  326. static void freereg (FuncState *fs, int reg) {
  327. if (!ISK(reg) && reg >= fs->nactvar) {
  328. fs->freereg--;
  329. lua_assert(reg == fs->freereg);
  330. }
  331. }
  332. /*
  333. ** Free two registers in proper order
  334. */
  335. static void freeregs (FuncState *fs, int r1, int r2) {
  336. if (r1 > r2) {
  337. freereg(fs, r1);
  338. freereg(fs, r2);
  339. }
  340. else {
  341. freereg(fs, r2);
  342. freereg(fs, r1);
  343. }
  344. }
  345. /*
  346. ** Free register used by expression 'e' (if any)
  347. */
  348. static void freeexp (FuncState *fs, expdesc *e) {
  349. if (e->k == VNONRELOC)
  350. freereg(fs, e->u.info);
  351. }
  352. /*
  353. ** Free registers used by expressions 'e1' and 'e2' (if any) in proper
  354. ** order.
  355. */
  356. static void freeexps (FuncState *fs, expdesc *e1, expdesc *e2) {
  357. int r1 = (e1->k == VNONRELOC) ? e1->u.info : -1;
  358. int r2 = (e2->k == VNONRELOC) ? e2->u.info : -1;
  359. freeregs(fs, r1, r2);
  360. }
  361. /*
  362. ** Add constant 'v' to prototype's list of constants (field 'k').
  363. ** Use scanner's table to cache position of constants in constant list
  364. ** and try to reuse constants. Because some values should not be used
  365. ** as keys (nil cannot be a key, integer keys can collapse with float
  366. ** keys), the caller must provide a useful 'key' for indexing the cache.
  367. */
  368. static int addk (FuncState *fs, TValue *key, TValue *v) {
  369. lua_State *L = fs->ls->L;
  370. Proto *f = fs->f;
  371. TValue *idx = luaH_set(L, fs->ls->h, key); /* index scanner table */
  372. int k, oldsize;
  373. if (ttisinteger(idx)) { /* is there an index there? */
  374. k = cast_int(ivalue(idx));
  375. /* correct value? (warning: must distinguish floats from integers!) */
  376. if (k < fs->nk && ttype(&f->k[k]) == ttype(v) &&
  377. luaV_rawequalobj(&f->k[k], v))
  378. return k; /* reuse index */
  379. }
  380. /* constant not found; create a new entry */
  381. oldsize = f->sizek;
  382. k = fs->nk;
  383. /* numerical value does not need GC barrier;
  384. table has no metatable, so it does not need to invalidate cache */
  385. setivalue(idx, k);
  386. luaM_growvector(L, f->k, k, f->sizek, TValue, MAXARG_Ax, "constants");
  387. while (oldsize < f->sizek) setnilvalue(&f->k[oldsize++]);
  388. setobj(L, &f->k[k], v);
  389. fs->nk++;
  390. luaC_barrier(L, f, v);
  391. return k;
  392. }
  393. /*
  394. ** Add a string to list of constants and return its index.
  395. */
  396. int luaK_stringK (FuncState *fs, TString *s) {
  397. TValue o;
  398. setsvalue(fs->ls->L, &o, s);
  399. return addk(fs, &o, &o); /* use string itself as key */
  400. }
  401. /*
  402. ** Add an integer to list of constants and return its index.
  403. ** Integers use userdata as keys to avoid collision with floats with
  404. ** same value; conversion to 'void*' is used only for hashing, so there
  405. ** are no "precision" problems.
  406. */
  407. static int luaK_intK (FuncState *fs, lua_Integer n) {
  408. TValue k, o;
  409. setpvalue(&k, cast(void*, cast(size_t, n)));
  410. setivalue(&o, n);
  411. return addk(fs, &k, &o);
  412. }
  413. /*
  414. ** Add a float to list of constants and return its index.
  415. */
  416. static int luaK_numberK (FuncState *fs, lua_Number r) {
  417. TValue o;
  418. setfltvalue(&o, r);
  419. return addk(fs, &o, &o); /* use number itself as key */
  420. }
  421. /*
  422. ** Add a boolean to list of constants and return its index.
  423. */
  424. static int boolK (FuncState *fs, int b) {
  425. TValue o;
  426. setbvalue(&o, b);
  427. return addk(fs, &o, &o); /* use boolean itself as key */
  428. }
  429. /*
  430. ** Add nil to list of constants and return its index.
  431. */
  432. static int nilK (FuncState *fs) {
  433. TValue k, v;
  434. setnilvalue(&v);
  435. /* cannot use nil as key; instead use table itself to represent nil */
  436. sethvalue(fs->ls->L, &k, fs->ls->h);
  437. return addk(fs, &k, &v);
  438. }
  439. void luaK_int (FuncState *fs, int reg, lua_Integer i) {
  440. if (l_castS2U(i) + MAXARG_sBx <= l_castS2U(MAXARG_Bx))
  441. luaK_codeAsBx(fs, OP_LOADI, reg, cast_int(i));
  442. else
  443. luaK_codek(fs, reg, luaK_intK(fs, i));
  444. }
  445. /*
  446. ** Fix an expression to return the number of results 'nresults'.
  447. ** Either 'e' is a multi-ret expression (function call or vararg)
  448. ** or 'nresults' is LUA_MULTRET (as any expression can satisfy that).
  449. */
  450. void luaK_setreturns (FuncState *fs, expdesc *e, int nresults) {
  451. if (e->k == VCALL) { /* expression is an open function call? */
  452. SETARG_C(getinstruction(fs, e), nresults + 1);
  453. }
  454. else if (e->k == VVARARG) {
  455. Instruction *pc = &getinstruction(fs, e);
  456. SETARG_B(*pc, nresults + 1);
  457. SETARG_A(*pc, fs->freereg);
  458. luaK_reserveregs(fs, 1);
  459. }
  460. else lua_assert(nresults == LUA_MULTRET);
  461. }
  462. /*
  463. ** Fix an expression to return one result.
  464. ** If expression is not a multi-ret expression (function call or
  465. ** vararg), it already returns one result, so nothing needs to be done.
  466. ** Function calls become VNONRELOC expressions (as its result comes
  467. ** fixed in the base register of the call), while vararg expressions
  468. ** become VRELOCABLE (as OP_VARARG puts its results where it wants).
  469. ** (Calls are created returning one result, so that does not need
  470. ** to be fixed.)
  471. */
  472. void luaK_setoneret (FuncState *fs, expdesc *e) {
  473. if (e->k == VCALL) { /* expression is an open function call? */
  474. /* already returns 1 value */
  475. lua_assert(GETARG_C(getinstruction(fs, e)) == 2);
  476. e->k = VNONRELOC; /* result has fixed position */
  477. e->u.info = GETARG_A(getinstruction(fs, e));
  478. }
  479. else if (e->k == VVARARG) {
  480. SETARG_B(getinstruction(fs, e), 2);
  481. e->k = VRELOCABLE; /* can relocate its simple result */
  482. }
  483. }
  484. /*
  485. ** Ensure that expression 'e' is not a variable.
  486. */
  487. void luaK_dischargevars (FuncState *fs, expdesc *e) {
  488. switch (e->k) {
  489. case VLOCAL: { /* already in a register */
  490. e->k = VNONRELOC; /* becomes a non-relocatable value */
  491. break;
  492. }
  493. case VUPVAL: { /* move value to some (pending) register */
  494. e->u.info = luaK_codeABC(fs, OP_GETUPVAL, 0, e->u.info, 0);
  495. e->k = VRELOCABLE;
  496. break;
  497. }
  498. case VINDEXUP: {
  499. e->u.info = luaK_codeABC(fs, OP_GETTABUP, 0, e->u.ind.t, e->u.ind.idx);
  500. e->k = VRELOCABLE;
  501. break;
  502. }
  503. case VINDEXI: {
  504. freereg(fs, e->u.ind.t);
  505. e->u.info = luaK_codeABC(fs, OP_GETI, 0, e->u.ind.t, e->u.ind.idx);
  506. e->k = VRELOCABLE;
  507. break;
  508. }
  509. case VINDEXSTR: {
  510. freereg(fs, e->u.ind.t);
  511. e->u.info = luaK_codeABC(fs, OP_GETFIELD, 0, e->u.ind.t, e->u.ind.idx);
  512. e->k = VRELOCABLE;
  513. break;
  514. }
  515. case VINDEXED: {
  516. freeregs(fs, e->u.ind.t, e->u.ind.idx);
  517. e->u.info = luaK_codeABC(fs, OP_GETTABLE, 0, e->u.ind.t, e->u.ind.idx);
  518. e->k = VRELOCABLE;
  519. break;
  520. }
  521. case VVARARG: case VCALL: {
  522. luaK_setoneret(fs, e);
  523. break;
  524. }
  525. default: break; /* there is one value available (somewhere) */
  526. }
  527. }
  528. /*
  529. ** Ensures expression value is in register 'reg' (and therefore
  530. ** 'e' will become a non-relocatable expression).
  531. */
  532. static void discharge2reg (FuncState *fs, expdesc *e, int reg) {
  533. luaK_dischargevars(fs, e);
  534. switch (e->k) {
  535. case VNIL: {
  536. luaK_nil(fs, reg, 1);
  537. break;
  538. }
  539. case VFALSE: case VTRUE: {
  540. luaK_codeABC(fs, OP_LOADBOOL, reg, e->k == VTRUE, 0);
  541. break;
  542. }
  543. case VK: {
  544. luaK_codek(fs, reg, e->u.info);
  545. break;
  546. }
  547. case VKFLT: {
  548. luaK_codek(fs, reg, luaK_numberK(fs, e->u.nval));
  549. break;
  550. }
  551. case VKINT: {
  552. luaK_int(fs, reg, e->u.ival);
  553. break;
  554. }
  555. case VRELOCABLE: {
  556. Instruction *pc = &getinstruction(fs, e);
  557. SETARG_A(*pc, reg); /* instruction will put result in 'reg' */
  558. break;
  559. }
  560. case VNONRELOC: {
  561. if (reg != e->u.info)
  562. luaK_codeABC(fs, OP_MOVE, reg, e->u.info, 0);
  563. break;
  564. }
  565. default: {
  566. lua_assert(e->k == VJMP);
  567. return; /* nothing to do... */
  568. }
  569. }
  570. e->u.info = reg;
  571. e->k = VNONRELOC;
  572. }
  573. /*
  574. ** Ensures expression value is in any register.
  575. */
  576. static void discharge2anyreg (FuncState *fs, expdesc *e) {
  577. if (e->k != VNONRELOC) { /* no fixed register yet? */
  578. luaK_reserveregs(fs, 1); /* get a register */
  579. discharge2reg(fs, e, fs->freereg-1); /* put value there */
  580. }
  581. }
  582. static int code_loadbool (FuncState *fs, int A, int b, int jump) {
  583. luaK_getlabel(fs); /* those instructions may be jump targets */
  584. return luaK_codeABC(fs, OP_LOADBOOL, A, b, jump);
  585. }
  586. /*
  587. ** check whether list has any jump that do not produce a value
  588. ** or produce an inverted value
  589. */
  590. static int need_value (FuncState *fs, int list) {
  591. for (; list != NO_JUMP; list = getjump(fs, list)) {
  592. Instruction i = *getjumpcontrol(fs, list);
  593. if (GET_OPCODE(i) != OP_TESTSET) return 1;
  594. }
  595. return 0; /* not found */
  596. }
  597. /*
  598. ** Ensures final expression result (including results from its jump
  599. ** lists) is in register 'reg'.
  600. ** If expression has jumps, need to patch these jumps either to
  601. ** its final position or to "load" instructions (for those tests
  602. ** that do not produce values).
  603. */
  604. static void exp2reg (FuncState *fs, expdesc *e, int reg) {
  605. discharge2reg(fs, e, reg);
  606. if (e->k == VJMP) /* expression itself is a test? */
  607. luaK_concat(fs, &e->t, e->u.info); /* put this jump in 't' list */
  608. if (hasjumps(e)) {
  609. int final; /* position after whole expression */
  610. int p_f = NO_JUMP; /* position of an eventual LOAD false */
  611. int p_t = NO_JUMP; /* position of an eventual LOAD true */
  612. if (need_value(fs, e->t) || need_value(fs, e->f)) {
  613. int fj = (e->k == VJMP) ? NO_JUMP : luaK_jump(fs);
  614. p_f = code_loadbool(fs, reg, 0, 1);
  615. p_t = code_loadbool(fs, reg, 1, 0);
  616. luaK_patchtohere(fs, fj);
  617. }
  618. final = luaK_getlabel(fs);
  619. patchlistaux(fs, e->f, final, reg, p_f);
  620. patchlistaux(fs, e->t, final, reg, p_t);
  621. }
  622. e->f = e->t = NO_JUMP;
  623. e->u.info = reg;
  624. e->k = VNONRELOC;
  625. }
  626. /*
  627. ** Ensures final expression result (including results from its jump
  628. ** lists) is in next available register.
  629. */
  630. void luaK_exp2nextreg (FuncState *fs, expdesc *e) {
  631. luaK_dischargevars(fs, e);
  632. freeexp(fs, e);
  633. luaK_reserveregs(fs, 1);
  634. exp2reg(fs, e, fs->freereg - 1);
  635. }
  636. /*
  637. ** Ensures final expression result (including results from its jump
  638. ** lists) is in some (any) register and return that register.
  639. */
  640. int luaK_exp2anyreg (FuncState *fs, expdesc *e) {
  641. luaK_dischargevars(fs, e);
  642. if (e->k == VNONRELOC) { /* expression already has a register? */
  643. if (!hasjumps(e)) /* no jumps? */
  644. return e->u.info; /* result is already in a register */
  645. if (e->u.info >= fs->nactvar) { /* reg. is not a local? */
  646. exp2reg(fs, e, e->u.info); /* put final result in it */
  647. return e->u.info;
  648. }
  649. }
  650. luaK_exp2nextreg(fs, e); /* otherwise, use next available register */
  651. return e->u.info;
  652. }
  653. /*
  654. ** Ensures final expression result is either in a register or in an
  655. ** upvalue.
  656. */
  657. void luaK_exp2anyregup (FuncState *fs, expdesc *e) {
  658. if (e->k != VUPVAL || hasjumps(e))
  659. luaK_exp2anyreg(fs, e);
  660. }
  661. /*
  662. ** Ensures final expression result is either in a register or it is
  663. ** a constant.
  664. */
  665. void luaK_exp2val (FuncState *fs, expdesc *e) {
  666. if (hasjumps(e))
  667. luaK_exp2anyreg(fs, e);
  668. else
  669. luaK_dischargevars(fs, e);
  670. }
  671. /*
  672. ** Ensures final expression result is in a valid R/K index
  673. ** (that is, it is either in a register or in 'k' with an index
  674. ** in the range of R/K indices).
  675. ** Returns R/K index.
  676. */
  677. int luaK_exp2RK (FuncState *fs, expdesc *e) {
  678. luaK_exp2val(fs, e);
  679. switch (e->k) { /* move constants to 'k' */
  680. case VTRUE: e->u.info = boolK(fs, 1); goto vk;
  681. case VFALSE: e->u.info = boolK(fs, 0); goto vk;
  682. case VNIL: e->u.info = nilK(fs); goto vk;
  683. case VKINT: e->u.info = luaK_intK(fs, e->u.ival); goto vk;
  684. case VKFLT: e->u.info = luaK_numberK(fs, e->u.nval); goto vk;
  685. case VK:
  686. vk:
  687. e->k = VK;
  688. if (e->u.info <= MAXINDEXRK) /* constant fits in 'argC'? */
  689. return RKASK(e->u.info);
  690. else break;
  691. default: break;
  692. }
  693. /* not a constant in the right range: put it in a register */
  694. return luaK_exp2anyreg(fs, e);
  695. }
  696. /*
  697. ** Generate code to store result of expression 'ex' into variable 'var'.
  698. */
  699. void luaK_storevar (FuncState *fs, expdesc *var, expdesc *ex) {
  700. switch (var->k) {
  701. case VLOCAL: {
  702. freeexp(fs, ex);
  703. exp2reg(fs, ex, var->u.info); /* compute 'ex' into proper place */
  704. return;
  705. }
  706. case VUPVAL: {
  707. int e = luaK_exp2anyreg(fs, ex);
  708. luaK_codeABC(fs, OP_SETUPVAL, e, var->u.info, 0);
  709. break;
  710. }
  711. case VINDEXUP: {
  712. int e = luaK_exp2RK(fs, ex);
  713. luaK_codeABC(fs, OP_SETTABUP, var->u.ind.t, var->u.ind.idx, e);
  714. break;
  715. }
  716. case VINDEXI: {
  717. int e = luaK_exp2RK(fs, ex);
  718. luaK_codeABC(fs, OP_SETI, var->u.ind.t, var->u.ind.idx, e);
  719. break;
  720. }
  721. case VINDEXSTR: {
  722. int e = luaK_exp2RK(fs, ex);
  723. luaK_codeABC(fs, OP_SETFIELD, var->u.ind.t, var->u.ind.idx, e);
  724. break;
  725. }
  726. case VINDEXED: {
  727. int e = luaK_exp2RK(fs, ex);
  728. luaK_codeABC(fs, OP_SETTABLE, var->u.ind.t, var->u.ind.idx, e);
  729. break;
  730. }
  731. default: lua_assert(0); /* invalid var kind to store */
  732. }
  733. freeexp(fs, ex);
  734. }
  735. /*
  736. ** Emit SELF instruction (convert expression 'e' into 'e:key(e,').
  737. */
  738. void luaK_self (FuncState *fs, expdesc *e, expdesc *key) {
  739. int ereg;
  740. luaK_exp2anyreg(fs, e);
  741. ereg = e->u.info; /* register where 'e' was placed */
  742. freeexp(fs, e);
  743. e->u.info = fs->freereg; /* base register for op_self */
  744. e->k = VNONRELOC; /* self expression has a fixed register */
  745. luaK_reserveregs(fs, 2); /* function and 'self' produced by op_self */
  746. luaK_codeABC(fs, OP_SELF, e->u.info, ereg, luaK_exp2RK(fs, key));
  747. freeexp(fs, key);
  748. }
  749. /*
  750. ** Negate condition 'e' (where 'e' is a comparison).
  751. */
  752. static void negatecondition (FuncState *fs, expdesc *e) {
  753. Instruction *pc = getjumpcontrol(fs, e->u.info);
  754. lua_assert(testTMode(GET_OPCODE(*pc)) && GET_OPCODE(*pc) != OP_TESTSET &&
  755. GET_OPCODE(*pc) != OP_TEST);
  756. SETARG_A(*pc, !(GETARG_A(*pc)));
  757. }
  758. /*
  759. ** Emit instruction to jump if 'e' is 'cond' (that is, if 'cond'
  760. ** is true, code will jump if 'e' is true.) Return jump position.
  761. ** Optimize when 'e' is 'not' something, inverting the condition
  762. ** and removing the 'not'.
  763. */
  764. static int jumponcond (FuncState *fs, expdesc *e, int cond) {
  765. if (e->k == VRELOCABLE) {
  766. Instruction ie = getinstruction(fs, e);
  767. if (GET_OPCODE(ie) == OP_NOT) {
  768. fs->pc--; /* remove previous OP_NOT */
  769. return condjump(fs, OP_TEST, GETARG_B(ie), 0, !cond);
  770. }
  771. /* else go through */
  772. }
  773. discharge2anyreg(fs, e);
  774. freeexp(fs, e);
  775. return condjump(fs, OP_TESTSET, NO_REG, e->u.info, cond);
  776. }
  777. /*
  778. ** Emit code to go through if 'e' is true, jump otherwise.
  779. */
  780. void luaK_goiftrue (FuncState *fs, expdesc *e) {
  781. int pc; /* pc of new jump */
  782. luaK_dischargevars(fs, e);
  783. switch (e->k) {
  784. case VJMP: { /* condition? */
  785. negatecondition(fs, e); /* jump when it is false */
  786. pc = e->u.info; /* save jump position */
  787. break;
  788. }
  789. case VK: case VKFLT: case VKINT: case VTRUE: {
  790. pc = NO_JUMP; /* always true; do nothing */
  791. break;
  792. }
  793. default: {
  794. pc = jumponcond(fs, e, 0); /* jump when false */
  795. break;
  796. }
  797. }
  798. luaK_concat(fs, &e->f, pc); /* insert new jump in false list */
  799. luaK_patchtohere(fs, e->t); /* true list jumps to here (to go through) */
  800. e->t = NO_JUMP;
  801. }
  802. /*
  803. ** Emit code to go through if 'e' is false, jump otherwise.
  804. */
  805. void luaK_goiffalse (FuncState *fs, expdesc *e) {
  806. int pc; /* pc of new jump */
  807. luaK_dischargevars(fs, e);
  808. switch (e->k) {
  809. case VJMP: {
  810. pc = e->u.info; /* already jump if true */
  811. break;
  812. }
  813. case VNIL: case VFALSE: {
  814. pc = NO_JUMP; /* always false; do nothing */
  815. break;
  816. }
  817. default: {
  818. pc = jumponcond(fs, e, 1); /* jump if true */
  819. break;
  820. }
  821. }
  822. luaK_concat(fs, &e->t, pc); /* insert new jump in 't' list */
  823. luaK_patchtohere(fs, e->f); /* false list jumps to here (to go through) */
  824. e->f = NO_JUMP;
  825. }
  826. /*
  827. ** Code 'not e', doing constant folding.
  828. */
  829. static void codenot (FuncState *fs, expdesc *e) {
  830. luaK_dischargevars(fs, e);
  831. switch (e->k) {
  832. case VNIL: case VFALSE: {
  833. e->k = VTRUE; /* true == not nil == not false */
  834. break;
  835. }
  836. case VK: case VKFLT: case VKINT: case VTRUE: {
  837. e->k = VFALSE; /* false == not "x" == not 0.5 == not 1 == not true */
  838. break;
  839. }
  840. case VJMP: {
  841. negatecondition(fs, e);
  842. break;
  843. }
  844. case VRELOCABLE:
  845. case VNONRELOC: {
  846. discharge2anyreg(fs, e);
  847. freeexp(fs, e);
  848. e->u.info = luaK_codeABC(fs, OP_NOT, 0, e->u.info, 0);
  849. e->k = VRELOCABLE;
  850. break;
  851. }
  852. default: lua_assert(0); /* cannot happen */
  853. }
  854. /* interchange true and false lists */
  855. { int temp = e->f; e->f = e->t; e->t = temp; }
  856. removevalues(fs, e->f); /* values are useless when negated */
  857. removevalues(fs, e->t);
  858. }
  859. /*
  860. ** Check whether expression 'e' is a literal string
  861. */
  862. static int isKstr (FuncState *fs, expdesc *e) {
  863. return (e->k == VK && !hasjumps(e) && e->u.info <= MAXARG_C &&
  864. ttisstring(&fs->f->k[e->u.info]));
  865. }
  866. /*
  867. ** Check whether expression 'e' is a literal integer in
  868. ** proper range
  869. */
  870. static int isKint (expdesc *e) {
  871. return (e->k == VKINT && !hasjumps(e) &&
  872. l_castS2U(e->u.ival) <= l_castS2U(MAXARG_C));
  873. }
  874. /*
  875. ** Create expression 't[k]'. 't' must have its final result already in a
  876. ** register or upvalue. Upvalues can only be indexed by literal strings.
  877. ** Keys can be literal strings in the constant table or arbitrary
  878. ** values in registers.
  879. */
  880. void luaK_indexed (FuncState *fs, expdesc *t, expdesc *k) {
  881. lua_assert(!hasjumps(t) && (vkisinreg(t->k) || t->k == VUPVAL));
  882. if (t->k == VUPVAL && !isKstr(fs, k)) /* upvalue indexed by non string? */
  883. luaK_exp2anyreg(fs, t); /* put it in a register */
  884. t->u.ind.t = t->u.info; /* register or upvalue index */
  885. if (t->k == VUPVAL) {
  886. t->u.ind.idx = k->u.info; /* literal string */
  887. t->k = VINDEXUP;
  888. }
  889. else if (isKstr(fs, k)) {
  890. t->u.ind.idx = k->u.info; /* literal string */
  891. t->k = VINDEXSTR;
  892. }
  893. else if (isKint(k)) {
  894. t->u.ind.idx = k->u.ival; /* integer constant */
  895. t->k = VINDEXI;
  896. }
  897. else {
  898. t->u.ind.idx = luaK_exp2anyreg(fs, k); /* register */
  899. t->k = VINDEXED;
  900. }
  901. }
  902. /*
  903. ** Return false if folding can raise an error.
  904. ** Bitwise operations need operands convertible to integers; division
  905. ** operations cannot have 0 as divisor.
  906. */
  907. static int validop (int op, TValue *v1, TValue *v2) {
  908. switch (op) {
  909. case LUA_OPBAND: case LUA_OPBOR: case LUA_OPBXOR:
  910. case LUA_OPSHL: case LUA_OPSHR: case LUA_OPBNOT: { /* conversion errors */
  911. lua_Integer i;
  912. return (tointeger(v1, &i) && tointeger(v2, &i));
  913. }
  914. case LUA_OPDIV: case LUA_OPIDIV: case LUA_OPMOD: /* division by 0 */
  915. return (nvalue(v2) != 0);
  916. default: return 1; /* everything else is valid */
  917. }
  918. }
  919. /*
  920. ** Try to "constant-fold" an operation; return 1 iff successful.
  921. ** (In this case, 'e1' has the final result.)
  922. */
  923. static int constfolding (FuncState *fs, int op, expdesc *e1,
  924. const expdesc *e2) {
  925. TValue v1, v2, res;
  926. if (!tonumeral(e1, &v1) || !tonumeral(e2, &v2) || !validop(op, &v1, &v2))
  927. return 0; /* non-numeric operands or not safe to fold */
  928. luaO_arith(fs->ls->L, op, &v1, &v2, &res); /* does operation */
  929. if (ttisinteger(&res)) {
  930. e1->k = VKINT;
  931. e1->u.ival = ivalue(&res);
  932. }
  933. else { /* folds neither NaN nor 0.0 (to avoid problems with -0.0) */
  934. lua_Number n = fltvalue(&res);
  935. if (luai_numisnan(n) || n == 0)
  936. return 0;
  937. e1->k = VKFLT;
  938. e1->u.nval = n;
  939. }
  940. return 1;
  941. }
  942. /*
  943. ** Emit code for unary expressions that "produce values"
  944. ** (everything but 'not').
  945. ** Expression to produce final result will be encoded in 'e'.
  946. */
  947. static void codeunexpval (FuncState *fs, OpCode op, expdesc *e, int line) {
  948. int r = luaK_exp2anyreg(fs, e); /* opcodes operate only on registers */
  949. freeexp(fs, e);
  950. e->u.info = luaK_codeABC(fs, op, 0, r, 0); /* generate opcode */
  951. e->k = VRELOCABLE; /* all those operations are relocatable */
  952. luaK_fixline(fs, line);
  953. }
  954. /*
  955. ** Emit code for binary expressions that "produce values"
  956. ** (everything but logical operators 'and'/'or' and comparison
  957. ** operators).
  958. ** Expression to produce final result will be encoded in 'e1'.
  959. ** Because 'luaK_exp2RK' can free registers, its calls must be
  960. ** in "stack order" (that is, first on 'e2', which may have more
  961. ** recent registers to be released).
  962. */
  963. static void codebinexpval (FuncState *fs, OpCode op,
  964. expdesc *e1, expdesc *e2, int line) {
  965. int v1, v2;
  966. if (op == OP_ADD && (isKint(e1) || isKint(e2))) {
  967. if (isKint(e2)) {
  968. v2 = cast_int(e2->u.ival);
  969. v1 = luaK_exp2anyreg(fs, e1);
  970. }
  971. else { /* exchange operands to make 2nd one a constant */
  972. v2 = cast_int(e1->u.ival);
  973. v1 = luaK_exp2anyreg(fs, e2) | BITRK; /* K bit signal the exchange */
  974. }
  975. op = OP_ADDI;
  976. }
  977. else {
  978. v2 = luaK_exp2RK(fs, e2); /* both operands are "RK" */
  979. v1 = luaK_exp2RK(fs, e1);
  980. }
  981. freeexps(fs, e1, e2);
  982. e1->u.info = luaK_codeABC(fs, op, 0, v1, v2); /* generate opcode */
  983. e1->k = VRELOCABLE; /* all those operations are relocatable */
  984. luaK_fixline(fs, line);
  985. }
  986. /*
  987. ** Emit code for comparisons.
  988. ** 'e1' was already put in R/K form by 'luaK_infix'.
  989. */
  990. static void codecomp (FuncState *fs, BinOpr opr, expdesc *e1, expdesc *e2) {
  991. int rk1 = (e1->k == VK) ? RKASK(e1->u.info)
  992. : check_exp(e1->k == VNONRELOC, e1->u.info);
  993. int rk2 = luaK_exp2RK(fs, e2);
  994. freeexps(fs, e1, e2);
  995. switch (opr) {
  996. case OPR_NE: { /* '(a ~= b)' ==> 'not (a == b)' */
  997. e1->u.info = condjump(fs, OP_EQ, 0, rk1, rk2);
  998. break;
  999. }
  1000. case OPR_GT: case OPR_GE: {
  1001. /* '(a > b)' ==> '(b < a)'; '(a >= b)' ==> '(b <= a)' */
  1002. OpCode op = cast(OpCode, (opr - OPR_NE) + OP_EQ);
  1003. e1->u.info = condjump(fs, op, 1, rk2, rk1); /* invert operands */
  1004. break;
  1005. }
  1006. default: { /* '==', '<', '<=' use their own opcodes */
  1007. OpCode op = cast(OpCode, (opr - OPR_EQ) + OP_EQ);
  1008. e1->u.info = condjump(fs, op, 1, rk1, rk2);
  1009. break;
  1010. }
  1011. }
  1012. e1->k = VJMP;
  1013. }
  1014. /*
  1015. ** Aplly prefix operation 'op' to expression 'e'.
  1016. */
  1017. void luaK_prefix (FuncState *fs, UnOpr op, expdesc *e, int line) {
  1018. static const expdesc ef = {VKINT, {0}, NO_JUMP, NO_JUMP};
  1019. switch (op) {
  1020. case OPR_MINUS: case OPR_BNOT: /* use 'ef' as fake 2nd operand */
  1021. if (constfolding(fs, op + LUA_OPUNM, e, &ef))
  1022. break;
  1023. /* FALLTHROUGH */
  1024. case OPR_LEN:
  1025. codeunexpval(fs, cast(OpCode, op + OP_UNM), e, line);
  1026. break;
  1027. case OPR_NOT: codenot(fs, e); break;
  1028. default: lua_assert(0);
  1029. }
  1030. }
  1031. /*
  1032. ** Process 1st operand 'v' of binary operation 'op' before reading
  1033. ** 2nd operand.
  1034. */
  1035. void luaK_infix (FuncState *fs, BinOpr op, expdesc *v) {
  1036. switch (op) {
  1037. case OPR_AND: {
  1038. luaK_goiftrue(fs, v); /* go ahead only if 'v' is true */
  1039. break;
  1040. }
  1041. case OPR_OR: {
  1042. luaK_goiffalse(fs, v); /* go ahead only if 'v' is false */
  1043. break;
  1044. }
  1045. case OPR_CONCAT: {
  1046. luaK_exp2nextreg(fs, v); /* operand must be on the 'stack' */
  1047. break;
  1048. }
  1049. case OPR_ADD: case OPR_SUB:
  1050. case OPR_MUL: case OPR_DIV: case OPR_IDIV:
  1051. case OPR_MOD: case OPR_POW:
  1052. case OPR_BAND: case OPR_BOR: case OPR_BXOR:
  1053. case OPR_SHL: case OPR_SHR: {
  1054. if (!tonumeral(v, NULL))
  1055. luaK_exp2RK(fs, v);
  1056. /* else keep numeral, which may be folded with 2nd operand */
  1057. break;
  1058. }
  1059. default: {
  1060. luaK_exp2RK(fs, v);
  1061. break;
  1062. }
  1063. }
  1064. }
  1065. /*
  1066. ** Finalize code for binary operation, after reading 2nd operand.
  1067. ** For '(a .. b .. c)' (which is '(a .. (b .. c))', because
  1068. ** concatenation is right associative), merge second CONCAT into first
  1069. ** one.
  1070. */
  1071. void luaK_posfix (FuncState *fs, BinOpr op,
  1072. expdesc *e1, expdesc *e2, int line) {
  1073. switch (op) {
  1074. case OPR_AND: {
  1075. lua_assert(e1->t == NO_JUMP); /* list closed by 'luK_infix' */
  1076. luaK_dischargevars(fs, e2);
  1077. luaK_concat(fs, &e2->f, e1->f);
  1078. *e1 = *e2;
  1079. break;
  1080. }
  1081. case OPR_OR: {
  1082. lua_assert(e1->f == NO_JUMP); /* list closed by 'luK_infix' */
  1083. luaK_dischargevars(fs, e2);
  1084. luaK_concat(fs, &e2->t, e1->t);
  1085. *e1 = *e2;
  1086. break;
  1087. }
  1088. case OPR_CONCAT: {
  1089. luaK_exp2val(fs, e2);
  1090. if (e2->k == VRELOCABLE &&
  1091. GET_OPCODE(getinstruction(fs, e2)) == OP_CONCAT) {
  1092. lua_assert(e1->u.info == GETARG_B(getinstruction(fs, e2))-1);
  1093. freeexp(fs, e1);
  1094. SETARG_B(getinstruction(fs, e2), e1->u.info);
  1095. e1->k = VRELOCABLE; e1->u.info = e2->u.info;
  1096. }
  1097. else {
  1098. luaK_exp2nextreg(fs, e2); /* operand must be on the 'stack' */
  1099. codebinexpval(fs, OP_CONCAT, e1, e2, line);
  1100. }
  1101. break;
  1102. }
  1103. case OPR_ADD: case OPR_SUB: case OPR_MUL: case OPR_DIV:
  1104. case OPR_IDIV: case OPR_MOD: case OPR_POW:
  1105. case OPR_BAND: case OPR_BOR: case OPR_BXOR:
  1106. case OPR_SHL: case OPR_SHR: {
  1107. if (!constfolding(fs, op + LUA_OPADD, e1, e2))
  1108. codebinexpval(fs, cast(OpCode, op + OP_ADD), e1, e2, line);
  1109. break;
  1110. }
  1111. case OPR_EQ: case OPR_LT: case OPR_LE:
  1112. case OPR_NE: case OPR_GT: case OPR_GE: {
  1113. codecomp(fs, op, e1, e2);
  1114. break;
  1115. }
  1116. default: lua_assert(0);
  1117. }
  1118. }
  1119. /*
  1120. ** Change line information associated with current position.
  1121. */
  1122. void luaK_fixline (FuncState *fs, int line) {
  1123. fs->f->lineinfo[fs->pc - 1] = line;
  1124. }
  1125. /*
  1126. ** Emit a SETLIST instruction.
  1127. ** 'base' is register that keeps table;
  1128. ** 'nelems' is #table plus those to be stored now;
  1129. ** 'tostore' is number of values (in registers 'base + 1',...) to add to
  1130. ** table (or LUA_MULTRET to add up to stack top).
  1131. */
  1132. void luaK_setlist (FuncState *fs, int base, int nelems, int tostore) {
  1133. int c = (nelems - 1)/LFIELDS_PER_FLUSH + 1;
  1134. int b = (tostore == LUA_MULTRET) ? 0 : tostore;
  1135. lua_assert(tostore != 0 && tostore <= LFIELDS_PER_FLUSH);
  1136. if (c <= MAXARG_C)
  1137. luaK_codeABC(fs, OP_SETLIST, base, b, c);
  1138. else if (c <= MAXARG_Ax) {
  1139. luaK_codeABC(fs, OP_SETLIST, base, b, 0);
  1140. codeextraarg(fs, c);
  1141. }
  1142. else
  1143. luaX_syntaxerror(fs->ls, "constructor too long");
  1144. fs->freereg = base + 1; /* free registers with list values */
  1145. }