lcode.c 53 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912
  1. /*
  2. ** $Id: lcode.c $
  3. ** Code generator for Lua
  4. ** See Copyright Notice in lua.h
  5. */
  6. #define lcode_c
  7. #define LUA_CORE
  8. #include "lprefix.h"
  9. #include <float.h>
  10. #include <limits.h>
  11. #include <math.h>
  12. #include <stdlib.h>
  13. #include "lua.h"
  14. #include "lcode.h"
  15. #include "ldebug.h"
  16. #include "ldo.h"
  17. #include "lgc.h"
  18. #include "llex.h"
  19. #include "lmem.h"
  20. #include "lobject.h"
  21. #include "lopcodes.h"
  22. #include "lparser.h"
  23. #include "lstring.h"
  24. #include "ltable.h"
  25. #include "lvm.h"
  26. /* (note that expressions VJMP also have jumps.) */
  27. #define hasjumps(e) ((e)->t != (e)->f)
  28. static int codesJ (FuncState *fs, OpCode o, int sj, int k);
  29. /* semantic error */
  30. l_noret luaK_semerror (LexState *ls, const char *fmt, ...) {
  31. const char *msg;
  32. va_list argp;
  33. pushvfstring(ls->L, argp, fmt, msg);
  34. ls->t.token = 0; /* remove "near <token>" from final message */
  35. luaX_syntaxerror(ls, msg);
  36. }
  37. /*
  38. ** If expression is a numeric constant, fills 'v' with its value
  39. ** and returns 1. Otherwise, returns 0.
  40. */
  41. static int tonumeral (const expdesc *e, TValue *v) {
  42. if (hasjumps(e))
  43. return 0; /* not a numeral */
  44. switch (e->k) {
  45. case VKINT:
  46. if (v) setivalue(v, e->u.ival);
  47. return 1;
  48. case VKFLT:
  49. if (v) setfltvalue(v, e->u.nval);
  50. return 1;
  51. default: return 0;
  52. }
  53. }
  54. /*
  55. ** Get the constant value from a constant expression
  56. */
  57. static TValue *const2val (FuncState *fs, const expdesc *e) {
  58. lua_assert(e->k == VCONST);
  59. return &fs->ls->dyd->actvar.arr[e->u.info].k;
  60. }
  61. /*
  62. ** If expression is a constant, fills 'v' with its value
  63. ** and returns 1. Otherwise, returns 0.
  64. */
  65. int luaK_exp2const (FuncState *fs, const expdesc *e, TValue *v) {
  66. if (hasjumps(e))
  67. return 0; /* not a constant */
  68. switch (e->k) {
  69. case VFALSE:
  70. setbfvalue(v);
  71. return 1;
  72. case VTRUE:
  73. setbtvalue(v);
  74. return 1;
  75. case VNIL:
  76. setnilvalue(v);
  77. return 1;
  78. case VKSTR: {
  79. setsvalue(fs->ls->L, v, e->u.strval);
  80. return 1;
  81. }
  82. case VCONST: {
  83. setobj(fs->ls->L, v, const2val(fs, e));
  84. return 1;
  85. }
  86. default: return tonumeral(e, v);
  87. }
  88. }
  89. /*
  90. ** Return the previous instruction of the current code. If there
  91. ** may be a jump target between the current instruction and the
  92. ** previous one, return an invalid instruction (to avoid wrong
  93. ** optimizations).
  94. */
  95. static Instruction *previousinstruction (FuncState *fs) {
  96. static const Instruction invalidinstruction = ~(Instruction)0;
  97. if (fs->pc > fs->lasttarget)
  98. return &fs->f->code[fs->pc - 1]; /* previous instruction */
  99. else
  100. return cast(Instruction*, &invalidinstruction);
  101. }
  102. /*
  103. ** Create a OP_LOADNIL instruction, but try to optimize: if the previous
  104. ** instruction is also OP_LOADNIL and ranges are compatible, adjust
  105. ** range of previous instruction instead of emitting a new one. (For
  106. ** instance, 'local a; local b' will generate a single opcode.)
  107. */
  108. void luaK_nil (FuncState *fs, int from, int n) {
  109. int l = from + n - 1; /* last register to set nil */
  110. Instruction *previous = previousinstruction(fs);
  111. if (GET_OPCODE(*previous) == OP_LOADNIL) { /* previous is LOADNIL? */
  112. int pfrom = GETARG_A(*previous); /* get previous range */
  113. int pl = pfrom + GETARG_B(*previous);
  114. if ((pfrom <= from && from <= pl + 1) ||
  115. (from <= pfrom && pfrom <= l + 1)) { /* can connect both? */
  116. if (pfrom < from) from = pfrom; /* from = min(from, pfrom) */
  117. if (pl > l) l = pl; /* l = max(l, pl) */
  118. SETARG_A(*previous, from);
  119. SETARG_B(*previous, l - from);
  120. return;
  121. } /* else go through */
  122. }
  123. luaK_codeABC(fs, OP_LOADNIL, from, n - 1, 0); /* else no optimization */
  124. }
  125. /*
  126. ** Gets the destination address of a jump instruction. Used to traverse
  127. ** a list of jumps.
  128. */
  129. static int getjump (FuncState *fs, int pc) {
  130. int offset = GETARG_sJ(fs->f->code[pc]);
  131. if (offset == NO_JUMP) /* point to itself represents end of list */
  132. return NO_JUMP; /* end of list */
  133. else
  134. return (pc+1)+offset; /* turn offset into absolute position */
  135. }
  136. /*
  137. ** Fix jump instruction at position 'pc' to jump to 'dest'.
  138. ** (Jump addresses are relative in Lua)
  139. */
  140. static void fixjump (FuncState *fs, int pc, int dest) {
  141. Instruction *jmp = &fs->f->code[pc];
  142. int offset = dest - (pc + 1);
  143. lua_assert(dest != NO_JUMP);
  144. if (!(-OFFSET_sJ <= offset && offset <= MAXARG_sJ - OFFSET_sJ))
  145. luaX_syntaxerror(fs->ls, "control structure too long");
  146. lua_assert(GET_OPCODE(*jmp) == OP_JMP);
  147. SETARG_sJ(*jmp, offset);
  148. }
  149. /*
  150. ** Concatenate jump-list 'l2' into jump-list 'l1'
  151. */
  152. void luaK_concat (FuncState *fs, int *l1, int l2) {
  153. if (l2 == NO_JUMP) return; /* nothing to concatenate? */
  154. else if (*l1 == NO_JUMP) /* no original list? */
  155. *l1 = l2; /* 'l1' points to 'l2' */
  156. else {
  157. int list = *l1;
  158. int next;
  159. while ((next = getjump(fs, list)) != NO_JUMP) /* find last element */
  160. list = next;
  161. fixjump(fs, list, l2); /* last element links to 'l2' */
  162. }
  163. }
  164. /*
  165. ** Create a jump instruction and return its position, so its destination
  166. ** can be fixed later (with 'fixjump').
  167. */
  168. int luaK_jump (FuncState *fs) {
  169. return codesJ(fs, OP_JMP, NO_JUMP, 0);
  170. }
  171. /*
  172. ** Code a 'return' instruction
  173. */
  174. void luaK_ret (FuncState *fs, int first, int nret) {
  175. OpCode op;
  176. switch (nret) {
  177. case 0: op = OP_RETURN0; break;
  178. case 1: op = OP_RETURN1; break;
  179. default: op = OP_RETURN; break;
  180. }
  181. luaY_checklimit(fs, nret + 1, MAXARG_B, "returns");
  182. luaK_codeABC(fs, op, first, nret + 1, 0);
  183. }
  184. /*
  185. ** Code a "conditional jump", that is, a test or comparison opcode
  186. ** followed by a jump. Return jump position.
  187. */
  188. static int condjump (FuncState *fs, OpCode op, int A, int B, int C, int k) {
  189. luaK_codeABCk(fs, op, A, B, C, k);
  190. return luaK_jump(fs);
  191. }
  192. /*
  193. ** returns current 'pc' and marks it as a jump target (to avoid wrong
  194. ** optimizations with consecutive instructions not in the same basic block).
  195. */
  196. int luaK_getlabel (FuncState *fs) {
  197. fs->lasttarget = fs->pc;
  198. return fs->pc;
  199. }
  200. /*
  201. ** Returns the position of the instruction "controlling" a given
  202. ** jump (that is, its condition), or the jump itself if it is
  203. ** unconditional.
  204. */
  205. static Instruction *getjumpcontrol (FuncState *fs, int pc) {
  206. Instruction *pi = &fs->f->code[pc];
  207. if (pc >= 1 && testTMode(GET_OPCODE(*(pi-1))))
  208. return pi-1;
  209. else
  210. return pi;
  211. }
  212. /*
  213. ** Patch destination register for a TESTSET instruction.
  214. ** If instruction in position 'node' is not a TESTSET, return 0 ("fails").
  215. ** Otherwise, if 'reg' is not 'NO_REG', set it as the destination
  216. ** register. Otherwise, change instruction to a simple 'TEST' (produces
  217. ** no register value)
  218. */
  219. static int patchtestreg (FuncState *fs, int node, int reg) {
  220. Instruction *i = getjumpcontrol(fs, node);
  221. if (GET_OPCODE(*i) != OP_TESTSET)
  222. return 0; /* cannot patch other instructions */
  223. if (reg != NO_REG && reg != GETARG_B(*i))
  224. SETARG_A(*i, reg);
  225. else {
  226. /* no register to put value or register already has the value;
  227. change instruction to simple test */
  228. *i = CREATE_ABCk(OP_TEST, GETARG_B(*i), 0, 0, GETARG_k(*i));
  229. }
  230. return 1;
  231. }
  232. /*
  233. ** Traverse a list of tests ensuring no one produces a value
  234. */
  235. static void removevalues (FuncState *fs, int list) {
  236. for (; list != NO_JUMP; list = getjump(fs, list))
  237. patchtestreg(fs, list, NO_REG);
  238. }
  239. /*
  240. ** Traverse a list of tests, patching their destination address and
  241. ** registers: tests producing values jump to 'vtarget' (and put their
  242. ** values in 'reg'), other tests jump to 'dtarget'.
  243. */
  244. static void patchlistaux (FuncState *fs, int list, int vtarget, int reg,
  245. int dtarget) {
  246. while (list != NO_JUMP) {
  247. int next = getjump(fs, list);
  248. if (patchtestreg(fs, list, reg))
  249. fixjump(fs, list, vtarget);
  250. else
  251. fixjump(fs, list, dtarget); /* jump to default target */
  252. list = next;
  253. }
  254. }
  255. /*
  256. ** Path all jumps in 'list' to jump to 'target'.
  257. ** (The assert means that we cannot fix a jump to a forward address
  258. ** because we only know addresses once code is generated.)
  259. */
  260. void luaK_patchlist (FuncState *fs, int list, int target) {
  261. lua_assert(target <= fs->pc);
  262. patchlistaux(fs, list, target, NO_REG, target);
  263. }
  264. void luaK_patchtohere (FuncState *fs, int list) {
  265. int hr = luaK_getlabel(fs); /* mark "here" as a jump target */
  266. luaK_patchlist(fs, list, hr);
  267. }
  268. /* limit for difference between lines in relative line info. */
  269. #define LIMLINEDIFF 0x80
  270. /*
  271. ** Save line info for a new instruction. If difference from last line
  272. ** does not fit in a byte, of after that many instructions, save a new
  273. ** absolute line info; (in that case, the special value 'ABSLINEINFO'
  274. ** in 'lineinfo' signals the existence of this absolute information.)
  275. ** Otherwise, store the difference from last line in 'lineinfo'.
  276. */
  277. static void savelineinfo (FuncState *fs, Proto *f, int line) {
  278. int linedif = line - fs->previousline;
  279. int pc = fs->pc - 1; /* last instruction coded */
  280. if (abs(linedif) >= LIMLINEDIFF || fs->iwthabs++ >= MAXIWTHABS) {
  281. luaM_growvector(fs->ls->L, f->abslineinfo, fs->nabslineinfo,
  282. f->sizeabslineinfo, AbsLineInfo, INT_MAX, "lines");
  283. f->abslineinfo[fs->nabslineinfo].pc = pc;
  284. f->abslineinfo[fs->nabslineinfo++].line = line;
  285. linedif = ABSLINEINFO; /* signal that there is absolute information */
  286. fs->iwthabs = 1; /* restart counter */
  287. }
  288. luaM_growvector(fs->ls->L, f->lineinfo, pc, f->sizelineinfo, ls_byte,
  289. INT_MAX, "opcodes");
  290. f->lineinfo[pc] = cast(ls_byte, linedif);
  291. fs->previousline = line; /* last line saved */
  292. }
  293. /*
  294. ** Remove line information from the last instruction.
  295. ** If line information for that instruction is absolute, set 'iwthabs'
  296. ** above its max to force the new (replacing) instruction to have
  297. ** absolute line info, too.
  298. */
  299. static void removelastlineinfo (FuncState *fs) {
  300. Proto *f = fs->f;
  301. int pc = fs->pc - 1; /* last instruction coded */
  302. if (f->lineinfo[pc] != ABSLINEINFO) { /* relative line info? */
  303. fs->previousline -= f->lineinfo[pc]; /* correct last line saved */
  304. fs->iwthabs--; /* undo previous increment */
  305. }
  306. else { /* absolute line information */
  307. lua_assert(f->abslineinfo[fs->nabslineinfo - 1].pc == pc);
  308. fs->nabslineinfo--; /* remove it */
  309. fs->iwthabs = MAXIWTHABS + 1; /* force next line info to be absolute */
  310. }
  311. }
  312. /*
  313. ** Remove the last instruction created, correcting line information
  314. ** accordingly.
  315. */
  316. static void removelastinstruction (FuncState *fs) {
  317. removelastlineinfo(fs);
  318. fs->pc--;
  319. }
  320. /*
  321. ** Emit instruction 'i', checking for array sizes and saving also its
  322. ** line information. Return 'i' position.
  323. */
  324. int luaK_code (FuncState *fs, Instruction i) {
  325. Proto *f = fs->f;
  326. /* put new instruction in code array */
  327. luaM_growvector(fs->ls->L, f->code, fs->pc, f->sizecode, Instruction,
  328. INT_MAX, "opcodes");
  329. f->code[fs->pc++] = i;
  330. savelineinfo(fs, f, fs->ls->lastline);
  331. return fs->pc - 1; /* index of new instruction */
  332. }
  333. /*
  334. ** Format and emit an 'iABC' instruction. (Assertions check consistency
  335. ** of parameters versus opcode.)
  336. */
  337. int luaK_codeABCk (FuncState *fs, OpCode o, int A, int B, int C, int k) {
  338. lua_assert(getOpMode(o) == iABC);
  339. lua_assert(A <= MAXARG_A && B <= MAXARG_B &&
  340. C <= MAXARG_C && (k & ~1) == 0);
  341. return luaK_code(fs, CREATE_ABCk(o, A, B, C, k));
  342. }
  343. int luaK_codevABCk (FuncState *fs, OpCode o, int A, int B, int C, int k) {
  344. lua_assert(getOpMode(o) == ivABC);
  345. lua_assert(A <= MAXARG_A && B <= MAXARG_vB &&
  346. C <= MAXARG_vC && (k & ~1) == 0);
  347. return luaK_code(fs, CREATE_vABCk(o, A, B, C, k));
  348. }
  349. /*
  350. ** Format and emit an 'iABx' instruction.
  351. */
  352. int luaK_codeABx (FuncState *fs, OpCode o, int A, int Bc) {
  353. lua_assert(getOpMode(o) == iABx);
  354. lua_assert(A <= MAXARG_A && Bc <= MAXARG_Bx);
  355. return luaK_code(fs, CREATE_ABx(o, A, Bc));
  356. }
  357. /*
  358. ** Format and emit an 'iAsBx' instruction.
  359. */
  360. static int codeAsBx (FuncState *fs, OpCode o, int A, int Bc) {
  361. int b = Bc + OFFSET_sBx;
  362. lua_assert(getOpMode(o) == iAsBx);
  363. lua_assert(A <= MAXARG_A && b <= MAXARG_Bx);
  364. return luaK_code(fs, CREATE_ABx(o, A, b));
  365. }
  366. /*
  367. ** Format and emit an 'isJ' instruction.
  368. */
  369. static int codesJ (FuncState *fs, OpCode o, int sj, int k) {
  370. int j = sj + OFFSET_sJ;
  371. lua_assert(getOpMode(o) == isJ);
  372. lua_assert(j <= MAXARG_sJ && (k & ~1) == 0);
  373. return luaK_code(fs, CREATE_sJ(o, j, k));
  374. }
  375. /*
  376. ** Emit an "extra argument" instruction (format 'iAx')
  377. */
  378. static int codeextraarg (FuncState *fs, int A) {
  379. lua_assert(A <= MAXARG_Ax);
  380. return luaK_code(fs, CREATE_Ax(OP_EXTRAARG, A));
  381. }
  382. /*
  383. ** Emit a "load constant" instruction, using either 'OP_LOADK'
  384. ** (if constant index 'k' fits in 18 bits) or an 'OP_LOADKX'
  385. ** instruction with "extra argument".
  386. */
  387. static int luaK_codek (FuncState *fs, int reg, int k) {
  388. if (k <= MAXARG_Bx)
  389. return luaK_codeABx(fs, OP_LOADK, reg, k);
  390. else {
  391. int p = luaK_codeABx(fs, OP_LOADKX, reg, 0);
  392. codeextraarg(fs, k);
  393. return p;
  394. }
  395. }
  396. /*
  397. ** Check register-stack level, keeping track of its maximum size
  398. ** in field 'maxstacksize'
  399. */
  400. void luaK_checkstack (FuncState *fs, int n) {
  401. int newstack = fs->freereg + n;
  402. if (newstack > fs->f->maxstacksize) {
  403. luaY_checklimit(fs, newstack, MAX_FSTACK, "registers");
  404. fs->f->maxstacksize = cast_byte(newstack);
  405. }
  406. }
  407. /*
  408. ** Reserve 'n' registers in register stack
  409. */
  410. void luaK_reserveregs (FuncState *fs, int n) {
  411. luaK_checkstack(fs, n);
  412. fs->freereg = cast_byte(fs->freereg + n);
  413. }
  414. /*
  415. ** Free register 'reg', if it is neither a constant index nor
  416. ** a local variable.
  417. )
  418. */
  419. static void freereg (FuncState *fs, int reg) {
  420. if (reg >= luaY_nvarstack(fs)) {
  421. fs->freereg--;
  422. lua_assert(reg == fs->freereg);
  423. }
  424. }
  425. /*
  426. ** Free two registers in proper order
  427. */
  428. static void freeregs (FuncState *fs, int r1, int r2) {
  429. if (r1 > r2) {
  430. freereg(fs, r1);
  431. freereg(fs, r2);
  432. }
  433. else {
  434. freereg(fs, r2);
  435. freereg(fs, r1);
  436. }
  437. }
  438. /*
  439. ** Free register used by expression 'e' (if any)
  440. */
  441. static void freeexp (FuncState *fs, expdesc *e) {
  442. if (e->k == VNONRELOC)
  443. freereg(fs, e->u.info);
  444. }
  445. /*
  446. ** Free registers used by expressions 'e1' and 'e2' (if any) in proper
  447. ** order.
  448. */
  449. static void freeexps (FuncState *fs, expdesc *e1, expdesc *e2) {
  450. int r1 = (e1->k == VNONRELOC) ? e1->u.info : -1;
  451. int r2 = (e2->k == VNONRELOC) ? e2->u.info : -1;
  452. freeregs(fs, r1, r2);
  453. }
  454. /*
  455. ** Add constant 'v' to prototype's list of constants (field 'k').
  456. */
  457. static int addk (FuncState *fs, Proto *f, TValue *v) {
  458. lua_State *L = fs->ls->L;
  459. int oldsize = f->sizek;
  460. int k = fs->nk;
  461. luaM_growvector(L, f->k, k, f->sizek, TValue, MAXARG_Ax, "constants");
  462. while (oldsize < f->sizek)
  463. setnilvalue(&f->k[oldsize++]);
  464. setobj(L, &f->k[k], v);
  465. fs->nk++;
  466. luaC_barrier(L, f, v);
  467. return k;
  468. }
  469. /*
  470. ** Use scanner's table to cache position of constants in constant list
  471. ** and try to reuse constants. Because some values should not be used
  472. ** as keys (nil cannot be a key, integer keys can collapse with float
  473. ** keys), the caller must provide a useful 'key' for indexing the cache.
  474. */
  475. static int k2proto (FuncState *fs, TValue *key, TValue *v) {
  476. TValue val;
  477. Proto *f = fs->f;
  478. int tag = luaH_get(fs->kcache, key, &val); /* query scanner table */
  479. if (!tagisempty(tag)) { /* is there an index there? */
  480. int k = cast_int(ivalue(&val));
  481. /* collisions can happen only for float keys */
  482. lua_assert(ttisfloat(key) || luaV_rawequalobj(&f->k[k], v));
  483. return k; /* reuse index */
  484. }
  485. else { /* constant not found; create a new entry */
  486. int k = addk(fs, f, v);
  487. /* cache it for reuse; numerical value does not need GC barrier;
  488. table is not a metatable, so it does not need to invalidate cache */
  489. setivalue(&val, k);
  490. luaH_set(fs->ls->L, fs->kcache, key, &val);
  491. return k;
  492. }
  493. }
  494. /*
  495. ** Add a string to list of constants and return its index.
  496. */
  497. static int stringK (FuncState *fs, TString *s) {
  498. TValue o;
  499. setsvalue(fs->ls->L, &o, s);
  500. return k2proto(fs, &o, &o); /* use string itself as key */
  501. }
  502. /*
  503. ** Add an integer to list of constants and return its index.
  504. */
  505. static int luaK_intK (FuncState *fs, lua_Integer n) {
  506. TValue o;
  507. setivalue(&o, n);
  508. return k2proto(fs, &o, &o); /* use integer itself as key */
  509. }
  510. /*
  511. ** Add a float to list of constants and return its index. Floats
  512. ** with integral values need a different key, to avoid collision
  513. ** with actual integers. To that end, we add to the number its smaller
  514. ** power-of-two fraction that is still significant in its scale.
  515. ** (For doubles, the fraction would be 2^-52).
  516. ** This method is not bulletproof: different numbers may generate the
  517. ** same key (e.g., very large numbers will overflow to 'inf') and for
  518. ** floats larger than 2^53 the result is still an integer. For those
  519. ** cases, just generate a new entry. At worst, this only wastes an entry
  520. ** with a duplicate.
  521. */
  522. static int luaK_numberK (FuncState *fs, lua_Number r) {
  523. TValue o, kv;
  524. setfltvalue(&o, r); /* value as a TValue */
  525. if (r == 0) { /* handle zero as a special case */
  526. setpvalue(&kv, fs); /* use FuncState as index */
  527. return k2proto(fs, &kv, &o); /* cannot collide */
  528. }
  529. else {
  530. const int nbm = l_floatatt(MANT_DIG);
  531. const lua_Number q = l_mathop(ldexp)(l_mathop(1.0), -nbm + 1);
  532. const lua_Number k = r * (1 + q); /* key */
  533. lua_Integer ik;
  534. setfltvalue(&kv, k); /* key as a TValue */
  535. if (!luaV_flttointeger(k, &ik, F2Ieq)) { /* not an integer value? */
  536. int n = k2proto(fs, &kv, &o); /* use key */
  537. if (luaV_rawequalobj(&fs->f->k[n], &o)) /* correct value? */
  538. return n;
  539. }
  540. /* else, either key is still an integer or there was a collision;
  541. anyway, do not try to reuse constant; instead, create a new one */
  542. return addk(fs, fs->f, &o);
  543. }
  544. }
  545. /*
  546. ** Add a false to list of constants and return its index.
  547. */
  548. static int boolF (FuncState *fs) {
  549. TValue o;
  550. setbfvalue(&o);
  551. return k2proto(fs, &o, &o); /* use boolean itself as key */
  552. }
  553. /*
  554. ** Add a true to list of constants and return its index.
  555. */
  556. static int boolT (FuncState *fs) {
  557. TValue o;
  558. setbtvalue(&o);
  559. return k2proto(fs, &o, &o); /* use boolean itself as key */
  560. }
  561. /*
  562. ** Add nil to list of constants and return its index.
  563. */
  564. static int nilK (FuncState *fs) {
  565. TValue k, v;
  566. setnilvalue(&v);
  567. /* cannot use nil as key; instead use table itself */
  568. sethvalue(fs->ls->L, &k, fs->kcache);
  569. return k2proto(fs, &k, &v);
  570. }
  571. /*
  572. ** Check whether 'i' can be stored in an 'sC' operand. Equivalent to
  573. ** (0 <= int2sC(i) && int2sC(i) <= MAXARG_C) but without risk of
  574. ** overflows in the hidden addition inside 'int2sC'.
  575. */
  576. static int fitsC (lua_Integer i) {
  577. return (l_castS2U(i) + OFFSET_sC <= cast_uint(MAXARG_C));
  578. }
  579. /*
  580. ** Check whether 'i' can be stored in an 'sBx' operand.
  581. */
  582. static int fitsBx (lua_Integer i) {
  583. return (-OFFSET_sBx <= i && i <= MAXARG_Bx - OFFSET_sBx);
  584. }
  585. void luaK_int (FuncState *fs, int reg, lua_Integer i) {
  586. if (fitsBx(i))
  587. codeAsBx(fs, OP_LOADI, reg, cast_int(i));
  588. else
  589. luaK_codek(fs, reg, luaK_intK(fs, i));
  590. }
  591. static void luaK_float (FuncState *fs, int reg, lua_Number f) {
  592. lua_Integer fi;
  593. if (luaV_flttointeger(f, &fi, F2Ieq) && fitsBx(fi))
  594. codeAsBx(fs, OP_LOADF, reg, cast_int(fi));
  595. else
  596. luaK_codek(fs, reg, luaK_numberK(fs, f));
  597. }
  598. /*
  599. ** Convert a constant in 'v' into an expression description 'e'
  600. */
  601. static void const2exp (TValue *v, expdesc *e) {
  602. switch (ttypetag(v)) {
  603. case LUA_VNUMINT:
  604. e->k = VKINT; e->u.ival = ivalue(v);
  605. break;
  606. case LUA_VNUMFLT:
  607. e->k = VKFLT; e->u.nval = fltvalue(v);
  608. break;
  609. case LUA_VFALSE:
  610. e->k = VFALSE;
  611. break;
  612. case LUA_VTRUE:
  613. e->k = VTRUE;
  614. break;
  615. case LUA_VNIL:
  616. e->k = VNIL;
  617. break;
  618. case LUA_VSHRSTR: case LUA_VLNGSTR:
  619. e->k = VKSTR; e->u.strval = tsvalue(v);
  620. break;
  621. default: lua_assert(0);
  622. }
  623. }
  624. /*
  625. ** Fix an expression to return the number of results 'nresults'.
  626. ** 'e' must be a multi-ret expression (function call or vararg).
  627. */
  628. void luaK_setreturns (FuncState *fs, expdesc *e, int nresults) {
  629. Instruction *pc = &getinstruction(fs, e);
  630. luaY_checklimit(fs, nresults + 1, MAXARG_C, "multiple results");
  631. if (e->k == VCALL) /* expression is an open function call? */
  632. SETARG_C(*pc, nresults + 1);
  633. else {
  634. lua_assert(e->k == VVARARG);
  635. SETARG_C(*pc, nresults + 1);
  636. SETARG_A(*pc, fs->freereg);
  637. luaK_reserveregs(fs, 1);
  638. }
  639. }
  640. /*
  641. ** Convert a VKSTR to a VK
  642. */
  643. static int str2K (FuncState *fs, expdesc *e) {
  644. lua_assert(e->k == VKSTR);
  645. e->u.info = stringK(fs, e->u.strval);
  646. e->k = VK;
  647. return e->u.info;
  648. }
  649. /*
  650. ** Fix an expression to return one result.
  651. ** If expression is not a multi-ret expression (function call or
  652. ** vararg), it already returns one result, so nothing needs to be done.
  653. ** Function calls become VNONRELOC expressions (as its result comes
  654. ** fixed in the base register of the call), while vararg expressions
  655. ** become VRELOC (as OP_VARARG puts its results where it wants).
  656. ** (Calls are created returning one result, so that does not need
  657. ** to be fixed.)
  658. */
  659. void luaK_setoneret (FuncState *fs, expdesc *e) {
  660. if (e->k == VCALL) { /* expression is an open function call? */
  661. /* already returns 1 value */
  662. lua_assert(GETARG_C(getinstruction(fs, e)) == 2);
  663. e->k = VNONRELOC; /* result has fixed position */
  664. e->u.info = GETARG_A(getinstruction(fs, e));
  665. }
  666. else if (e->k == VVARARG) {
  667. SETARG_C(getinstruction(fs, e), 2);
  668. e->k = VRELOC; /* can relocate its simple result */
  669. }
  670. }
  671. /*
  672. ** Ensure that expression 'e' is not a variable (nor a <const>).
  673. ** (Expression still may have jump lists.)
  674. */
  675. void luaK_dischargevars (FuncState *fs, expdesc *e) {
  676. switch (e->k) {
  677. case VCONST: {
  678. const2exp(const2val(fs, e), e);
  679. break;
  680. }
  681. case VLOCAL: { /* already in a register */
  682. int temp = e->u.var.ridx;
  683. e->u.info = temp; /* (can't do a direct assignment; values overlap) */
  684. e->k = VNONRELOC; /* becomes a non-relocatable value */
  685. break;
  686. }
  687. case VUPVAL: { /* move value to some (pending) register */
  688. e->u.info = luaK_codeABC(fs, OP_GETUPVAL, 0, e->u.info, 0);
  689. e->k = VRELOC;
  690. break;
  691. }
  692. case VINDEXUP: {
  693. e->u.info = luaK_codeABC(fs, OP_GETTABUP, 0, e->u.ind.t, e->u.ind.idx);
  694. e->k = VRELOC;
  695. break;
  696. }
  697. case VINDEXI: {
  698. freereg(fs, e->u.ind.t);
  699. e->u.info = luaK_codeABC(fs, OP_GETI, 0, e->u.ind.t, e->u.ind.idx);
  700. e->k = VRELOC;
  701. break;
  702. }
  703. case VINDEXSTR: {
  704. freereg(fs, e->u.ind.t);
  705. e->u.info = luaK_codeABC(fs, OP_GETFIELD, 0, e->u.ind.t, e->u.ind.idx);
  706. e->k = VRELOC;
  707. break;
  708. }
  709. case VINDEXED: {
  710. freeregs(fs, e->u.ind.t, e->u.ind.idx);
  711. e->u.info = luaK_codeABC(fs, OP_GETTABLE, 0, e->u.ind.t, e->u.ind.idx);
  712. e->k = VRELOC;
  713. break;
  714. }
  715. case VVARARG: case VCALL: {
  716. luaK_setoneret(fs, e);
  717. break;
  718. }
  719. default: break; /* there is one value available (somewhere) */
  720. }
  721. }
  722. /*
  723. ** Ensure expression value is in register 'reg', making 'e' a
  724. ** non-relocatable expression.
  725. ** (Expression still may have jump lists.)
  726. */
  727. static void discharge2reg (FuncState *fs, expdesc *e, int reg) {
  728. luaK_dischargevars(fs, e);
  729. switch (e->k) {
  730. case VNIL: {
  731. luaK_nil(fs, reg, 1);
  732. break;
  733. }
  734. case VFALSE: {
  735. luaK_codeABC(fs, OP_LOADFALSE, reg, 0, 0);
  736. break;
  737. }
  738. case VTRUE: {
  739. luaK_codeABC(fs, OP_LOADTRUE, reg, 0, 0);
  740. break;
  741. }
  742. case VKSTR: {
  743. str2K(fs, e);
  744. } /* FALLTHROUGH */
  745. case VK: {
  746. luaK_codek(fs, reg, e->u.info);
  747. break;
  748. }
  749. case VKFLT: {
  750. luaK_float(fs, reg, e->u.nval);
  751. break;
  752. }
  753. case VKINT: {
  754. luaK_int(fs, reg, e->u.ival);
  755. break;
  756. }
  757. case VRELOC: {
  758. Instruction *pc = &getinstruction(fs, e);
  759. SETARG_A(*pc, reg); /* instruction will put result in 'reg' */
  760. break;
  761. }
  762. case VNONRELOC: {
  763. if (reg != e->u.info)
  764. luaK_codeABC(fs, OP_MOVE, reg, e->u.info, 0);
  765. break;
  766. }
  767. default: {
  768. lua_assert(e->k == VJMP);
  769. return; /* nothing to do... */
  770. }
  771. }
  772. e->u.info = reg;
  773. e->k = VNONRELOC;
  774. }
  775. /*
  776. ** Ensure expression value is in a register, making 'e' a
  777. ** non-relocatable expression.
  778. ** (Expression still may have jump lists.)
  779. */
  780. static void discharge2anyreg (FuncState *fs, expdesc *e) {
  781. if (e->k != VNONRELOC) { /* no fixed register yet? */
  782. luaK_reserveregs(fs, 1); /* get a register */
  783. discharge2reg(fs, e, fs->freereg-1); /* put value there */
  784. }
  785. }
  786. static int code_loadbool (FuncState *fs, int A, OpCode op) {
  787. luaK_getlabel(fs); /* those instructions may be jump targets */
  788. return luaK_codeABC(fs, op, A, 0, 0);
  789. }
  790. /*
  791. ** check whether list has any jump that do not produce a value
  792. ** or produce an inverted value
  793. */
  794. static int need_value (FuncState *fs, int list) {
  795. for (; list != NO_JUMP; list = getjump(fs, list)) {
  796. Instruction i = *getjumpcontrol(fs, list);
  797. if (GET_OPCODE(i) != OP_TESTSET) return 1;
  798. }
  799. return 0; /* not found */
  800. }
  801. /*
  802. ** Ensures final expression result (which includes results from its
  803. ** jump lists) is in register 'reg'.
  804. ** If expression has jumps, need to patch these jumps either to
  805. ** its final position or to "load" instructions (for those tests
  806. ** that do not produce values).
  807. */
  808. static void exp2reg (FuncState *fs, expdesc *e, int reg) {
  809. discharge2reg(fs, e, reg);
  810. if (e->k == VJMP) /* expression itself is a test? */
  811. luaK_concat(fs, &e->t, e->u.info); /* put this jump in 't' list */
  812. if (hasjumps(e)) {
  813. int final; /* position after whole expression */
  814. int p_f = NO_JUMP; /* position of an eventual LOAD false */
  815. int p_t = NO_JUMP; /* position of an eventual LOAD true */
  816. if (need_value(fs, e->t) || need_value(fs, e->f)) {
  817. int fj = (e->k == VJMP) ? NO_JUMP : luaK_jump(fs);
  818. p_f = code_loadbool(fs, reg, OP_LFALSESKIP); /* skip next inst. */
  819. p_t = code_loadbool(fs, reg, OP_LOADTRUE);
  820. /* jump around these booleans if 'e' is not a test */
  821. luaK_patchtohere(fs, fj);
  822. }
  823. final = luaK_getlabel(fs);
  824. patchlistaux(fs, e->f, final, reg, p_f);
  825. patchlistaux(fs, e->t, final, reg, p_t);
  826. }
  827. e->f = e->t = NO_JUMP;
  828. e->u.info = reg;
  829. e->k = VNONRELOC;
  830. }
  831. /*
  832. ** Ensures final expression result is in next available register.
  833. */
  834. void luaK_exp2nextreg (FuncState *fs, expdesc *e) {
  835. luaK_dischargevars(fs, e);
  836. freeexp(fs, e);
  837. luaK_reserveregs(fs, 1);
  838. exp2reg(fs, e, fs->freereg - 1);
  839. }
  840. /*
  841. ** Ensures final expression result is in some (any) register
  842. ** and return that register.
  843. */
  844. int luaK_exp2anyreg (FuncState *fs, expdesc *e) {
  845. luaK_dischargevars(fs, e);
  846. if (e->k == VNONRELOC) { /* expression already has a register? */
  847. if (!hasjumps(e)) /* no jumps? */
  848. return e->u.info; /* result is already in a register */
  849. if (e->u.info >= luaY_nvarstack(fs)) { /* reg. is not a local? */
  850. exp2reg(fs, e, e->u.info); /* put final result in it */
  851. return e->u.info;
  852. }
  853. /* else expression has jumps and cannot change its register
  854. to hold the jump values, because it is a local variable.
  855. Go through to the default case. */
  856. }
  857. luaK_exp2nextreg(fs, e); /* default: use next available register */
  858. return e->u.info;
  859. }
  860. /*
  861. ** Ensures final expression result is either in a register
  862. ** or in an upvalue.
  863. */
  864. void luaK_exp2anyregup (FuncState *fs, expdesc *e) {
  865. if (e->k != VUPVAL || hasjumps(e))
  866. luaK_exp2anyreg(fs, e);
  867. }
  868. /*
  869. ** Ensures final expression result is either in a register
  870. ** or it is a constant.
  871. */
  872. void luaK_exp2val (FuncState *fs, expdesc *e) {
  873. if (e->k == VJMP || hasjumps(e))
  874. luaK_exp2anyreg(fs, e);
  875. else
  876. luaK_dischargevars(fs, e);
  877. }
  878. /*
  879. ** Try to make 'e' a K expression with an index in the range of R/K
  880. ** indices. Return true iff succeeded.
  881. */
  882. static int luaK_exp2K (FuncState *fs, expdesc *e) {
  883. if (!hasjumps(e)) {
  884. int info;
  885. switch (e->k) { /* move constants to 'k' */
  886. case VTRUE: info = boolT(fs); break;
  887. case VFALSE: info = boolF(fs); break;
  888. case VNIL: info = nilK(fs); break;
  889. case VKINT: info = luaK_intK(fs, e->u.ival); break;
  890. case VKFLT: info = luaK_numberK(fs, e->u.nval); break;
  891. case VKSTR: info = stringK(fs, e->u.strval); break;
  892. case VK: info = e->u.info; break;
  893. default: return 0; /* not a constant */
  894. }
  895. if (info <= MAXINDEXRK) { /* does constant fit in 'argC'? */
  896. e->k = VK; /* make expression a 'K' expression */
  897. e->u.info = info;
  898. return 1;
  899. }
  900. }
  901. /* else, expression doesn't fit; leave it unchanged */
  902. return 0;
  903. }
  904. /*
  905. ** Ensures final expression result is in a valid R/K index
  906. ** (that is, it is either in a register or in 'k' with an index
  907. ** in the range of R/K indices).
  908. ** Returns 1 iff expression is K.
  909. */
  910. static int exp2RK (FuncState *fs, expdesc *e) {
  911. if (luaK_exp2K(fs, e))
  912. return 1;
  913. else { /* not a constant in the right range: put it in a register */
  914. luaK_exp2anyreg(fs, e);
  915. return 0;
  916. }
  917. }
  918. static void codeABRK (FuncState *fs, OpCode o, int A, int B,
  919. expdesc *ec) {
  920. int k = exp2RK(fs, ec);
  921. luaK_codeABCk(fs, o, A, B, ec->u.info, k);
  922. }
  923. /*
  924. ** Generate code to store result of expression 'ex' into variable 'var'.
  925. */
  926. void luaK_storevar (FuncState *fs, expdesc *var, expdesc *ex) {
  927. switch (var->k) {
  928. case VLOCAL: {
  929. freeexp(fs, ex);
  930. exp2reg(fs, ex, var->u.var.ridx); /* compute 'ex' into proper place */
  931. return;
  932. }
  933. case VUPVAL: {
  934. int e = luaK_exp2anyreg(fs, ex);
  935. luaK_codeABC(fs, OP_SETUPVAL, e, var->u.info, 0);
  936. break;
  937. }
  938. case VINDEXUP: {
  939. codeABRK(fs, OP_SETTABUP, var->u.ind.t, var->u.ind.idx, ex);
  940. break;
  941. }
  942. case VINDEXI: {
  943. codeABRK(fs, OP_SETI, var->u.ind.t, var->u.ind.idx, ex);
  944. break;
  945. }
  946. case VINDEXSTR: {
  947. codeABRK(fs, OP_SETFIELD, var->u.ind.t, var->u.ind.idx, ex);
  948. break;
  949. }
  950. case VINDEXED: {
  951. codeABRK(fs, OP_SETTABLE, var->u.ind.t, var->u.ind.idx, ex);
  952. break;
  953. }
  954. default: lua_assert(0); /* invalid var kind to store */
  955. }
  956. freeexp(fs, ex);
  957. }
  958. /*
  959. ** Negate condition 'e' (where 'e' is a comparison).
  960. */
  961. static void negatecondition (FuncState *fs, expdesc *e) {
  962. Instruction *pc = getjumpcontrol(fs, e->u.info);
  963. lua_assert(testTMode(GET_OPCODE(*pc)) && GET_OPCODE(*pc) != OP_TESTSET &&
  964. GET_OPCODE(*pc) != OP_TEST);
  965. SETARG_k(*pc, (GETARG_k(*pc) ^ 1));
  966. }
  967. /*
  968. ** Emit instruction to jump if 'e' is 'cond' (that is, if 'cond'
  969. ** is true, code will jump if 'e' is true.) Return jump position.
  970. ** Optimize when 'e' is 'not' something, inverting the condition
  971. ** and removing the 'not'.
  972. */
  973. static int jumponcond (FuncState *fs, expdesc *e, int cond) {
  974. if (e->k == VRELOC) {
  975. Instruction ie = getinstruction(fs, e);
  976. if (GET_OPCODE(ie) == OP_NOT) {
  977. removelastinstruction(fs); /* remove previous OP_NOT */
  978. return condjump(fs, OP_TEST, GETARG_B(ie), 0, 0, !cond);
  979. }
  980. /* else go through */
  981. }
  982. discharge2anyreg(fs, e);
  983. freeexp(fs, e);
  984. return condjump(fs, OP_TESTSET, NO_REG, e->u.info, 0, cond);
  985. }
  986. /*
  987. ** Emit code to go through if 'e' is true, jump otherwise.
  988. */
  989. void luaK_goiftrue (FuncState *fs, expdesc *e) {
  990. int pc; /* pc of new jump */
  991. luaK_dischargevars(fs, e);
  992. switch (e->k) {
  993. case VJMP: { /* condition? */
  994. negatecondition(fs, e); /* jump when it is false */
  995. pc = e->u.info; /* save jump position */
  996. break;
  997. }
  998. case VK: case VKFLT: case VKINT: case VKSTR: case VTRUE: {
  999. pc = NO_JUMP; /* always true; do nothing */
  1000. break;
  1001. }
  1002. default: {
  1003. pc = jumponcond(fs, e, 0); /* jump when false */
  1004. break;
  1005. }
  1006. }
  1007. luaK_concat(fs, &e->f, pc); /* insert new jump in false list */
  1008. luaK_patchtohere(fs, e->t); /* true list jumps to here (to go through) */
  1009. e->t = NO_JUMP;
  1010. }
  1011. /*
  1012. ** Emit code to go through if 'e' is false, jump otherwise.
  1013. */
  1014. void luaK_goiffalse (FuncState *fs, expdesc *e) {
  1015. int pc; /* pc of new jump */
  1016. luaK_dischargevars(fs, e);
  1017. switch (e->k) {
  1018. case VJMP: {
  1019. pc = e->u.info; /* already jump if true */
  1020. break;
  1021. }
  1022. case VNIL: case VFALSE: {
  1023. pc = NO_JUMP; /* always false; do nothing */
  1024. break;
  1025. }
  1026. default: {
  1027. pc = jumponcond(fs, e, 1); /* jump if true */
  1028. break;
  1029. }
  1030. }
  1031. luaK_concat(fs, &e->t, pc); /* insert new jump in 't' list */
  1032. luaK_patchtohere(fs, e->f); /* false list jumps to here (to go through) */
  1033. e->f = NO_JUMP;
  1034. }
  1035. /*
  1036. ** Code 'not e', doing constant folding.
  1037. */
  1038. static void codenot (FuncState *fs, expdesc *e) {
  1039. switch (e->k) {
  1040. case VNIL: case VFALSE: {
  1041. e->k = VTRUE; /* true == not nil == not false */
  1042. break;
  1043. }
  1044. case VK: case VKFLT: case VKINT: case VKSTR: case VTRUE: {
  1045. e->k = VFALSE; /* false == not "x" == not 0.5 == not 1 == not true */
  1046. break;
  1047. }
  1048. case VJMP: {
  1049. negatecondition(fs, e);
  1050. break;
  1051. }
  1052. case VRELOC:
  1053. case VNONRELOC: {
  1054. discharge2anyreg(fs, e);
  1055. freeexp(fs, e);
  1056. e->u.info = luaK_codeABC(fs, OP_NOT, 0, e->u.info, 0);
  1057. e->k = VRELOC;
  1058. break;
  1059. }
  1060. default: lua_assert(0); /* cannot happen */
  1061. }
  1062. /* interchange true and false lists */
  1063. { int temp = e->f; e->f = e->t; e->t = temp; }
  1064. removevalues(fs, e->f); /* values are useless when negated */
  1065. removevalues(fs, e->t);
  1066. }
  1067. /*
  1068. ** Check whether expression 'e' is a short literal string
  1069. */
  1070. static int isKstr (FuncState *fs, expdesc *e) {
  1071. return (e->k == VK && !hasjumps(e) && e->u.info <= MAXARG_B &&
  1072. ttisshrstring(&fs->f->k[e->u.info]));
  1073. }
  1074. /*
  1075. ** Check whether expression 'e' is a literal integer.
  1076. */
  1077. static int isKint (expdesc *e) {
  1078. return (e->k == VKINT && !hasjumps(e));
  1079. }
  1080. /*
  1081. ** Check whether expression 'e' is a literal integer in
  1082. ** proper range to fit in register C
  1083. */
  1084. static int isCint (expdesc *e) {
  1085. return isKint(e) && (l_castS2U(e->u.ival) <= l_castS2U(MAXARG_C));
  1086. }
  1087. /*
  1088. ** Check whether expression 'e' is a literal integer in
  1089. ** proper range to fit in register sC
  1090. */
  1091. static int isSCint (expdesc *e) {
  1092. return isKint(e) && fitsC(e->u.ival);
  1093. }
  1094. /*
  1095. ** Check whether expression 'e' is a literal integer or float in
  1096. ** proper range to fit in a register (sB or sC).
  1097. */
  1098. static int isSCnumber (expdesc *e, int *pi, int *isfloat) {
  1099. lua_Integer i;
  1100. if (e->k == VKINT)
  1101. i = e->u.ival;
  1102. else if (e->k == VKFLT && luaV_flttointeger(e->u.nval, &i, F2Ieq))
  1103. *isfloat = 1;
  1104. else
  1105. return 0; /* not a number */
  1106. if (!hasjumps(e) && fitsC(i)) {
  1107. *pi = int2sC(cast_int(i));
  1108. return 1;
  1109. }
  1110. else
  1111. return 0;
  1112. }
  1113. /*
  1114. ** Emit SELF instruction or equivalent: the code will convert
  1115. ** expression 'e' into 'e.key(e,'.
  1116. */
  1117. void luaK_self (FuncState *fs, expdesc *e, expdesc *key) {
  1118. int ereg, base;
  1119. luaK_exp2anyreg(fs, e);
  1120. ereg = e->u.info; /* register where 'e' (the receiver) was placed */
  1121. freeexp(fs, e);
  1122. base = e->u.info = fs->freereg; /* base register for op_self */
  1123. e->k = VNONRELOC; /* self expression has a fixed register */
  1124. luaK_reserveregs(fs, 2); /* method and 'self' produced by op_self */
  1125. lua_assert(key->k == VKSTR);
  1126. /* is method name a short string in a valid K index? */
  1127. if (strisshr(key->u.strval) && luaK_exp2K(fs, key)) {
  1128. /* can use 'self' opcode */
  1129. luaK_codeABCk(fs, OP_SELF, base, ereg, key->u.info, 0);
  1130. }
  1131. else { /* cannot use 'self' opcode; use move+gettable */
  1132. luaK_exp2anyreg(fs, key); /* put method name in a register */
  1133. luaK_codeABC(fs, OP_MOVE, base + 1, ereg, 0); /* copy self to base+1 */
  1134. luaK_codeABC(fs, OP_GETTABLE, base, ereg, key->u.info); /* get method */
  1135. }
  1136. freeexp(fs, key);
  1137. }
  1138. /*
  1139. ** Create expression 't[k]'. 't' must have its final result already in a
  1140. ** register or upvalue. Upvalues can only be indexed by literal strings.
  1141. ** Keys can be literal strings in the constant table or arbitrary
  1142. ** values in registers.
  1143. */
  1144. void luaK_indexed (FuncState *fs, expdesc *t, expdesc *k) {
  1145. int keystr = -1;
  1146. if (k->k == VKSTR)
  1147. keystr = str2K(fs, k);
  1148. lua_assert(!hasjumps(t) &&
  1149. (t->k == VLOCAL || t->k == VNONRELOC || t->k == VUPVAL));
  1150. if (t->k == VUPVAL && !isKstr(fs, k)) /* upvalue indexed by non 'Kstr'? */
  1151. luaK_exp2anyreg(fs, t); /* put it in a register */
  1152. if (t->k == VUPVAL) {
  1153. lu_byte temp = cast_byte(t->u.info); /* upvalue index */
  1154. t->u.ind.t = temp; /* (can't do a direct assignment; values overlap) */
  1155. lua_assert(isKstr(fs, k));
  1156. t->u.ind.idx = cast_short(k->u.info); /* literal short string */
  1157. t->k = VINDEXUP;
  1158. }
  1159. else {
  1160. /* register index of the table */
  1161. t->u.ind.t = cast_byte((t->k == VLOCAL) ? t->u.var.ridx: t->u.info);
  1162. if (isKstr(fs, k)) {
  1163. t->u.ind.idx = cast_short(k->u.info); /* literal short string */
  1164. t->k = VINDEXSTR;
  1165. }
  1166. else if (isCint(k)) { /* int. constant in proper range? */
  1167. t->u.ind.idx = cast_short(k->u.ival);
  1168. t->k = VINDEXI;
  1169. }
  1170. else {
  1171. t->u.ind.idx = cast_short(luaK_exp2anyreg(fs, k)); /* register */
  1172. t->k = VINDEXED;
  1173. }
  1174. }
  1175. t->u.ind.keystr = keystr; /* string index in 'k' */
  1176. t->u.ind.ro = 0; /* by default, not read-only */
  1177. }
  1178. /*
  1179. ** Return false if folding can raise an error.
  1180. ** Bitwise operations need operands convertible to integers; division
  1181. ** operations cannot have 0 as divisor.
  1182. */
  1183. static int validop (int op, TValue *v1, TValue *v2) {
  1184. switch (op) {
  1185. case LUA_OPBAND: case LUA_OPBOR: case LUA_OPBXOR:
  1186. case LUA_OPSHL: case LUA_OPSHR: case LUA_OPBNOT: { /* conversion errors */
  1187. lua_Integer i;
  1188. return (luaV_tointegerns(v1, &i, LUA_FLOORN2I) &&
  1189. luaV_tointegerns(v2, &i, LUA_FLOORN2I));
  1190. }
  1191. case LUA_OPDIV: case LUA_OPIDIV: case LUA_OPMOD: /* division by 0 */
  1192. return (nvalue(v2) != 0);
  1193. default: return 1; /* everything else is valid */
  1194. }
  1195. }
  1196. /*
  1197. ** Try to "constant-fold" an operation; return 1 iff successful.
  1198. ** (In this case, 'e1' has the final result.)
  1199. */
  1200. static int constfolding (FuncState *fs, int op, expdesc *e1,
  1201. const expdesc *e2) {
  1202. TValue v1, v2, res;
  1203. if (!tonumeral(e1, &v1) || !tonumeral(e2, &v2) || !validop(op, &v1, &v2))
  1204. return 0; /* non-numeric operands or not safe to fold */
  1205. luaO_rawarith(fs->ls->L, op, &v1, &v2, &res); /* does operation */
  1206. if (ttisinteger(&res)) {
  1207. e1->k = VKINT;
  1208. e1->u.ival = ivalue(&res);
  1209. }
  1210. else { /* folds neither NaN nor 0.0 (to avoid problems with -0.0) */
  1211. lua_Number n = fltvalue(&res);
  1212. if (luai_numisnan(n) || n == 0)
  1213. return 0;
  1214. e1->k = VKFLT;
  1215. e1->u.nval = n;
  1216. }
  1217. return 1;
  1218. }
  1219. /*
  1220. ** Convert a BinOpr to an OpCode (ORDER OPR - ORDER OP)
  1221. */
  1222. l_sinline OpCode binopr2op (BinOpr opr, BinOpr baser, OpCode base) {
  1223. lua_assert(baser <= opr &&
  1224. ((baser == OPR_ADD && opr <= OPR_SHR) ||
  1225. (baser == OPR_LT && opr <= OPR_LE)));
  1226. return cast(OpCode, (cast_int(opr) - cast_int(baser)) + cast_int(base));
  1227. }
  1228. /*
  1229. ** Convert a UnOpr to an OpCode (ORDER OPR - ORDER OP)
  1230. */
  1231. l_sinline OpCode unopr2op (UnOpr opr) {
  1232. return cast(OpCode, (cast_int(opr) - cast_int(OPR_MINUS)) +
  1233. cast_int(OP_UNM));
  1234. }
  1235. /*
  1236. ** Convert a BinOpr to a tag method (ORDER OPR - ORDER TM)
  1237. */
  1238. l_sinline TMS binopr2TM (BinOpr opr) {
  1239. lua_assert(OPR_ADD <= opr && opr <= OPR_SHR);
  1240. return cast(TMS, (cast_int(opr) - cast_int(OPR_ADD)) + cast_int(TM_ADD));
  1241. }
  1242. /*
  1243. ** Emit code for unary expressions that "produce values"
  1244. ** (everything but 'not').
  1245. ** Expression to produce final result will be encoded in 'e'.
  1246. */
  1247. static void codeunexpval (FuncState *fs, OpCode op, expdesc *e, int line) {
  1248. int r = luaK_exp2anyreg(fs, e); /* opcodes operate only on registers */
  1249. freeexp(fs, e);
  1250. e->u.info = luaK_codeABC(fs, op, 0, r, 0); /* generate opcode */
  1251. e->k = VRELOC; /* all those operations are relocatable */
  1252. luaK_fixline(fs, line);
  1253. }
  1254. /*
  1255. ** Emit code for binary expressions that "produce values"
  1256. ** (everything but logical operators 'and'/'or' and comparison
  1257. ** operators).
  1258. ** Expression to produce final result will be encoded in 'e1'.
  1259. */
  1260. static void finishbinexpval (FuncState *fs, expdesc *e1, expdesc *e2,
  1261. OpCode op, int v2, int flip, int line,
  1262. OpCode mmop, TMS event) {
  1263. int v1 = luaK_exp2anyreg(fs, e1);
  1264. int pc = luaK_codeABCk(fs, op, 0, v1, v2, 0);
  1265. freeexps(fs, e1, e2);
  1266. e1->u.info = pc;
  1267. e1->k = VRELOC; /* all those operations are relocatable */
  1268. luaK_fixline(fs, line);
  1269. luaK_codeABCk(fs, mmop, v1, v2, cast_int(event), flip); /* metamethod */
  1270. luaK_fixline(fs, line);
  1271. }
  1272. /*
  1273. ** Emit code for binary expressions that "produce values" over
  1274. ** two registers.
  1275. */
  1276. static void codebinexpval (FuncState *fs, BinOpr opr,
  1277. expdesc *e1, expdesc *e2, int line) {
  1278. OpCode op = binopr2op(opr, OPR_ADD, OP_ADD);
  1279. int v2 = luaK_exp2anyreg(fs, e2); /* make sure 'e2' is in a register */
  1280. /* 'e1' must be already in a register or it is a constant */
  1281. lua_assert((VNIL <= e1->k && e1->k <= VKSTR) ||
  1282. e1->k == VNONRELOC || e1->k == VRELOC);
  1283. lua_assert(OP_ADD <= op && op <= OP_SHR);
  1284. finishbinexpval(fs, e1, e2, op, v2, 0, line, OP_MMBIN, binopr2TM(opr));
  1285. }
  1286. /*
  1287. ** Code binary operators with immediate operands.
  1288. */
  1289. static void codebini (FuncState *fs, OpCode op,
  1290. expdesc *e1, expdesc *e2, int flip, int line,
  1291. TMS event) {
  1292. int v2 = int2sC(cast_int(e2->u.ival)); /* immediate operand */
  1293. lua_assert(e2->k == VKINT);
  1294. finishbinexpval(fs, e1, e2, op, v2, flip, line, OP_MMBINI, event);
  1295. }
  1296. /*
  1297. ** Code binary operators with K operand.
  1298. */
  1299. static void codebinK (FuncState *fs, BinOpr opr,
  1300. expdesc *e1, expdesc *e2, int flip, int line) {
  1301. TMS event = binopr2TM(opr);
  1302. int v2 = e2->u.info; /* K index */
  1303. OpCode op = binopr2op(opr, OPR_ADD, OP_ADDK);
  1304. finishbinexpval(fs, e1, e2, op, v2, flip, line, OP_MMBINK, event);
  1305. }
  1306. /* Try to code a binary operator negating its second operand.
  1307. ** For the metamethod, 2nd operand must keep its original value.
  1308. */
  1309. static int finishbinexpneg (FuncState *fs, expdesc *e1, expdesc *e2,
  1310. OpCode op, int line, TMS event) {
  1311. if (!isKint(e2))
  1312. return 0; /* not an integer constant */
  1313. else {
  1314. lua_Integer i2 = e2->u.ival;
  1315. if (!(fitsC(i2) && fitsC(-i2)))
  1316. return 0; /* not in the proper range */
  1317. else { /* operating a small integer constant */
  1318. int v2 = cast_int(i2);
  1319. finishbinexpval(fs, e1, e2, op, int2sC(-v2), 0, line, OP_MMBINI, event);
  1320. /* correct metamethod argument */
  1321. SETARG_B(fs->f->code[fs->pc - 1], int2sC(v2));
  1322. return 1; /* successfully coded */
  1323. }
  1324. }
  1325. }
  1326. static void swapexps (expdesc *e1, expdesc *e2) {
  1327. expdesc temp = *e1; *e1 = *e2; *e2 = temp; /* swap 'e1' and 'e2' */
  1328. }
  1329. /*
  1330. ** Code binary operators with no constant operand.
  1331. */
  1332. static void codebinNoK (FuncState *fs, BinOpr opr,
  1333. expdesc *e1, expdesc *e2, int flip, int line) {
  1334. if (flip)
  1335. swapexps(e1, e2); /* back to original order */
  1336. codebinexpval(fs, opr, e1, e2, line); /* use standard operators */
  1337. }
  1338. /*
  1339. ** Code arithmetic operators ('+', '-', ...). If second operand is a
  1340. ** constant in the proper range, use variant opcodes with K operands.
  1341. */
  1342. static void codearith (FuncState *fs, BinOpr opr,
  1343. expdesc *e1, expdesc *e2, int flip, int line) {
  1344. if (tonumeral(e2, NULL) && luaK_exp2K(fs, e2)) /* K operand? */
  1345. codebinK(fs, opr, e1, e2, flip, line);
  1346. else /* 'e2' is neither an immediate nor a K operand */
  1347. codebinNoK(fs, opr, e1, e2, flip, line);
  1348. }
  1349. /*
  1350. ** Code commutative operators ('+', '*'). If first operand is a
  1351. ** numeric constant, change order of operands to try to use an
  1352. ** immediate or K operator.
  1353. */
  1354. static void codecommutative (FuncState *fs, BinOpr op,
  1355. expdesc *e1, expdesc *e2, int line) {
  1356. int flip = 0;
  1357. if (tonumeral(e1, NULL)) { /* is first operand a numeric constant? */
  1358. swapexps(e1, e2); /* change order */
  1359. flip = 1;
  1360. }
  1361. if (op == OPR_ADD && isSCint(e2)) /* immediate operand? */
  1362. codebini(fs, OP_ADDI, e1, e2, flip, line, TM_ADD);
  1363. else
  1364. codearith(fs, op, e1, e2, flip, line);
  1365. }
  1366. /*
  1367. ** Code bitwise operations; they are all commutative, so the function
  1368. ** tries to put an integer constant as the 2nd operand (a K operand).
  1369. */
  1370. static void codebitwise (FuncState *fs, BinOpr opr,
  1371. expdesc *e1, expdesc *e2, int line) {
  1372. int flip = 0;
  1373. if (e1->k == VKINT) {
  1374. swapexps(e1, e2); /* 'e2' will be the constant operand */
  1375. flip = 1;
  1376. }
  1377. if (e2->k == VKINT && luaK_exp2K(fs, e2)) /* K operand? */
  1378. codebinK(fs, opr, e1, e2, flip, line);
  1379. else /* no constants */
  1380. codebinNoK(fs, opr, e1, e2, flip, line);
  1381. }
  1382. /*
  1383. ** Emit code for order comparisons. When using an immediate operand,
  1384. ** 'isfloat' tells whether the original value was a float.
  1385. */
  1386. static void codeorder (FuncState *fs, BinOpr opr, expdesc *e1, expdesc *e2) {
  1387. int r1, r2;
  1388. int im;
  1389. int isfloat = 0;
  1390. OpCode op;
  1391. if (isSCnumber(e2, &im, &isfloat)) {
  1392. /* use immediate operand */
  1393. r1 = luaK_exp2anyreg(fs, e1);
  1394. r2 = im;
  1395. op = binopr2op(opr, OPR_LT, OP_LTI);
  1396. }
  1397. else if (isSCnumber(e1, &im, &isfloat)) {
  1398. /* transform (A < B) to (B > A) and (A <= B) to (B >= A) */
  1399. r1 = luaK_exp2anyreg(fs, e2);
  1400. r2 = im;
  1401. op = binopr2op(opr, OPR_LT, OP_GTI);
  1402. }
  1403. else { /* regular case, compare two registers */
  1404. r1 = luaK_exp2anyreg(fs, e1);
  1405. r2 = luaK_exp2anyreg(fs, e2);
  1406. op = binopr2op(opr, OPR_LT, OP_LT);
  1407. }
  1408. freeexps(fs, e1, e2);
  1409. e1->u.info = condjump(fs, op, r1, r2, isfloat, 1);
  1410. e1->k = VJMP;
  1411. }
  1412. /*
  1413. ** Emit code for equality comparisons ('==', '~=').
  1414. ** 'e1' was already put as RK by 'luaK_infix'.
  1415. */
  1416. static void codeeq (FuncState *fs, BinOpr opr, expdesc *e1, expdesc *e2) {
  1417. int r1, r2;
  1418. int im;
  1419. int isfloat = 0; /* not needed here, but kept for symmetry */
  1420. OpCode op;
  1421. if (e1->k != VNONRELOC) {
  1422. lua_assert(e1->k == VK || e1->k == VKINT || e1->k == VKFLT);
  1423. swapexps(e1, e2);
  1424. }
  1425. r1 = luaK_exp2anyreg(fs, e1); /* 1st expression must be in register */
  1426. if (isSCnumber(e2, &im, &isfloat)) {
  1427. op = OP_EQI;
  1428. r2 = im; /* immediate operand */
  1429. }
  1430. else if (exp2RK(fs, e2)) { /* 2nd expression is constant? */
  1431. op = OP_EQK;
  1432. r2 = e2->u.info; /* constant index */
  1433. }
  1434. else {
  1435. op = OP_EQ; /* will compare two registers */
  1436. r2 = luaK_exp2anyreg(fs, e2);
  1437. }
  1438. freeexps(fs, e1, e2);
  1439. e1->u.info = condjump(fs, op, r1, r2, isfloat, (opr == OPR_EQ));
  1440. e1->k = VJMP;
  1441. }
  1442. /*
  1443. ** Apply prefix operation 'op' to expression 'e'.
  1444. */
  1445. void luaK_prefix (FuncState *fs, UnOpr opr, expdesc *e, int line) {
  1446. static const expdesc ef = {VKINT, {0}, NO_JUMP, NO_JUMP};
  1447. luaK_dischargevars(fs, e);
  1448. switch (opr) {
  1449. case OPR_MINUS: case OPR_BNOT: /* use 'ef' as fake 2nd operand */
  1450. if (constfolding(fs, cast_int(opr + LUA_OPUNM), e, &ef))
  1451. break;
  1452. /* else */ /* FALLTHROUGH */
  1453. case OPR_LEN:
  1454. codeunexpval(fs, unopr2op(opr), e, line);
  1455. break;
  1456. case OPR_NOT: codenot(fs, e); break;
  1457. default: lua_assert(0);
  1458. }
  1459. }
  1460. /*
  1461. ** Process 1st operand 'v' of binary operation 'op' before reading
  1462. ** 2nd operand.
  1463. */
  1464. void luaK_infix (FuncState *fs, BinOpr op, expdesc *v) {
  1465. luaK_dischargevars(fs, v);
  1466. switch (op) {
  1467. case OPR_AND: {
  1468. luaK_goiftrue(fs, v); /* go ahead only if 'v' is true */
  1469. break;
  1470. }
  1471. case OPR_OR: {
  1472. luaK_goiffalse(fs, v); /* go ahead only if 'v' is false */
  1473. break;
  1474. }
  1475. case OPR_CONCAT: {
  1476. luaK_exp2nextreg(fs, v); /* operand must be on the stack */
  1477. break;
  1478. }
  1479. case OPR_ADD: case OPR_SUB:
  1480. case OPR_MUL: case OPR_DIV: case OPR_IDIV:
  1481. case OPR_MOD: case OPR_POW:
  1482. case OPR_BAND: case OPR_BOR: case OPR_BXOR:
  1483. case OPR_SHL: case OPR_SHR: {
  1484. if (!tonumeral(v, NULL))
  1485. luaK_exp2anyreg(fs, v);
  1486. /* else keep numeral, which may be folded or used as an immediate
  1487. operand */
  1488. break;
  1489. }
  1490. case OPR_EQ: case OPR_NE: {
  1491. if (!tonumeral(v, NULL))
  1492. exp2RK(fs, v);
  1493. /* else keep numeral, which may be an immediate operand */
  1494. break;
  1495. }
  1496. case OPR_LT: case OPR_LE:
  1497. case OPR_GT: case OPR_GE: {
  1498. int dummy, dummy2;
  1499. if (!isSCnumber(v, &dummy, &dummy2))
  1500. luaK_exp2anyreg(fs, v);
  1501. /* else keep numeral, which may be an immediate operand */
  1502. break;
  1503. }
  1504. default: lua_assert(0);
  1505. }
  1506. }
  1507. /*
  1508. ** Create code for '(e1 .. e2)'.
  1509. ** For '(e1 .. e2.1 .. e2.2)' (which is '(e1 .. (e2.1 .. e2.2))',
  1510. ** because concatenation is right associative), merge both CONCATs.
  1511. */
  1512. static void codeconcat (FuncState *fs, expdesc *e1, expdesc *e2, int line) {
  1513. Instruction *ie2 = previousinstruction(fs);
  1514. if (GET_OPCODE(*ie2) == OP_CONCAT) { /* is 'e2' a concatenation? */
  1515. int n = GETARG_B(*ie2); /* # of elements concatenated in 'e2' */
  1516. lua_assert(e1->u.info + 1 == GETARG_A(*ie2));
  1517. freeexp(fs, e2);
  1518. SETARG_A(*ie2, e1->u.info); /* correct first element ('e1') */
  1519. SETARG_B(*ie2, n + 1); /* will concatenate one more element */
  1520. }
  1521. else { /* 'e2' is not a concatenation */
  1522. luaK_codeABC(fs, OP_CONCAT, e1->u.info, 2, 0); /* new concat opcode */
  1523. freeexp(fs, e2);
  1524. luaK_fixline(fs, line);
  1525. }
  1526. }
  1527. /*
  1528. ** Finalize code for binary operation, after reading 2nd operand.
  1529. */
  1530. void luaK_posfix (FuncState *fs, BinOpr opr,
  1531. expdesc *e1, expdesc *e2, int line) {
  1532. luaK_dischargevars(fs, e2);
  1533. if (foldbinop(opr) && constfolding(fs, cast_int(opr + LUA_OPADD), e1, e2))
  1534. return; /* done by folding */
  1535. switch (opr) {
  1536. case OPR_AND: {
  1537. lua_assert(e1->t == NO_JUMP); /* list closed by 'luaK_infix' */
  1538. luaK_concat(fs, &e2->f, e1->f);
  1539. *e1 = *e2;
  1540. break;
  1541. }
  1542. case OPR_OR: {
  1543. lua_assert(e1->f == NO_JUMP); /* list closed by 'luaK_infix' */
  1544. luaK_concat(fs, &e2->t, e1->t);
  1545. *e1 = *e2;
  1546. break;
  1547. }
  1548. case OPR_CONCAT: { /* e1 .. e2 */
  1549. luaK_exp2nextreg(fs, e2);
  1550. codeconcat(fs, e1, e2, line);
  1551. break;
  1552. }
  1553. case OPR_ADD: case OPR_MUL: {
  1554. codecommutative(fs, opr, e1, e2, line);
  1555. break;
  1556. }
  1557. case OPR_SUB: {
  1558. if (finishbinexpneg(fs, e1, e2, OP_ADDI, line, TM_SUB))
  1559. break; /* coded as (r1 + -I) */
  1560. /* ELSE */
  1561. } /* FALLTHROUGH */
  1562. case OPR_DIV: case OPR_IDIV: case OPR_MOD: case OPR_POW: {
  1563. codearith(fs, opr, e1, e2, 0, line);
  1564. break;
  1565. }
  1566. case OPR_BAND: case OPR_BOR: case OPR_BXOR: {
  1567. codebitwise(fs, opr, e1, e2, line);
  1568. break;
  1569. }
  1570. case OPR_SHL: {
  1571. if (isSCint(e1)) {
  1572. swapexps(e1, e2);
  1573. codebini(fs, OP_SHLI, e1, e2, 1, line, TM_SHL); /* I << r2 */
  1574. }
  1575. else if (finishbinexpneg(fs, e1, e2, OP_SHRI, line, TM_SHL)) {
  1576. /* coded as (r1 >> -I) */;
  1577. }
  1578. else /* regular case (two registers) */
  1579. codebinexpval(fs, opr, e1, e2, line);
  1580. break;
  1581. }
  1582. case OPR_SHR: {
  1583. if (isSCint(e2))
  1584. codebini(fs, OP_SHRI, e1, e2, 0, line, TM_SHR); /* r1 >> I */
  1585. else /* regular case (two registers) */
  1586. codebinexpval(fs, opr, e1, e2, line);
  1587. break;
  1588. }
  1589. case OPR_EQ: case OPR_NE: {
  1590. codeeq(fs, opr, e1, e2);
  1591. break;
  1592. }
  1593. case OPR_GT: case OPR_GE: {
  1594. /* '(a > b)' <=> '(b < a)'; '(a >= b)' <=> '(b <= a)' */
  1595. swapexps(e1, e2);
  1596. opr = cast(BinOpr, (opr - OPR_GT) + OPR_LT);
  1597. } /* FALLTHROUGH */
  1598. case OPR_LT: case OPR_LE: {
  1599. codeorder(fs, opr, e1, e2);
  1600. break;
  1601. }
  1602. default: lua_assert(0);
  1603. }
  1604. }
  1605. /*
  1606. ** Change line information associated with current position, by removing
  1607. ** previous info and adding it again with new line.
  1608. */
  1609. void luaK_fixline (FuncState *fs, int line) {
  1610. removelastlineinfo(fs);
  1611. savelineinfo(fs, fs->f, line);
  1612. }
  1613. void luaK_settablesize (FuncState *fs, int pc, int ra, int asize, int hsize) {
  1614. Instruction *inst = &fs->f->code[pc];
  1615. int extra = asize / (MAXARG_vC + 1); /* higher bits of array size */
  1616. int rc = asize % (MAXARG_vC + 1); /* lower bits of array size */
  1617. int k = (extra > 0); /* true iff needs extra argument */
  1618. hsize = (hsize != 0) ? luaO_ceillog2(cast_uint(hsize)) + 1 : 0;
  1619. *inst = CREATE_vABCk(OP_NEWTABLE, ra, hsize, rc, k);
  1620. *(inst + 1) = CREATE_Ax(OP_EXTRAARG, extra);
  1621. }
  1622. /*
  1623. ** Emit a SETLIST instruction.
  1624. ** 'base' is register that keeps table;
  1625. ** 'nelems' is #table plus those to be stored now;
  1626. ** 'tostore' is number of values (in registers 'base + 1',...) to add to
  1627. ** table (or LUA_MULTRET to add up to stack top).
  1628. */
  1629. void luaK_setlist (FuncState *fs, int base, int nelems, int tostore) {
  1630. lua_assert(tostore != 0);
  1631. if (tostore == LUA_MULTRET)
  1632. tostore = 0;
  1633. if (nelems <= MAXARG_vC)
  1634. luaK_codevABCk(fs, OP_SETLIST, base, tostore, nelems, 0);
  1635. else {
  1636. int extra = nelems / (MAXARG_vC + 1);
  1637. nelems %= (MAXARG_vC + 1);
  1638. luaK_codevABCk(fs, OP_SETLIST, base, tostore, nelems, 1);
  1639. codeextraarg(fs, extra);
  1640. }
  1641. fs->freereg = cast_byte(base + 1); /* free registers with list values */
  1642. }
  1643. /*
  1644. ** return the final target of a jump (skipping jumps to jumps)
  1645. */
  1646. static int finaltarget (Instruction *code, int i) {
  1647. int count;
  1648. for (count = 0; count < 100; count++) { /* avoid infinite loops */
  1649. Instruction pc = code[i];
  1650. if (GET_OPCODE(pc) != OP_JMP)
  1651. break;
  1652. else
  1653. i += GETARG_sJ(pc) + 1;
  1654. }
  1655. return i;
  1656. }
  1657. /*
  1658. ** Do a final pass over the code of a function, doing small peephole
  1659. ** optimizations and adjustments.
  1660. */
  1661. #include "lopnames.h"
  1662. void luaK_finish (FuncState *fs) {
  1663. int i;
  1664. Proto *p = fs->f;
  1665. for (i = 0; i < fs->pc; i++) {
  1666. Instruction *pc = &p->code[i];
  1667. /* avoid "not used" warnings when assert is off (for 'onelua.c') */
  1668. (void)luaP_isOT; (void)luaP_isIT;
  1669. lua_assert(i == 0 || luaP_isOT(*(pc - 1)) == luaP_isIT(*pc));
  1670. switch (GET_OPCODE(*pc)) {
  1671. case OP_RETURN0: case OP_RETURN1: {
  1672. if (!(fs->needclose || (p->flag & PF_ISVARARG)))
  1673. break; /* no extra work */
  1674. /* else use OP_RETURN to do the extra work */
  1675. SET_OPCODE(*pc, OP_RETURN);
  1676. } /* FALLTHROUGH */
  1677. case OP_RETURN: case OP_TAILCALL: {
  1678. if (fs->needclose)
  1679. SETARG_k(*pc, 1); /* signal that it needs to close */
  1680. if (p->flag & PF_ISVARARG)
  1681. SETARG_C(*pc, p->numparams + 1); /* signal that it is vararg */
  1682. break;
  1683. }
  1684. case OP_JMP: {
  1685. int target = finaltarget(p->code, i);
  1686. fixjump(fs, i, target);
  1687. break;
  1688. }
  1689. default: break;
  1690. }
  1691. }
  1692. }