lcode.c 50 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814
  1. /*
  2. ** $Id: lcode.c $
  3. ** Code generator for Lua
  4. ** See Copyright Notice in lua.h
  5. */
  6. #define lcode_c
  7. #define LUA_CORE
  8. #include "lprefix.h"
  9. #include <limits.h>
  10. #include <math.h>
  11. #include <stdlib.h>
  12. #include "lua.h"
  13. #include "lcode.h"
  14. #include "ldebug.h"
  15. #include "ldo.h"
  16. #include "lgc.h"
  17. #include "llex.h"
  18. #include "lmem.h"
  19. #include "lobject.h"
  20. #include "lopcodes.h"
  21. #include "lparser.h"
  22. #include "lstring.h"
  23. #include "ltable.h"
  24. #include "lvm.h"
  25. /* Maximum number of registers in a Lua function (must fit in 8 bits) */
  26. #define MAXREGS 255
  27. #define hasjumps(e) ((e)->t != (e)->f)
  28. static int codesJ (FuncState *fs, OpCode o, int sj, int k);
  29. /* semantic error */
  30. l_noret luaK_semerror (LexState *ls, const char *msg) {
  31. ls->t.token = 0; /* remove "near <token>" from final message */
  32. luaX_syntaxerror(ls, msg);
  33. }
  34. /*
  35. ** If expression is a numeric constant, fills 'v' with its value
  36. ** and returns 1. Otherwise, returns 0.
  37. */
  38. static int tonumeral (const expdesc *e, TValue *v) {
  39. if (hasjumps(e))
  40. return 0; /* not a numeral */
  41. switch (e->k) {
  42. case VKINT:
  43. if (v) setivalue(v, e->u.ival);
  44. return 1;
  45. case VKFLT:
  46. if (v) setfltvalue(v, e->u.nval);
  47. return 1;
  48. default: return 0;
  49. }
  50. }
  51. /*
  52. ** Get the constant value from a constant expression
  53. */
  54. static TValue *const2val (FuncState *fs, const expdesc *e) {
  55. lua_assert(e->k == VCONST);
  56. return &fs->ls->dyd->actvar.arr[e->u.info].k;
  57. }
  58. /*
  59. ** If expression is a constant, fills 'v' with its value
  60. ** and returns 1. Otherwise, returns 0.
  61. */
  62. int luaK_exp2const (FuncState *fs, const expdesc *e, TValue *v) {
  63. if (hasjumps(e))
  64. return 0; /* not a constant */
  65. switch (e->k) {
  66. case VFALSE:
  67. setbfvalue(v);
  68. return 1;
  69. case VTRUE:
  70. setbtvalue(v);
  71. return 1;
  72. case VNIL:
  73. setnilvalue(v);
  74. return 1;
  75. case VKSTR: {
  76. setsvalue(fs->ls->L, v, e->u.strval);
  77. return 1;
  78. }
  79. case VCONST: {
  80. setobj(fs->ls->L, v, const2val(fs, e));
  81. return 1;
  82. }
  83. default: return tonumeral(e, v);
  84. }
  85. }
  86. /*
  87. ** Return the previous instruction of the current code. If there
  88. ** may be a jump target between the current instruction and the
  89. ** previous one, return an invalid instruction (to avoid wrong
  90. ** optimizations).
  91. */
  92. static Instruction *previousinstruction (FuncState *fs) {
  93. static const Instruction invalidinstruction = ~(Instruction)0;
  94. if (fs->pc > fs->lasttarget)
  95. return &fs->f->code[fs->pc - 1]; /* previous instruction */
  96. else
  97. return cast(Instruction*, &invalidinstruction);
  98. }
  99. /*
  100. ** Create a OP_LOADNIL instruction, but try to optimize: if the previous
  101. ** instruction is also OP_LOADNIL and ranges are compatible, adjust
  102. ** range of previous instruction instead of emitting a new one. (For
  103. ** instance, 'local a; local b' will generate a single opcode.)
  104. */
  105. void luaK_nil (FuncState *fs, int from, int n) {
  106. int l = from + n - 1; /* last register to set nil */
  107. Instruction *previous = previousinstruction(fs);
  108. if (GET_OPCODE(*previous) == OP_LOADNIL) { /* previous is LOADNIL? */
  109. int pfrom = GETARG_A(*previous); /* get previous range */
  110. int pl = pfrom + GETARG_B(*previous);
  111. if ((pfrom <= from && from <= pl + 1) ||
  112. (from <= pfrom && pfrom <= l + 1)) { /* can connect both? */
  113. if (pfrom < from) from = pfrom; /* from = min(from, pfrom) */
  114. if (pl > l) l = pl; /* l = max(l, pl) */
  115. SETARG_A(*previous, from);
  116. SETARG_B(*previous, l - from);
  117. return;
  118. } /* else go through */
  119. }
  120. luaK_codeABC(fs, OP_LOADNIL, from, n - 1, 0); /* else no optimization */
  121. }
  122. /*
  123. ** Gets the destination address of a jump instruction. Used to traverse
  124. ** a list of jumps.
  125. */
  126. static int getjump (FuncState *fs, int pc) {
  127. int offset = GETARG_sJ(fs->f->code[pc]);
  128. if (offset == NO_JUMP) /* point to itself represents end of list */
  129. return NO_JUMP; /* end of list */
  130. else
  131. return (pc+1)+offset; /* turn offset into absolute position */
  132. }
  133. /*
  134. ** Fix jump instruction at position 'pc' to jump to 'dest'.
  135. ** (Jump addresses are relative in Lua)
  136. */
  137. static void fixjump (FuncState *fs, int pc, int dest) {
  138. Instruction *jmp = &fs->f->code[pc];
  139. int offset = dest - (pc + 1);
  140. lua_assert(dest != NO_JUMP);
  141. if (!(-OFFSET_sJ <= offset && offset <= MAXARG_sJ - OFFSET_sJ))
  142. luaX_syntaxerror(fs->ls, "control structure too long");
  143. lua_assert(GET_OPCODE(*jmp) == OP_JMP);
  144. SETARG_sJ(*jmp, offset);
  145. }
  146. /*
  147. ** Concatenate jump-list 'l2' into jump-list 'l1'
  148. */
  149. void luaK_concat (FuncState *fs, int *l1, int l2) {
  150. if (l2 == NO_JUMP) return; /* nothing to concatenate? */
  151. else if (*l1 == NO_JUMP) /* no original list? */
  152. *l1 = l2; /* 'l1' points to 'l2' */
  153. else {
  154. int list = *l1;
  155. int next;
  156. while ((next = getjump(fs, list)) != NO_JUMP) /* find last element */
  157. list = next;
  158. fixjump(fs, list, l2); /* last element links to 'l2' */
  159. }
  160. }
  161. /*
  162. ** Create a jump instruction and return its position, so its destination
  163. ** can be fixed later (with 'fixjump').
  164. */
  165. int luaK_jump (FuncState *fs) {
  166. return codesJ(fs, OP_JMP, NO_JUMP, 0);
  167. }
  168. /*
  169. ** Code a 'return' instruction
  170. */
  171. void luaK_ret (FuncState *fs, int first, int nret) {
  172. OpCode op;
  173. switch (nret) {
  174. case 0: op = OP_RETURN0; break;
  175. case 1: op = OP_RETURN1; break;
  176. default: op = OP_RETURN; break;
  177. }
  178. luaK_codeABC(fs, op, first, nret + 1, 0);
  179. }
  180. /*
  181. ** Code a "conditional jump", that is, a test or comparison opcode
  182. ** followed by a jump. Return jump position.
  183. */
  184. static int condjump (FuncState *fs, OpCode op, int A, int B, int C, int k) {
  185. luaK_codeABCk(fs, op, A, B, C, k);
  186. return luaK_jump(fs);
  187. }
  188. /*
  189. ** returns current 'pc' and marks it as a jump target (to avoid wrong
  190. ** optimizations with consecutive instructions not in the same basic block).
  191. */
  192. int luaK_getlabel (FuncState *fs) {
  193. fs->lasttarget = fs->pc;
  194. return fs->pc;
  195. }
  196. /*
  197. ** Returns the position of the instruction "controlling" a given
  198. ** jump (that is, its condition), or the jump itself if it is
  199. ** unconditional.
  200. */
  201. static Instruction *getjumpcontrol (FuncState *fs, int pc) {
  202. Instruction *pi = &fs->f->code[pc];
  203. if (pc >= 1 && testTMode(GET_OPCODE(*(pi-1))))
  204. return pi-1;
  205. else
  206. return pi;
  207. }
  208. /*
  209. ** Patch destination register for a TESTSET instruction.
  210. ** If instruction in position 'node' is not a TESTSET, return 0 ("fails").
  211. ** Otherwise, if 'reg' is not 'NO_REG', set it as the destination
  212. ** register. Otherwise, change instruction to a simple 'TEST' (produces
  213. ** no register value)
  214. */
  215. static int patchtestreg (FuncState *fs, int node, int reg) {
  216. Instruction *i = getjumpcontrol(fs, node);
  217. if (GET_OPCODE(*i) != OP_TESTSET)
  218. return 0; /* cannot patch other instructions */
  219. if (reg != NO_REG && reg != GETARG_B(*i))
  220. SETARG_A(*i, reg);
  221. else {
  222. /* no register to put value or register already has the value;
  223. change instruction to simple test */
  224. *i = CREATE_ABCk(OP_TEST, GETARG_B(*i), 0, 0, GETARG_k(*i));
  225. }
  226. return 1;
  227. }
  228. /*
  229. ** Traverse a list of tests ensuring no one produces a value
  230. */
  231. static void removevalues (FuncState *fs, int list) {
  232. for (; list != NO_JUMP; list = getjump(fs, list))
  233. patchtestreg(fs, list, NO_REG);
  234. }
  235. /*
  236. ** Traverse a list of tests, patching their destination address and
  237. ** registers: tests producing values jump to 'vtarget' (and put their
  238. ** values in 'reg'), other tests jump to 'dtarget'.
  239. */
  240. static void patchlistaux (FuncState *fs, int list, int vtarget, int reg,
  241. int dtarget) {
  242. while (list != NO_JUMP) {
  243. int next = getjump(fs, list);
  244. if (patchtestreg(fs, list, reg))
  245. fixjump(fs, list, vtarget);
  246. else
  247. fixjump(fs, list, dtarget); /* jump to default target */
  248. list = next;
  249. }
  250. }
  251. /*
  252. ** Path all jumps in 'list' to jump to 'target'.
  253. ** (The assert means that we cannot fix a jump to a forward address
  254. ** because we only know addresses once code is generated.)
  255. */
  256. void luaK_patchlist (FuncState *fs, int list, int target) {
  257. lua_assert(target <= fs->pc);
  258. patchlistaux(fs, list, target, NO_REG, target);
  259. }
  260. void luaK_patchtohere (FuncState *fs, int list) {
  261. int hr = luaK_getlabel(fs); /* mark "here" as a jump target */
  262. luaK_patchlist(fs, list, hr);
  263. }
  264. /* limit for difference between lines in relative line info. */
  265. #define LIMLINEDIFF 0x80
  266. /*
  267. ** Save line info for a new instruction. If difference from last line
  268. ** does not fit in a byte, of after that many instructions, save a new
  269. ** absolute line info; (in that case, the special value 'ABSLINEINFO'
  270. ** in 'lineinfo' signals the existence of this absolute information.)
  271. ** Otherwise, store the difference from last line in 'lineinfo'.
  272. */
  273. static void savelineinfo (FuncState *fs, Proto *f, int line) {
  274. int linedif = line - fs->previousline;
  275. int pc = fs->pc - 1; /* last instruction coded */
  276. if (abs(linedif) >= LIMLINEDIFF || fs->iwthabs++ >= MAXIWTHABS) {
  277. luaM_growvector(fs->ls->L, f->abslineinfo, fs->nabslineinfo,
  278. f->sizeabslineinfo, AbsLineInfo, MAX_INT, "lines");
  279. f->abslineinfo[fs->nabslineinfo].pc = pc;
  280. f->abslineinfo[fs->nabslineinfo++].line = line;
  281. linedif = ABSLINEINFO; /* signal that there is absolute information */
  282. fs->iwthabs = 1; /* restart counter */
  283. }
  284. luaM_growvector(fs->ls->L, f->lineinfo, pc, f->sizelineinfo, ls_byte,
  285. MAX_INT, "opcodes");
  286. f->lineinfo[pc] = linedif;
  287. fs->previousline = line; /* last line saved */
  288. }
  289. /*
  290. ** Remove line information from the last instruction.
  291. ** If line information for that instruction is absolute, set 'iwthabs'
  292. ** above its max to force the new (replacing) instruction to have
  293. ** absolute line info, too.
  294. */
  295. static void removelastlineinfo (FuncState *fs) {
  296. Proto *f = fs->f;
  297. int pc = fs->pc - 1; /* last instruction coded */
  298. if (f->lineinfo[pc] != ABSLINEINFO) { /* relative line info? */
  299. fs->previousline -= f->lineinfo[pc]; /* correct last line saved */
  300. fs->iwthabs--; /* undo previous increment */
  301. }
  302. else { /* absolute line information */
  303. lua_assert(f->abslineinfo[fs->nabslineinfo - 1].pc == pc);
  304. fs->nabslineinfo--; /* remove it */
  305. fs->iwthabs = MAXIWTHABS + 1; /* force next line info to be absolute */
  306. }
  307. }
  308. /*
  309. ** Remove the last instruction created, correcting line information
  310. ** accordingly.
  311. */
  312. static void removelastinstruction (FuncState *fs) {
  313. removelastlineinfo(fs);
  314. fs->pc--;
  315. }
  316. /*
  317. ** Emit instruction 'i', checking for array sizes and saving also its
  318. ** line information. Return 'i' position.
  319. */
  320. int luaK_code (FuncState *fs, Instruction i) {
  321. Proto *f = fs->f;
  322. /* put new instruction in code array */
  323. luaM_growvector(fs->ls->L, f->code, fs->pc, f->sizecode, Instruction,
  324. MAX_INT, "opcodes");
  325. f->code[fs->pc++] = i;
  326. savelineinfo(fs, f, fs->ls->lastline);
  327. return fs->pc - 1; /* index of new instruction */
  328. }
  329. /*
  330. ** Format and emit an 'iABC' instruction. (Assertions check consistency
  331. ** of parameters versus opcode.)
  332. */
  333. int luaK_codeABCk (FuncState *fs, OpCode o, int a, int b, int c, int k) {
  334. lua_assert(getOpMode(o) == iABC);
  335. lua_assert(a <= MAXARG_A && b <= MAXARG_B &&
  336. c <= MAXARG_C && (k & ~1) == 0);
  337. return luaK_code(fs, CREATE_ABCk(o, a, b, c, k));
  338. }
  339. /*
  340. ** Format and emit an 'iABx' instruction.
  341. */
  342. int luaK_codeABx (FuncState *fs, OpCode o, int a, unsigned int bc) {
  343. lua_assert(getOpMode(o) == iABx);
  344. lua_assert(a <= MAXARG_A && bc <= MAXARG_Bx);
  345. return luaK_code(fs, CREATE_ABx(o, a, bc));
  346. }
  347. /*
  348. ** Format and emit an 'iAsBx' instruction.
  349. */
  350. int luaK_codeAsBx (FuncState *fs, OpCode o, int a, int bc) {
  351. unsigned int b = bc + OFFSET_sBx;
  352. lua_assert(getOpMode(o) == iAsBx);
  353. lua_assert(a <= MAXARG_A && b <= MAXARG_Bx);
  354. return luaK_code(fs, CREATE_ABx(o, a, b));
  355. }
  356. /*
  357. ** Format and emit an 'isJ' instruction.
  358. */
  359. static int codesJ (FuncState *fs, OpCode o, int sj, int k) {
  360. unsigned int j = sj + OFFSET_sJ;
  361. lua_assert(getOpMode(o) == isJ);
  362. lua_assert(j <= MAXARG_sJ && (k & ~1) == 0);
  363. return luaK_code(fs, CREATE_sJ(o, j, k));
  364. }
  365. /*
  366. ** Emit an "extra argument" instruction (format 'iAx')
  367. */
  368. static int codeextraarg (FuncState *fs, int a) {
  369. lua_assert(a <= MAXARG_Ax);
  370. return luaK_code(fs, CREATE_Ax(OP_EXTRAARG, a));
  371. }
  372. /*
  373. ** Emit a "load constant" instruction, using either 'OP_LOADK'
  374. ** (if constant index 'k' fits in 18 bits) or an 'OP_LOADKX'
  375. ** instruction with "extra argument".
  376. */
  377. static int luaK_codek (FuncState *fs, int reg, int k) {
  378. if (k <= MAXARG_Bx)
  379. return luaK_codeABx(fs, OP_LOADK, reg, k);
  380. else {
  381. int p = luaK_codeABx(fs, OP_LOADKX, reg, 0);
  382. codeextraarg(fs, k);
  383. return p;
  384. }
  385. }
  386. /*
  387. ** Check register-stack level, keeping track of its maximum size
  388. ** in field 'maxstacksize'
  389. */
  390. void luaK_checkstack (FuncState *fs, int n) {
  391. int newstack = fs->freereg + n;
  392. if (newstack > fs->f->maxstacksize) {
  393. if (newstack >= MAXREGS)
  394. luaX_syntaxerror(fs->ls,
  395. "function or expression needs too many registers");
  396. fs->f->maxstacksize = cast_byte(newstack);
  397. }
  398. }
  399. /*
  400. ** Reserve 'n' registers in register stack
  401. */
  402. void luaK_reserveregs (FuncState *fs, int n) {
  403. luaK_checkstack(fs, n);
  404. fs->freereg += n;
  405. }
  406. /*
  407. ** Free register 'reg', if it is neither a constant index nor
  408. ** a local variable.
  409. )
  410. */
  411. static void freereg (FuncState *fs, int reg) {
  412. if (reg >= luaY_nvarstack(fs)) {
  413. fs->freereg--;
  414. lua_assert(reg == fs->freereg);
  415. }
  416. }
  417. /*
  418. ** Free two registers in proper order
  419. */
  420. static void freeregs (FuncState *fs, int r1, int r2) {
  421. if (r1 > r2) {
  422. freereg(fs, r1);
  423. freereg(fs, r2);
  424. }
  425. else {
  426. freereg(fs, r2);
  427. freereg(fs, r1);
  428. }
  429. }
  430. /*
  431. ** Free register used by expression 'e' (if any)
  432. */
  433. static void freeexp (FuncState *fs, expdesc *e) {
  434. if (e->k == VNONRELOC)
  435. freereg(fs, e->u.info);
  436. }
  437. /*
  438. ** Free registers used by expressions 'e1' and 'e2' (if any) in proper
  439. ** order.
  440. */
  441. static void freeexps (FuncState *fs, expdesc *e1, expdesc *e2) {
  442. int r1 = (e1->k == VNONRELOC) ? e1->u.info : -1;
  443. int r2 = (e2->k == VNONRELOC) ? e2->u.info : -1;
  444. freeregs(fs, r1, r2);
  445. }
  446. /*
  447. ** Add constant 'v' to prototype's list of constants (field 'k').
  448. ** Use scanner's table to cache position of constants in constant list
  449. ** and try to reuse constants. Because some values should not be used
  450. ** as keys (nil cannot be a key, integer keys can collapse with float
  451. ** keys), the caller must provide a useful 'key' for indexing the cache.
  452. ** Note that all functions share the same table, so entering or exiting
  453. ** a function can make some indices wrong.
  454. */
  455. static int addk (FuncState *fs, TValue *key, TValue *v) {
  456. TValue val;
  457. lua_State *L = fs->ls->L;
  458. Proto *f = fs->f;
  459. const TValue *idx = luaH_get(fs->ls->h, key); /* query scanner table */
  460. int k, oldsize;
  461. if (ttisinteger(idx)) { /* is there an index there? */
  462. k = cast_int(ivalue(idx));
  463. /* correct value? (warning: must distinguish floats from integers!) */
  464. if (k < fs->nk && ttypetag(&f->k[k]) == ttypetag(v) &&
  465. luaV_rawequalobj(&f->k[k], v))
  466. return k; /* reuse index */
  467. }
  468. /* constant not found; create a new entry */
  469. oldsize = f->sizek;
  470. k = fs->nk;
  471. /* numerical value does not need GC barrier;
  472. table has no metatable, so it does not need to invalidate cache */
  473. setivalue(&val, k);
  474. luaH_finishset(L, fs->ls->h, key, idx, &val);
  475. luaM_growvector(L, f->k, k, f->sizek, TValue, MAXARG_Ax, "constants");
  476. while (oldsize < f->sizek) setnilvalue(&f->k[oldsize++]);
  477. setobj(L, &f->k[k], v);
  478. fs->nk++;
  479. luaC_barrier(L, f, v);
  480. return k;
  481. }
  482. /*
  483. ** Add a string to list of constants and return its index.
  484. */
  485. static int stringK (FuncState *fs, TString *s) {
  486. TValue o;
  487. setsvalue(fs->ls->L, &o, s);
  488. return addk(fs, &o, &o); /* use string itself as key */
  489. }
  490. /*
  491. ** Add an integer to list of constants and return its index.
  492. ** Integers use userdata as keys to avoid collision with floats with
  493. ** same value; conversion to 'void*' is used only for hashing, so there
  494. ** are no "precision" problems.
  495. */
  496. static int luaK_intK (FuncState *fs, lua_Integer n) {
  497. TValue k, o;
  498. setpvalue(&k, cast_voidp(cast_sizet(n)));
  499. setivalue(&o, n);
  500. return addk(fs, &k, &o);
  501. }
  502. /*
  503. ** Add a float to list of constants and return its index.
  504. */
  505. static int luaK_numberK (FuncState *fs, lua_Number r) {
  506. TValue o;
  507. setfltvalue(&o, r);
  508. return addk(fs, &o, &o); /* use number itself as key */
  509. }
  510. /*
  511. ** Add a false to list of constants and return its index.
  512. */
  513. static int boolF (FuncState *fs) {
  514. TValue o;
  515. setbfvalue(&o);
  516. return addk(fs, &o, &o); /* use boolean itself as key */
  517. }
  518. /*
  519. ** Add a true to list of constants and return its index.
  520. */
  521. static int boolT (FuncState *fs) {
  522. TValue o;
  523. setbtvalue(&o);
  524. return addk(fs, &o, &o); /* use boolean itself as key */
  525. }
  526. /*
  527. ** Add nil to list of constants and return its index.
  528. */
  529. static int nilK (FuncState *fs) {
  530. TValue k, v;
  531. setnilvalue(&v);
  532. /* cannot use nil as key; instead use table itself to represent nil */
  533. sethvalue(fs->ls->L, &k, fs->ls->h);
  534. return addk(fs, &k, &v);
  535. }
  536. /*
  537. ** Check whether 'i' can be stored in an 'sC' operand. Equivalent to
  538. ** (0 <= int2sC(i) && int2sC(i) <= MAXARG_C) but without risk of
  539. ** overflows in the hidden addition inside 'int2sC'.
  540. */
  541. static int fitsC (lua_Integer i) {
  542. return (l_castS2U(i) + OFFSET_sC <= cast_uint(MAXARG_C));
  543. }
  544. /*
  545. ** Check whether 'i' can be stored in an 'sBx' operand.
  546. */
  547. static int fitsBx (lua_Integer i) {
  548. return (-OFFSET_sBx <= i && i <= MAXARG_Bx - OFFSET_sBx);
  549. }
  550. void luaK_int (FuncState *fs, int reg, lua_Integer i) {
  551. if (fitsBx(i))
  552. luaK_codeAsBx(fs, OP_LOADI, reg, cast_int(i));
  553. else
  554. luaK_codek(fs, reg, luaK_intK(fs, i));
  555. }
  556. static void luaK_float (FuncState *fs, int reg, lua_Number f) {
  557. lua_Integer fi;
  558. if (luaV_flttointeger(f, &fi, F2Ieq) && fitsBx(fi))
  559. luaK_codeAsBx(fs, OP_LOADF, reg, cast_int(fi));
  560. else
  561. luaK_codek(fs, reg, luaK_numberK(fs, f));
  562. }
  563. /*
  564. ** Convert a constant in 'v' into an expression description 'e'
  565. */
  566. static void const2exp (TValue *v, expdesc *e) {
  567. switch (ttypetag(v)) {
  568. case LUA_VNUMINT:
  569. e->k = VKINT; e->u.ival = ivalue(v);
  570. break;
  571. case LUA_VNUMFLT:
  572. e->k = VKFLT; e->u.nval = fltvalue(v);
  573. break;
  574. case LUA_VFALSE:
  575. e->k = VFALSE;
  576. break;
  577. case LUA_VTRUE:
  578. e->k = VTRUE;
  579. break;
  580. case LUA_VNIL:
  581. e->k = VNIL;
  582. break;
  583. case LUA_VSHRSTR: case LUA_VLNGSTR:
  584. e->k = VKSTR; e->u.strval = tsvalue(v);
  585. break;
  586. default: lua_assert(0);
  587. }
  588. }
  589. /*
  590. ** Fix an expression to return the number of results 'nresults'.
  591. ** 'e' must be a multi-ret expression (function call or vararg).
  592. */
  593. void luaK_setreturns (FuncState *fs, expdesc *e, int nresults) {
  594. Instruction *pc = &getinstruction(fs, e);
  595. if (e->k == VCALL) /* expression is an open function call? */
  596. SETARG_C(*pc, nresults + 1);
  597. else {
  598. lua_assert(e->k == VVARARG);
  599. SETARG_C(*pc, nresults + 1);
  600. SETARG_A(*pc, fs->freereg);
  601. luaK_reserveregs(fs, 1);
  602. }
  603. }
  604. /*
  605. ** Convert a VKSTR to a VK
  606. */
  607. static void str2K (FuncState *fs, expdesc *e) {
  608. lua_assert(e->k == VKSTR);
  609. e->u.info = stringK(fs, e->u.strval);
  610. e->k = VK;
  611. }
  612. /*
  613. ** Fix an expression to return one result.
  614. ** If expression is not a multi-ret expression (function call or
  615. ** vararg), it already returns one result, so nothing needs to be done.
  616. ** Function calls become VNONRELOC expressions (as its result comes
  617. ** fixed in the base register of the call), while vararg expressions
  618. ** become VRELOC (as OP_VARARG puts its results where it wants).
  619. ** (Calls are created returning one result, so that does not need
  620. ** to be fixed.)
  621. */
  622. void luaK_setoneret (FuncState *fs, expdesc *e) {
  623. if (e->k == VCALL) { /* expression is an open function call? */
  624. /* already returns 1 value */
  625. lua_assert(GETARG_C(getinstruction(fs, e)) == 2);
  626. e->k = VNONRELOC; /* result has fixed position */
  627. e->u.info = GETARG_A(getinstruction(fs, e));
  628. }
  629. else if (e->k == VVARARG) {
  630. SETARG_C(getinstruction(fs, e), 2);
  631. e->k = VRELOC; /* can relocate its simple result */
  632. }
  633. }
  634. /*
  635. ** Ensure that expression 'e' is not a variable (nor a <const>).
  636. ** (Expression still may have jump lists.)
  637. */
  638. void luaK_dischargevars (FuncState *fs, expdesc *e) {
  639. switch (e->k) {
  640. case VCONST: {
  641. const2exp(const2val(fs, e), e);
  642. break;
  643. }
  644. case VLOCAL: { /* already in a register */
  645. e->u.info = e->u.var.ridx;
  646. e->k = VNONRELOC; /* becomes a non-relocatable value */
  647. break;
  648. }
  649. case VUPVAL: { /* move value to some (pending) register */
  650. e->u.info = luaK_codeABC(fs, OP_GETUPVAL, 0, e->u.info, 0);
  651. e->k = VRELOC;
  652. break;
  653. }
  654. case VINDEXUP: {
  655. e->u.info = luaK_codeABC(fs, OP_GETTABUP, 0, e->u.ind.t, e->u.ind.idx);
  656. e->k = VRELOC;
  657. break;
  658. }
  659. case VINDEXI: {
  660. freereg(fs, e->u.ind.t);
  661. e->u.info = luaK_codeABC(fs, OP_GETI, 0, e->u.ind.t, e->u.ind.idx);
  662. e->k = VRELOC;
  663. break;
  664. }
  665. case VINDEXSTR: {
  666. freereg(fs, e->u.ind.t);
  667. e->u.info = luaK_codeABC(fs, OP_GETFIELD, 0, e->u.ind.t, e->u.ind.idx);
  668. e->k = VRELOC;
  669. break;
  670. }
  671. case VINDEXED: {
  672. freeregs(fs, e->u.ind.t, e->u.ind.idx);
  673. e->u.info = luaK_codeABC(fs, OP_GETTABLE, 0, e->u.ind.t, e->u.ind.idx);
  674. e->k = VRELOC;
  675. break;
  676. }
  677. case VVARARG: case VCALL: {
  678. luaK_setoneret(fs, e);
  679. break;
  680. }
  681. default: break; /* there is one value available (somewhere) */
  682. }
  683. }
  684. /*
  685. ** Ensure expression value is in register 'reg', making 'e' a
  686. ** non-relocatable expression.
  687. ** (Expression still may have jump lists.)
  688. */
  689. static void discharge2reg (FuncState *fs, expdesc *e, int reg) {
  690. luaK_dischargevars(fs, e);
  691. switch (e->k) {
  692. case VNIL: {
  693. luaK_nil(fs, reg, 1);
  694. break;
  695. }
  696. case VFALSE: {
  697. luaK_codeABC(fs, OP_LOADFALSE, reg, 0, 0);
  698. break;
  699. }
  700. case VTRUE: {
  701. luaK_codeABC(fs, OP_LOADTRUE, reg, 0, 0);
  702. break;
  703. }
  704. case VKSTR: {
  705. str2K(fs, e);
  706. } /* FALLTHROUGH */
  707. case VK: {
  708. luaK_codek(fs, reg, e->u.info);
  709. break;
  710. }
  711. case VKFLT: {
  712. luaK_float(fs, reg, e->u.nval);
  713. break;
  714. }
  715. case VKINT: {
  716. luaK_int(fs, reg, e->u.ival);
  717. break;
  718. }
  719. case VRELOC: {
  720. Instruction *pc = &getinstruction(fs, e);
  721. SETARG_A(*pc, reg); /* instruction will put result in 'reg' */
  722. break;
  723. }
  724. case VNONRELOC: {
  725. if (reg != e->u.info)
  726. luaK_codeABC(fs, OP_MOVE, reg, e->u.info, 0);
  727. break;
  728. }
  729. default: {
  730. lua_assert(e->k == VJMP);
  731. return; /* nothing to do... */
  732. }
  733. }
  734. e->u.info = reg;
  735. e->k = VNONRELOC;
  736. }
  737. /*
  738. ** Ensure expression value is in a register, making 'e' a
  739. ** non-relocatable expression.
  740. ** (Expression still may have jump lists.)
  741. */
  742. static void discharge2anyreg (FuncState *fs, expdesc *e) {
  743. if (e->k != VNONRELOC) { /* no fixed register yet? */
  744. luaK_reserveregs(fs, 1); /* get a register */
  745. discharge2reg(fs, e, fs->freereg-1); /* put value there */
  746. }
  747. }
  748. static int code_loadbool (FuncState *fs, int A, OpCode op) {
  749. luaK_getlabel(fs); /* those instructions may be jump targets */
  750. return luaK_codeABC(fs, op, A, 0, 0);
  751. }
  752. /*
  753. ** check whether list has any jump that do not produce a value
  754. ** or produce an inverted value
  755. */
  756. static int need_value (FuncState *fs, int list) {
  757. for (; list != NO_JUMP; list = getjump(fs, list)) {
  758. Instruction i = *getjumpcontrol(fs, list);
  759. if (GET_OPCODE(i) != OP_TESTSET) return 1;
  760. }
  761. return 0; /* not found */
  762. }
  763. /*
  764. ** Ensures final expression result (which includes results from its
  765. ** jump lists) is in register 'reg'.
  766. ** If expression has jumps, need to patch these jumps either to
  767. ** its final position or to "load" instructions (for those tests
  768. ** that do not produce values).
  769. */
  770. static void exp2reg (FuncState *fs, expdesc *e, int reg) {
  771. discharge2reg(fs, e, reg);
  772. if (e->k == VJMP) /* expression itself is a test? */
  773. luaK_concat(fs, &e->t, e->u.info); /* put this jump in 't' list */
  774. if (hasjumps(e)) {
  775. int final; /* position after whole expression */
  776. int p_f = NO_JUMP; /* position of an eventual LOAD false */
  777. int p_t = NO_JUMP; /* position of an eventual LOAD true */
  778. if (need_value(fs, e->t) || need_value(fs, e->f)) {
  779. int fj = (e->k == VJMP) ? NO_JUMP : luaK_jump(fs);
  780. p_f = code_loadbool(fs, reg, OP_LFALSESKIP); /* skip next inst. */
  781. p_t = code_loadbool(fs, reg, OP_LOADTRUE);
  782. /* jump around these booleans if 'e' is not a test */
  783. luaK_patchtohere(fs, fj);
  784. }
  785. final = luaK_getlabel(fs);
  786. patchlistaux(fs, e->f, final, reg, p_f);
  787. patchlistaux(fs, e->t, final, reg, p_t);
  788. }
  789. e->f = e->t = NO_JUMP;
  790. e->u.info = reg;
  791. e->k = VNONRELOC;
  792. }
  793. /*
  794. ** Ensures final expression result is in next available register.
  795. */
  796. void luaK_exp2nextreg (FuncState *fs, expdesc *e) {
  797. luaK_dischargevars(fs, e);
  798. freeexp(fs, e);
  799. luaK_reserveregs(fs, 1);
  800. exp2reg(fs, e, fs->freereg - 1);
  801. }
  802. /*
  803. ** Ensures final expression result is in some (any) register
  804. ** and return that register.
  805. */
  806. int luaK_exp2anyreg (FuncState *fs, expdesc *e) {
  807. luaK_dischargevars(fs, e);
  808. if (e->k == VNONRELOC) { /* expression already has a register? */
  809. if (!hasjumps(e)) /* no jumps? */
  810. return e->u.info; /* result is already in a register */
  811. if (e->u.info >= luaY_nvarstack(fs)) { /* reg. is not a local? */
  812. exp2reg(fs, e, e->u.info); /* put final result in it */
  813. return e->u.info;
  814. }
  815. /* else expression has jumps and cannot change its register
  816. to hold the jump values, because it is a local variable.
  817. Go through to the default case. */
  818. }
  819. luaK_exp2nextreg(fs, e); /* default: use next available register */
  820. return e->u.info;
  821. }
  822. /*
  823. ** Ensures final expression result is either in a register
  824. ** or in an upvalue.
  825. */
  826. void luaK_exp2anyregup (FuncState *fs, expdesc *e) {
  827. if (e->k != VUPVAL || hasjumps(e))
  828. luaK_exp2anyreg(fs, e);
  829. }
  830. /*
  831. ** Ensures final expression result is either in a register
  832. ** or it is a constant.
  833. */
  834. void luaK_exp2val (FuncState *fs, expdesc *e) {
  835. if (hasjumps(e))
  836. luaK_exp2anyreg(fs, e);
  837. else
  838. luaK_dischargevars(fs, e);
  839. }
  840. /*
  841. ** Try to make 'e' a K expression with an index in the range of R/K
  842. ** indices. Return true iff succeeded.
  843. */
  844. static int luaK_exp2K (FuncState *fs, expdesc *e) {
  845. if (!hasjumps(e)) {
  846. int info;
  847. switch (e->k) { /* move constants to 'k' */
  848. case VTRUE: info = boolT(fs); break;
  849. case VFALSE: info = boolF(fs); break;
  850. case VNIL: info = nilK(fs); break;
  851. case VKINT: info = luaK_intK(fs, e->u.ival); break;
  852. case VKFLT: info = luaK_numberK(fs, e->u.nval); break;
  853. case VKSTR: info = stringK(fs, e->u.strval); break;
  854. case VK: info = e->u.info; break;
  855. default: return 0; /* not a constant */
  856. }
  857. if (info <= MAXINDEXRK) { /* does constant fit in 'argC'? */
  858. e->k = VK; /* make expression a 'K' expression */
  859. e->u.info = info;
  860. return 1;
  861. }
  862. }
  863. /* else, expression doesn't fit; leave it unchanged */
  864. return 0;
  865. }
  866. /*
  867. ** Ensures final expression result is in a valid R/K index
  868. ** (that is, it is either in a register or in 'k' with an index
  869. ** in the range of R/K indices).
  870. ** Returns 1 iff expression is K.
  871. */
  872. int luaK_exp2RK (FuncState *fs, expdesc *e) {
  873. if (luaK_exp2K(fs, e))
  874. return 1;
  875. else { /* not a constant in the right range: put it in a register */
  876. luaK_exp2anyreg(fs, e);
  877. return 0;
  878. }
  879. }
  880. static void codeABRK (FuncState *fs, OpCode o, int a, int b,
  881. expdesc *ec) {
  882. int k = luaK_exp2RK(fs, ec);
  883. luaK_codeABCk(fs, o, a, b, ec->u.info, k);
  884. }
  885. /*
  886. ** Generate code to store result of expression 'ex' into variable 'var'.
  887. */
  888. void luaK_storevar (FuncState *fs, expdesc *var, expdesc *ex) {
  889. switch (var->k) {
  890. case VLOCAL: {
  891. freeexp(fs, ex);
  892. exp2reg(fs, ex, var->u.var.ridx); /* compute 'ex' into proper place */
  893. return;
  894. }
  895. case VUPVAL: {
  896. int e = luaK_exp2anyreg(fs, ex);
  897. luaK_codeABC(fs, OP_SETUPVAL, e, var->u.info, 0);
  898. break;
  899. }
  900. case VINDEXUP: {
  901. codeABRK(fs, OP_SETTABUP, var->u.ind.t, var->u.ind.idx, ex);
  902. break;
  903. }
  904. case VINDEXI: {
  905. codeABRK(fs, OP_SETI, var->u.ind.t, var->u.ind.idx, ex);
  906. break;
  907. }
  908. case VINDEXSTR: {
  909. codeABRK(fs, OP_SETFIELD, var->u.ind.t, var->u.ind.idx, ex);
  910. break;
  911. }
  912. case VINDEXED: {
  913. codeABRK(fs, OP_SETTABLE, var->u.ind.t, var->u.ind.idx, ex);
  914. break;
  915. }
  916. default: lua_assert(0); /* invalid var kind to store */
  917. }
  918. freeexp(fs, ex);
  919. }
  920. /*
  921. ** Emit SELF instruction (convert expression 'e' into 'e:key(e,').
  922. */
  923. void luaK_self (FuncState *fs, expdesc *e, expdesc *key) {
  924. int ereg;
  925. luaK_exp2anyreg(fs, e);
  926. ereg = e->u.info; /* register where 'e' was placed */
  927. freeexp(fs, e);
  928. e->u.info = fs->freereg; /* base register for op_self */
  929. e->k = VNONRELOC; /* self expression has a fixed register */
  930. luaK_reserveregs(fs, 2); /* function and 'self' produced by op_self */
  931. codeABRK(fs, OP_SELF, e->u.info, ereg, key);
  932. freeexp(fs, key);
  933. }
  934. /*
  935. ** Negate condition 'e' (where 'e' is a comparison).
  936. */
  937. static void negatecondition (FuncState *fs, expdesc *e) {
  938. Instruction *pc = getjumpcontrol(fs, e->u.info);
  939. lua_assert(testTMode(GET_OPCODE(*pc)) && GET_OPCODE(*pc) != OP_TESTSET &&
  940. GET_OPCODE(*pc) != OP_TEST);
  941. SETARG_k(*pc, (GETARG_k(*pc) ^ 1));
  942. }
  943. /*
  944. ** Emit instruction to jump if 'e' is 'cond' (that is, if 'cond'
  945. ** is true, code will jump if 'e' is true.) Return jump position.
  946. ** Optimize when 'e' is 'not' something, inverting the condition
  947. ** and removing the 'not'.
  948. */
  949. static int jumponcond (FuncState *fs, expdesc *e, int cond) {
  950. if (e->k == VRELOC) {
  951. Instruction ie = getinstruction(fs, e);
  952. if (GET_OPCODE(ie) == OP_NOT) {
  953. removelastinstruction(fs); /* remove previous OP_NOT */
  954. return condjump(fs, OP_TEST, GETARG_B(ie), 0, 0, !cond);
  955. }
  956. /* else go through */
  957. }
  958. discharge2anyreg(fs, e);
  959. freeexp(fs, e);
  960. return condjump(fs, OP_TESTSET, NO_REG, e->u.info, 0, cond);
  961. }
  962. /*
  963. ** Emit code to go through if 'e' is true, jump otherwise.
  964. */
  965. void luaK_goiftrue (FuncState *fs, expdesc *e) {
  966. int pc; /* pc of new jump */
  967. luaK_dischargevars(fs, e);
  968. switch (e->k) {
  969. case VJMP: { /* condition? */
  970. negatecondition(fs, e); /* jump when it is false */
  971. pc = e->u.info; /* save jump position */
  972. break;
  973. }
  974. case VK: case VKFLT: case VKINT: case VKSTR: case VTRUE: {
  975. pc = NO_JUMP; /* always true; do nothing */
  976. break;
  977. }
  978. default: {
  979. pc = jumponcond(fs, e, 0); /* jump when false */
  980. break;
  981. }
  982. }
  983. luaK_concat(fs, &e->f, pc); /* insert new jump in false list */
  984. luaK_patchtohere(fs, e->t); /* true list jumps to here (to go through) */
  985. e->t = NO_JUMP;
  986. }
  987. /*
  988. ** Emit code to go through if 'e' is false, jump otherwise.
  989. */
  990. void luaK_goiffalse (FuncState *fs, expdesc *e) {
  991. int pc; /* pc of new jump */
  992. luaK_dischargevars(fs, e);
  993. switch (e->k) {
  994. case VJMP: {
  995. pc = e->u.info; /* already jump if true */
  996. break;
  997. }
  998. case VNIL: case VFALSE: {
  999. pc = NO_JUMP; /* always false; do nothing */
  1000. break;
  1001. }
  1002. default: {
  1003. pc = jumponcond(fs, e, 1); /* jump if true */
  1004. break;
  1005. }
  1006. }
  1007. luaK_concat(fs, &e->t, pc); /* insert new jump in 't' list */
  1008. luaK_patchtohere(fs, e->f); /* false list jumps to here (to go through) */
  1009. e->f = NO_JUMP;
  1010. }
  1011. /*
  1012. ** Code 'not e', doing constant folding.
  1013. */
  1014. static void codenot (FuncState *fs, expdesc *e) {
  1015. switch (e->k) {
  1016. case VNIL: case VFALSE: {
  1017. e->k = VTRUE; /* true == not nil == not false */
  1018. break;
  1019. }
  1020. case VK: case VKFLT: case VKINT: case VKSTR: case VTRUE: {
  1021. e->k = VFALSE; /* false == not "x" == not 0.5 == not 1 == not true */
  1022. break;
  1023. }
  1024. case VJMP: {
  1025. negatecondition(fs, e);
  1026. break;
  1027. }
  1028. case VRELOC:
  1029. case VNONRELOC: {
  1030. discharge2anyreg(fs, e);
  1031. freeexp(fs, e);
  1032. e->u.info = luaK_codeABC(fs, OP_NOT, 0, e->u.info, 0);
  1033. e->k = VRELOC;
  1034. break;
  1035. }
  1036. default: lua_assert(0); /* cannot happen */
  1037. }
  1038. /* interchange true and false lists */
  1039. { int temp = e->f; e->f = e->t; e->t = temp; }
  1040. removevalues(fs, e->f); /* values are useless when negated */
  1041. removevalues(fs, e->t);
  1042. }
  1043. /*
  1044. ** Check whether expression 'e' is a small literal string
  1045. */
  1046. static int isKstr (FuncState *fs, expdesc *e) {
  1047. return (e->k == VK && !hasjumps(e) && e->u.info <= MAXARG_B &&
  1048. ttisshrstring(&fs->f->k[e->u.info]));
  1049. }
  1050. /*
  1051. ** Check whether expression 'e' is a literal integer.
  1052. */
  1053. int luaK_isKint (expdesc *e) {
  1054. return (e->k == VKINT && !hasjumps(e));
  1055. }
  1056. /*
  1057. ** Check whether expression 'e' is a literal integer in
  1058. ** proper range to fit in register C
  1059. */
  1060. static int isCint (expdesc *e) {
  1061. return luaK_isKint(e) && (l_castS2U(e->u.ival) <= l_castS2U(MAXARG_C));
  1062. }
  1063. /*
  1064. ** Check whether expression 'e' is a literal integer in
  1065. ** proper range to fit in register sC
  1066. */
  1067. static int isSCint (expdesc *e) {
  1068. return luaK_isKint(e) && fitsC(e->u.ival);
  1069. }
  1070. /*
  1071. ** Check whether expression 'e' is a literal integer or float in
  1072. ** proper range to fit in a register (sB or sC).
  1073. */
  1074. static int isSCnumber (expdesc *e, int *pi, int *isfloat) {
  1075. lua_Integer i;
  1076. if (e->k == VKINT)
  1077. i = e->u.ival;
  1078. else if (e->k == VKFLT && luaV_flttointeger(e->u.nval, &i, F2Ieq))
  1079. *isfloat = 1;
  1080. else
  1081. return 0; /* not a number */
  1082. if (!hasjumps(e) && fitsC(i)) {
  1083. *pi = int2sC(cast_int(i));
  1084. return 1;
  1085. }
  1086. else
  1087. return 0;
  1088. }
  1089. /*
  1090. ** Create expression 't[k]'. 't' must have its final result already in a
  1091. ** register or upvalue. Upvalues can only be indexed by literal strings.
  1092. ** Keys can be literal strings in the constant table or arbitrary
  1093. ** values in registers.
  1094. */
  1095. void luaK_indexed (FuncState *fs, expdesc *t, expdesc *k) {
  1096. if (k->k == VKSTR)
  1097. str2K(fs, k);
  1098. lua_assert(!hasjumps(t) &&
  1099. (t->k == VLOCAL || t->k == VNONRELOC || t->k == VUPVAL));
  1100. if (t->k == VUPVAL && !isKstr(fs, k)) /* upvalue indexed by non 'Kstr'? */
  1101. luaK_exp2anyreg(fs, t); /* put it in a register */
  1102. if (t->k == VUPVAL) {
  1103. t->u.ind.t = t->u.info; /* upvalue index */
  1104. t->u.ind.idx = k->u.info; /* literal string */
  1105. t->k = VINDEXUP;
  1106. }
  1107. else {
  1108. /* register index of the table */
  1109. t->u.ind.t = (t->k == VLOCAL) ? t->u.var.ridx: t->u.info;
  1110. if (isKstr(fs, k)) {
  1111. t->u.ind.idx = k->u.info; /* literal string */
  1112. t->k = VINDEXSTR;
  1113. }
  1114. else if (isCint(k)) {
  1115. t->u.ind.idx = cast_int(k->u.ival); /* int. constant in proper range */
  1116. t->k = VINDEXI;
  1117. }
  1118. else {
  1119. t->u.ind.idx = luaK_exp2anyreg(fs, k); /* register */
  1120. t->k = VINDEXED;
  1121. }
  1122. }
  1123. }
  1124. /*
  1125. ** Return false if folding can raise an error.
  1126. ** Bitwise operations need operands convertible to integers; division
  1127. ** operations cannot have 0 as divisor.
  1128. */
  1129. static int validop (int op, TValue *v1, TValue *v2) {
  1130. switch (op) {
  1131. case LUA_OPBAND: case LUA_OPBOR: case LUA_OPBXOR:
  1132. case LUA_OPSHL: case LUA_OPSHR: case LUA_OPBNOT: { /* conversion errors */
  1133. lua_Integer i;
  1134. return (luaV_tointegerns(v1, &i, LUA_FLOORN2I) &&
  1135. luaV_tointegerns(v2, &i, LUA_FLOORN2I));
  1136. }
  1137. case LUA_OPDIV: case LUA_OPIDIV: case LUA_OPMOD: /* division by 0 */
  1138. return (nvalue(v2) != 0);
  1139. default: return 1; /* everything else is valid */
  1140. }
  1141. }
  1142. /*
  1143. ** Try to "constant-fold" an operation; return 1 iff successful.
  1144. ** (In this case, 'e1' has the final result.)
  1145. */
  1146. static int constfolding (FuncState *fs, int op, expdesc *e1,
  1147. const expdesc *e2) {
  1148. TValue v1, v2, res;
  1149. if (!tonumeral(e1, &v1) || !tonumeral(e2, &v2) || !validop(op, &v1, &v2))
  1150. return 0; /* non-numeric operands or not safe to fold */
  1151. luaO_rawarith(fs->ls->L, op, &v1, &v2, &res); /* does operation */
  1152. if (ttisinteger(&res)) {
  1153. e1->k = VKINT;
  1154. e1->u.ival = ivalue(&res);
  1155. }
  1156. else { /* folds neither NaN nor 0.0 (to avoid problems with -0.0) */
  1157. lua_Number n = fltvalue(&res);
  1158. if (luai_numisnan(n) || n == 0)
  1159. return 0;
  1160. e1->k = VKFLT;
  1161. e1->u.nval = n;
  1162. }
  1163. return 1;
  1164. }
  1165. /*
  1166. ** Emit code for unary expressions that "produce values"
  1167. ** (everything but 'not').
  1168. ** Expression to produce final result will be encoded in 'e'.
  1169. */
  1170. static void codeunexpval (FuncState *fs, OpCode op, expdesc *e, int line) {
  1171. int r = luaK_exp2anyreg(fs, e); /* opcodes operate only on registers */
  1172. freeexp(fs, e);
  1173. e->u.info = luaK_codeABC(fs, op, 0, r, 0); /* generate opcode */
  1174. e->k = VRELOC; /* all those operations are relocatable */
  1175. luaK_fixline(fs, line);
  1176. }
  1177. /*
  1178. ** Emit code for binary expressions that "produce values"
  1179. ** (everything but logical operators 'and'/'or' and comparison
  1180. ** operators).
  1181. ** Expression to produce final result will be encoded in 'e1'.
  1182. */
  1183. static void finishbinexpval (FuncState *fs, expdesc *e1, expdesc *e2,
  1184. OpCode op, int v2, int flip, int line,
  1185. OpCode mmop, TMS event) {
  1186. int v1 = luaK_exp2anyreg(fs, e1);
  1187. int pc = luaK_codeABCk(fs, op, 0, v1, v2, 0);
  1188. freeexps(fs, e1, e2);
  1189. e1->u.info = pc;
  1190. e1->k = VRELOC; /* all those operations are relocatable */
  1191. luaK_fixline(fs, line);
  1192. luaK_codeABCk(fs, mmop, v1, v2, event, flip); /* to call metamethod */
  1193. luaK_fixline(fs, line);
  1194. }
  1195. /*
  1196. ** Emit code for binary expressions that "produce values" over
  1197. ** two registers.
  1198. */
  1199. static void codebinexpval (FuncState *fs, OpCode op,
  1200. expdesc *e1, expdesc *e2, int line) {
  1201. int v2 = luaK_exp2anyreg(fs, e2); /* both operands are in registers */
  1202. lua_assert(OP_ADD <= op && op <= OP_SHR);
  1203. finishbinexpval(fs, e1, e2, op, v2, 0, line, OP_MMBIN,
  1204. cast(TMS, (op - OP_ADD) + TM_ADD));
  1205. }
  1206. /*
  1207. ** Code binary operators with immediate operands.
  1208. */
  1209. static void codebini (FuncState *fs, OpCode op,
  1210. expdesc *e1, expdesc *e2, int flip, int line,
  1211. TMS event) {
  1212. int v2 = int2sC(cast_int(e2->u.ival)); /* immediate operand */
  1213. lua_assert(e2->k == VKINT);
  1214. finishbinexpval(fs, e1, e2, op, v2, flip, line, OP_MMBINI, event);
  1215. }
  1216. /* Try to code a binary operator negating its second operand.
  1217. ** For the metamethod, 2nd operand must keep its original value.
  1218. */
  1219. static int finishbinexpneg (FuncState *fs, expdesc *e1, expdesc *e2,
  1220. OpCode op, int line, TMS event) {
  1221. if (!luaK_isKint(e2))
  1222. return 0; /* not an integer constant */
  1223. else {
  1224. lua_Integer i2 = e2->u.ival;
  1225. if (!(fitsC(i2) && fitsC(-i2)))
  1226. return 0; /* not in the proper range */
  1227. else { /* operating a small integer constant */
  1228. int v2 = cast_int(i2);
  1229. finishbinexpval(fs, e1, e2, op, int2sC(-v2), 0, line, OP_MMBINI, event);
  1230. /* correct metamethod argument */
  1231. SETARG_B(fs->f->code[fs->pc - 1], int2sC(v2));
  1232. return 1; /* successfully coded */
  1233. }
  1234. }
  1235. }
  1236. static void swapexps (expdesc *e1, expdesc *e2) {
  1237. expdesc temp = *e1; *e1 = *e2; *e2 = temp; /* swap 'e1' and 'e2' */
  1238. }
  1239. /*
  1240. ** Code arithmetic operators ('+', '-', ...). If second operand is a
  1241. ** constant in the proper range, use variant opcodes with K operands.
  1242. */
  1243. static void codearith (FuncState *fs, BinOpr opr,
  1244. expdesc *e1, expdesc *e2, int flip, int line) {
  1245. TMS event = cast(TMS, opr + TM_ADD);
  1246. if (tonumeral(e2, NULL) && luaK_exp2K(fs, e2)) { /* K operand? */
  1247. int v2 = e2->u.info; /* K index */
  1248. OpCode op = cast(OpCode, opr + OP_ADDK);
  1249. finishbinexpval(fs, e1, e2, op, v2, flip, line, OP_MMBINK, event);
  1250. }
  1251. else { /* 'e2' is neither an immediate nor a K operand */
  1252. OpCode op = cast(OpCode, opr + OP_ADD);
  1253. if (flip)
  1254. swapexps(e1, e2); /* back to original order */
  1255. codebinexpval(fs, op, e1, e2, line); /* use standard operators */
  1256. }
  1257. }
  1258. /*
  1259. ** Code commutative operators ('+', '*'). If first operand is a
  1260. ** numeric constant, change order of operands to try to use an
  1261. ** immediate or K operator.
  1262. */
  1263. static void codecommutative (FuncState *fs, BinOpr op,
  1264. expdesc *e1, expdesc *e2, int line) {
  1265. int flip = 0;
  1266. if (tonumeral(e1, NULL)) { /* is first operand a numeric constant? */
  1267. swapexps(e1, e2); /* change order */
  1268. flip = 1;
  1269. }
  1270. if (op == OPR_ADD && isSCint(e2)) /* immediate operand? */
  1271. codebini(fs, cast(OpCode, OP_ADDI), e1, e2, flip, line, TM_ADD);
  1272. else
  1273. codearith(fs, op, e1, e2, flip, line);
  1274. }
  1275. /*
  1276. ** Code bitwise operations; they are all associative, so the function
  1277. ** tries to put an integer constant as the 2nd operand (a K operand).
  1278. */
  1279. static void codebitwise (FuncState *fs, BinOpr opr,
  1280. expdesc *e1, expdesc *e2, int line) {
  1281. int flip = 0;
  1282. int v2;
  1283. OpCode op;
  1284. if (e1->k == VKINT && luaK_exp2RK(fs, e1)) {
  1285. swapexps(e1, e2); /* 'e2' will be the constant operand */
  1286. flip = 1;
  1287. }
  1288. else if (!(e2->k == VKINT && luaK_exp2RK(fs, e2))) { /* no constants? */
  1289. op = cast(OpCode, opr + OP_ADD);
  1290. codebinexpval(fs, op, e1, e2, line); /* all-register opcodes */
  1291. return;
  1292. }
  1293. v2 = e2->u.info; /* index in K array */
  1294. op = cast(OpCode, opr + OP_ADDK);
  1295. lua_assert(ttisinteger(&fs->f->k[v2]));
  1296. finishbinexpval(fs, e1, e2, op, v2, flip, line, OP_MMBINK,
  1297. cast(TMS, opr + TM_ADD));
  1298. }
  1299. /*
  1300. ** Emit code for order comparisons. When using an immediate operand,
  1301. ** 'isfloat' tells whether the original value was a float.
  1302. */
  1303. static void codeorder (FuncState *fs, OpCode op, expdesc *e1, expdesc *e2) {
  1304. int r1, r2;
  1305. int im;
  1306. int isfloat = 0;
  1307. if (isSCnumber(e2, &im, &isfloat)) {
  1308. /* use immediate operand */
  1309. r1 = luaK_exp2anyreg(fs, e1);
  1310. r2 = im;
  1311. op = cast(OpCode, (op - OP_LT) + OP_LTI);
  1312. }
  1313. else if (isSCnumber(e1, &im, &isfloat)) {
  1314. /* transform (A < B) to (B > A) and (A <= B) to (B >= A) */
  1315. r1 = luaK_exp2anyreg(fs, e2);
  1316. r2 = im;
  1317. op = (op == OP_LT) ? OP_GTI : OP_GEI;
  1318. }
  1319. else { /* regular case, compare two registers */
  1320. r1 = luaK_exp2anyreg(fs, e1);
  1321. r2 = luaK_exp2anyreg(fs, e2);
  1322. }
  1323. freeexps(fs, e1, e2);
  1324. e1->u.info = condjump(fs, op, r1, r2, isfloat, 1);
  1325. e1->k = VJMP;
  1326. }
  1327. /*
  1328. ** Emit code for equality comparisons ('==', '~=').
  1329. ** 'e1' was already put as RK by 'luaK_infix'.
  1330. */
  1331. static void codeeq (FuncState *fs, BinOpr opr, expdesc *e1, expdesc *e2) {
  1332. int r1, r2;
  1333. int im;
  1334. int isfloat = 0; /* not needed here, but kept for symmetry */
  1335. OpCode op;
  1336. if (e1->k != VNONRELOC) {
  1337. lua_assert(e1->k == VK || e1->k == VKINT || e1->k == VKFLT);
  1338. swapexps(e1, e2);
  1339. }
  1340. r1 = luaK_exp2anyreg(fs, e1); /* 1st expression must be in register */
  1341. if (isSCnumber(e2, &im, &isfloat)) {
  1342. op = OP_EQI;
  1343. r2 = im; /* immediate operand */
  1344. }
  1345. else if (luaK_exp2RK(fs, e2)) { /* 1st expression is constant? */
  1346. op = OP_EQK;
  1347. r2 = e2->u.info; /* constant index */
  1348. }
  1349. else {
  1350. op = OP_EQ; /* will compare two registers */
  1351. r2 = luaK_exp2anyreg(fs, e2);
  1352. }
  1353. freeexps(fs, e1, e2);
  1354. e1->u.info = condjump(fs, op, r1, r2, isfloat, (opr == OPR_EQ));
  1355. e1->k = VJMP;
  1356. }
  1357. /*
  1358. ** Apply prefix operation 'op' to expression 'e'.
  1359. */
  1360. void luaK_prefix (FuncState *fs, UnOpr op, expdesc *e, int line) {
  1361. static const expdesc ef = {VKINT, {0}, NO_JUMP, NO_JUMP};
  1362. luaK_dischargevars(fs, e);
  1363. switch (op) {
  1364. case OPR_MINUS: case OPR_BNOT: /* use 'ef' as fake 2nd operand */
  1365. if (constfolding(fs, op + LUA_OPUNM, e, &ef))
  1366. break;
  1367. /* else */ /* FALLTHROUGH */
  1368. case OPR_LEN:
  1369. codeunexpval(fs, cast(OpCode, op + OP_UNM), e, line);
  1370. break;
  1371. case OPR_NOT: codenot(fs, e); break;
  1372. default: lua_assert(0);
  1373. }
  1374. }
  1375. /*
  1376. ** Process 1st operand 'v' of binary operation 'op' before reading
  1377. ** 2nd operand.
  1378. */
  1379. void luaK_infix (FuncState *fs, BinOpr op, expdesc *v) {
  1380. luaK_dischargevars(fs, v);
  1381. switch (op) {
  1382. case OPR_AND: {
  1383. luaK_goiftrue(fs, v); /* go ahead only if 'v' is true */
  1384. break;
  1385. }
  1386. case OPR_OR: {
  1387. luaK_goiffalse(fs, v); /* go ahead only if 'v' is false */
  1388. break;
  1389. }
  1390. case OPR_CONCAT: {
  1391. luaK_exp2nextreg(fs, v); /* operand must be on the stack */
  1392. break;
  1393. }
  1394. case OPR_ADD: case OPR_SUB:
  1395. case OPR_MUL: case OPR_DIV: case OPR_IDIV:
  1396. case OPR_MOD: case OPR_POW:
  1397. case OPR_BAND: case OPR_BOR: case OPR_BXOR:
  1398. case OPR_SHL: case OPR_SHR: {
  1399. if (!tonumeral(v, NULL))
  1400. luaK_exp2anyreg(fs, v);
  1401. /* else keep numeral, which may be folded with 2nd operand */
  1402. break;
  1403. }
  1404. case OPR_EQ: case OPR_NE: {
  1405. if (!tonumeral(v, NULL))
  1406. luaK_exp2RK(fs, v);
  1407. /* else keep numeral, which may be an immediate operand */
  1408. break;
  1409. }
  1410. case OPR_LT: case OPR_LE:
  1411. case OPR_GT: case OPR_GE: {
  1412. int dummy, dummy2;
  1413. if (!isSCnumber(v, &dummy, &dummy2))
  1414. luaK_exp2anyreg(fs, v);
  1415. /* else keep numeral, which may be an immediate operand */
  1416. break;
  1417. }
  1418. default: lua_assert(0);
  1419. }
  1420. }
  1421. /*
  1422. ** Create code for '(e1 .. e2)'.
  1423. ** For '(e1 .. e2.1 .. e2.2)' (which is '(e1 .. (e2.1 .. e2.2))',
  1424. ** because concatenation is right associative), merge both CONCATs.
  1425. */
  1426. static void codeconcat (FuncState *fs, expdesc *e1, expdesc *e2, int line) {
  1427. Instruction *ie2 = previousinstruction(fs);
  1428. if (GET_OPCODE(*ie2) == OP_CONCAT) { /* is 'e2' a concatenation? */
  1429. int n = GETARG_B(*ie2); /* # of elements concatenated in 'e2' */
  1430. lua_assert(e1->u.info + 1 == GETARG_A(*ie2));
  1431. freeexp(fs, e2);
  1432. SETARG_A(*ie2, e1->u.info); /* correct first element ('e1') */
  1433. SETARG_B(*ie2, n + 1); /* will concatenate one more element */
  1434. }
  1435. else { /* 'e2' is not a concatenation */
  1436. luaK_codeABC(fs, OP_CONCAT, e1->u.info, 2, 0); /* new concat opcode */
  1437. freeexp(fs, e2);
  1438. luaK_fixline(fs, line);
  1439. }
  1440. }
  1441. /*
  1442. ** Finalize code for binary operation, after reading 2nd operand.
  1443. */
  1444. void luaK_posfix (FuncState *fs, BinOpr opr,
  1445. expdesc *e1, expdesc *e2, int line) {
  1446. luaK_dischargevars(fs, e2);
  1447. if (foldbinop(opr) && constfolding(fs, opr + LUA_OPADD, e1, e2))
  1448. return; /* done by folding */
  1449. switch (opr) {
  1450. case OPR_AND: {
  1451. lua_assert(e1->t == NO_JUMP); /* list closed by 'luaK_infix' */
  1452. luaK_concat(fs, &e2->f, e1->f);
  1453. *e1 = *e2;
  1454. break;
  1455. }
  1456. case OPR_OR: {
  1457. lua_assert(e1->f == NO_JUMP); /* list closed by 'luaK_infix' */
  1458. luaK_concat(fs, &e2->t, e1->t);
  1459. *e1 = *e2;
  1460. break;
  1461. }
  1462. case OPR_CONCAT: { /* e1 .. e2 */
  1463. luaK_exp2nextreg(fs, e2);
  1464. codeconcat(fs, e1, e2, line);
  1465. break;
  1466. }
  1467. case OPR_ADD: case OPR_MUL: {
  1468. codecommutative(fs, opr, e1, e2, line);
  1469. break;
  1470. }
  1471. case OPR_SUB: {
  1472. if (finishbinexpneg(fs, e1, e2, OP_ADDI, line, TM_SUB))
  1473. break; /* coded as (r1 + -I) */
  1474. /* ELSE */
  1475. } /* FALLTHROUGH */
  1476. case OPR_DIV: case OPR_IDIV: case OPR_MOD: case OPR_POW: {
  1477. codearith(fs, opr, e1, e2, 0, line);
  1478. break;
  1479. }
  1480. case OPR_BAND: case OPR_BOR: case OPR_BXOR: {
  1481. codebitwise(fs, opr, e1, e2, line);
  1482. break;
  1483. }
  1484. case OPR_SHL: {
  1485. if (isSCint(e1)) {
  1486. swapexps(e1, e2);
  1487. codebini(fs, OP_SHLI, e1, e2, 1, line, TM_SHL); /* I << r2 */
  1488. }
  1489. else if (finishbinexpneg(fs, e1, e2, OP_SHRI, line, TM_SHL)) {
  1490. /* coded as (r1 >> -I) */;
  1491. }
  1492. else /* regular case (two registers) */
  1493. codebinexpval(fs, OP_SHL, e1, e2, line);
  1494. break;
  1495. }
  1496. case OPR_SHR: {
  1497. if (isSCint(e2))
  1498. codebini(fs, OP_SHRI, e1, e2, 0, line, TM_SHR); /* r1 >> I */
  1499. else /* regular case (two registers) */
  1500. codebinexpval(fs, OP_SHR, e1, e2, line);
  1501. break;
  1502. }
  1503. case OPR_EQ: case OPR_NE: {
  1504. codeeq(fs, opr, e1, e2);
  1505. break;
  1506. }
  1507. case OPR_LT: case OPR_LE: {
  1508. OpCode op = cast(OpCode, (opr - OPR_EQ) + OP_EQ);
  1509. codeorder(fs, op, e1, e2);
  1510. break;
  1511. }
  1512. case OPR_GT: case OPR_GE: {
  1513. /* '(a > b)' <=> '(b < a)'; '(a >= b)' <=> '(b <= a)' */
  1514. OpCode op = cast(OpCode, (opr - OPR_NE) + OP_EQ);
  1515. swapexps(e1, e2);
  1516. codeorder(fs, op, e1, e2);
  1517. break;
  1518. }
  1519. default: lua_assert(0);
  1520. }
  1521. }
  1522. /*
  1523. ** Change line information associated with current position, by removing
  1524. ** previous info and adding it again with new line.
  1525. */
  1526. void luaK_fixline (FuncState *fs, int line) {
  1527. removelastlineinfo(fs);
  1528. savelineinfo(fs, fs->f, line);
  1529. }
  1530. void luaK_settablesize (FuncState *fs, int pc, int ra, int asize, int hsize) {
  1531. Instruction *inst = &fs->f->code[pc];
  1532. int rb = (hsize != 0) ? luaO_ceillog2(hsize) + 1 : 0; /* hash size */
  1533. int extra = asize / (MAXARG_C + 1); /* higher bits of array size */
  1534. int rc = asize % (MAXARG_C + 1); /* lower bits of array size */
  1535. int k = (extra > 0); /* true iff needs extra argument */
  1536. *inst = CREATE_ABCk(OP_NEWTABLE, ra, rb, rc, k);
  1537. *(inst + 1) = CREATE_Ax(OP_EXTRAARG, extra);
  1538. }
  1539. /*
  1540. ** Emit a SETLIST instruction.
  1541. ** 'base' is register that keeps table;
  1542. ** 'nelems' is #table plus those to be stored now;
  1543. ** 'tostore' is number of values (in registers 'base + 1',...) to add to
  1544. ** table (or LUA_MULTRET to add up to stack top).
  1545. */
  1546. void luaK_setlist (FuncState *fs, int base, int nelems, int tostore) {
  1547. lua_assert(tostore != 0 && tostore <= LFIELDS_PER_FLUSH);
  1548. if (tostore == LUA_MULTRET)
  1549. tostore = 0;
  1550. if (nelems <= MAXARG_C)
  1551. luaK_codeABC(fs, OP_SETLIST, base, tostore, nelems);
  1552. else {
  1553. int extra = nelems / (MAXARG_C + 1);
  1554. nelems %= (MAXARG_C + 1);
  1555. luaK_codeABCk(fs, OP_SETLIST, base, tostore, nelems, 1);
  1556. codeextraarg(fs, extra);
  1557. }
  1558. fs->freereg = base + 1; /* free registers with list values */
  1559. }
  1560. /*
  1561. ** return the final target of a jump (skipping jumps to jumps)
  1562. */
  1563. static int finaltarget (Instruction *code, int i) {
  1564. int count;
  1565. for (count = 0; count < 100; count++) { /* avoid infinite loops */
  1566. Instruction pc = code[i];
  1567. if (GET_OPCODE(pc) != OP_JMP)
  1568. break;
  1569. else
  1570. i += GETARG_sJ(pc) + 1;
  1571. }
  1572. return i;
  1573. }
  1574. /*
  1575. ** Do a final pass over the code of a function, doing small peephole
  1576. ** optimizations and adjustments.
  1577. */
  1578. void luaK_finish (FuncState *fs) {
  1579. int i;
  1580. Proto *p = fs->f;
  1581. for (i = 0; i < fs->pc; i++) {
  1582. Instruction *pc = &p->code[i];
  1583. lua_assert(i == 0 || isOT(*(pc - 1)) == isIT(*pc));
  1584. switch (GET_OPCODE(*pc)) {
  1585. case OP_RETURN0: case OP_RETURN1: {
  1586. if (!(fs->needclose || p->is_vararg))
  1587. break; /* no extra work */
  1588. /* else use OP_RETURN to do the extra work */
  1589. SET_OPCODE(*pc, OP_RETURN);
  1590. } /* FALLTHROUGH */
  1591. case OP_RETURN: case OP_TAILCALL: {
  1592. if (fs->needclose)
  1593. SETARG_k(*pc, 1); /* signal that it needs to close */
  1594. if (p->is_vararg)
  1595. SETARG_C(*pc, p->numparams + 1); /* signal that it is vararg */
  1596. break;
  1597. }
  1598. case OP_JMP: {
  1599. int target = finaltarget(p->code, i);
  1600. fixjump(fs, i, target);
  1601. break;
  1602. }
  1603. default: break;
  1604. }
  1605. }
  1606. }