ltable.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656
  1. /*
  2. ** $Id: ltable.c,v 2.108 2015/03/30 19:51:00 roberto Exp roberto $
  3. ** Lua tables (hash)
  4. ** See Copyright Notice in lua.h
  5. */
  6. #define ltable_c
  7. #define LUA_CORE
  8. #include "lprefix.h"
  9. /*
  10. ** Implementation of tables (aka arrays, objects, or hash tables).
  11. ** Tables keep its elements in two parts: an array part and a hash part.
  12. ** Non-negative integer keys are all candidates to be kept in the array
  13. ** part. The actual size of the array is the largest 'n' such that
  14. ** more than half the slots between 1 and n are in use.
  15. ** Hash uses a mix of chained scatter table with Brent's variation.
  16. ** A main invariant of these tables is that, if an element is not
  17. ** in its main position (i.e. the 'original' position that its hash gives
  18. ** to it), then the colliding element is in its own main position.
  19. ** Hence even when the load factor reaches 100%, performance remains good.
  20. */
  21. #include <float.h>
  22. #include <math.h>
  23. #include <limits.h>
  24. #include "lua.h"
  25. #include "ldebug.h"
  26. #include "ldo.h"
  27. #include "lgc.h"
  28. #include "lmem.h"
  29. #include "lobject.h"
  30. #include "lstate.h"
  31. #include "lstring.h"
  32. #include "ltable.h"
  33. #include "lvm.h"
  34. /*
  35. ** Maximum size of array part (MAXASIZE) is 2^MAXABITS. MAXABITS is
  36. ** the largest integer such that MAXASIZE fits in an unsigned int.
  37. */
  38. #define MAXABITS cast_int(sizeof(int) * CHAR_BIT - 1)
  39. #define MAXASIZE (1u << MAXABITS)
  40. /*
  41. ** Maximum size of hash part is 2^MAXHBITS. MAXHBITS is the largest
  42. ** integer such that 2^MAXHBITS fits in a signed int. (Note that the
  43. ** maximum number of elements in a table, 2^MAXABITS + 2^MAXHBITS, still
  44. ** fits comfortably in an unsigned int.)
  45. */
  46. #define MAXHBITS (MAXABITS - 1)
  47. #define hashpow2(t,n) (gnode(t, lmod((n), sizenode(t))))
  48. #define hashstr(t,str) hashpow2(t, (str)->hash)
  49. #define hashboolean(t,p) hashpow2(t, p)
  50. #define hashint(t,i) hashpow2(t, i)
  51. /*
  52. ** for some types, it is better to avoid modulus by power of 2, as
  53. ** they tend to have many 2 factors.
  54. */
  55. #define hashmod(t,n) (gnode(t, ((n) % ((sizenode(t)-1)|1))))
  56. #define hashpointer(t,p) hashmod(t, point2uint(p))
  57. #define dummynode (&dummynode_)
  58. #define isdummy(n) ((n) == dummynode)
  59. static const Node dummynode_ = {
  60. {NILCONSTANT}, /* value */
  61. {{NILCONSTANT, 0}} /* key */
  62. };
  63. /*
  64. ** Hash for floating-point numbers.
  65. ** The main computation should be just
  66. ** n = frepx(n, &i); return (n * INT_MAX) + i
  67. ** but there are some numerical subtleties.
  68. ** In a two-complement representation, INT_MAX does not has an exact
  69. ** representation as a float, but INT_MIN does; because the absolute
  70. ** value of 'frexp' is smaller than 1 (unless 'n' is inf/NaN), the
  71. ** absolute value of the product 'frexp * -INT_MIN' is smaller or equal
  72. ** to INT_MAX. Next, the use of 'unsigned int' avoids overflows when
  73. ** adding 'i'; the use of '~u' (instead of '-u') avoids problems with
  74. ** INT_MIN.
  75. */
  76. #if !defined(l_hashfloat)
  77. static int l_hashfloat (lua_Number n) {
  78. int i;
  79. lua_Integer ni;
  80. n = l_mathop(frexp)(n, &i) * -cast_num(INT_MIN);
  81. if (!lua_numbertointeger(n, &ni)) { /* is 'n' inf/-inf/NaN? */
  82. lua_assert(luai_numisnan(n) || l_mathop(fabs)(n) == HUGE_VAL);
  83. return 0;
  84. }
  85. else { /* normal case */
  86. unsigned int u = cast(unsigned int, i) + cast(unsigned int, ni);
  87. return cast_int(u <= cast(unsigned int, INT_MAX) ? u : ~u);
  88. }
  89. }
  90. #endif
  91. /*
  92. ** returns the 'main' position of an element in a table (that is, the index
  93. ** of its hash value)
  94. */
  95. static Node *mainposition (const Table *t, const TValue *key) {
  96. switch (ttype(key)) {
  97. case LUA_TNUMINT:
  98. return hashint(t, ivalue(key));
  99. case LUA_TNUMFLT:
  100. return hashmod(t, l_hashfloat(fltvalue(key)));
  101. case LUA_TSHRSTR:
  102. return hashstr(t, tsvalue(key));
  103. case LUA_TLNGSTR: {
  104. TString *s = tsvalue(key);
  105. if (s->extra == 0) { /* no hash? */
  106. s->hash = luaS_hash(getstr(s), s->u.lnglen, s->hash);
  107. s->extra = 1; /* now it has its hash */
  108. }
  109. return hashstr(t, tsvalue(key));
  110. }
  111. case LUA_TBOOLEAN:
  112. return hashboolean(t, bvalue(key));
  113. case LUA_TLIGHTUSERDATA:
  114. return hashpointer(t, pvalue(key));
  115. case LUA_TLCF:
  116. return hashpointer(t, fvalue(key));
  117. default:
  118. return hashpointer(t, gcvalue(key));
  119. }
  120. }
  121. /*
  122. ** returns the index for 'key' if 'key' is an appropriate key to live in
  123. ** the array part of the table, 0 otherwise.
  124. */
  125. static unsigned int arrayindex (const TValue *key) {
  126. if (ttisinteger(key)) {
  127. lua_Integer k = ivalue(key);
  128. if (0 < k && (lua_Unsigned)k <= MAXASIZE)
  129. return cast(unsigned int, k); /* 'key' is an appropriate array index */
  130. }
  131. return 0; /* 'key' did not match some condition */
  132. }
  133. /*
  134. ** returns the index of a 'key' for table traversals. First goes all
  135. ** elements in the array part, then elements in the hash part. The
  136. ** beginning of a traversal is signaled by 0.
  137. */
  138. static unsigned int findindex (lua_State *L, Table *t, StkId key) {
  139. unsigned int i;
  140. if (ttisnil(key)) return 0; /* first iteration */
  141. i = arrayindex(key);
  142. if (i != 0 && i <= t->sizearray) /* is 'key' inside array part? */
  143. return i; /* yes; that's the index */
  144. else {
  145. int nx;
  146. Node *n = mainposition(t, key);
  147. for (;;) { /* check whether 'key' is somewhere in the chain */
  148. /* key may be dead already, but it is ok to use it in 'next' */
  149. if (luaV_rawequalobj(gkey(n), key) ||
  150. (ttisdeadkey(gkey(n)) && iscollectable(key) &&
  151. deadvalue(gkey(n)) == gcvalue(key))) {
  152. i = cast_int(n - gnode(t, 0)); /* key index in hash table */
  153. /* hash elements are numbered after array ones */
  154. return (i + 1) + t->sizearray;
  155. }
  156. nx = gnext(n);
  157. if (nx == 0)
  158. luaG_runerror(L, "invalid key to 'next'"); /* key not found */
  159. else n += nx;
  160. }
  161. }
  162. }
  163. int luaH_next (lua_State *L, Table *t, StkId key) {
  164. unsigned int i = findindex(L, t, key); /* find original element */
  165. for (; i < t->sizearray; i++) { /* try first array part */
  166. if (!ttisnil(&t->array[i])) { /* a non-nil value? */
  167. setivalue(key, i + 1);
  168. setobj2s(L, key+1, &t->array[i]);
  169. return 1;
  170. }
  171. }
  172. for (i -= t->sizearray; cast_int(i) < sizenode(t); i++) { /* hash part */
  173. if (!ttisnil(gval(gnode(t, i)))) { /* a non-nil value? */
  174. setobj2s(L, key, gkey(gnode(t, i)));
  175. setobj2s(L, key+1, gval(gnode(t, i)));
  176. return 1;
  177. }
  178. }
  179. return 0; /* no more elements */
  180. }
  181. /*
  182. ** {=============================================================
  183. ** Rehash
  184. ** ==============================================================
  185. */
  186. /*
  187. ** Compute the optimal size for the array part of table 't'. 'nums' is a
  188. ** "count array" where 'nums[i]' is the number of integers in the table
  189. ** between 2^(i - 1) + 1 and 2^i. 'pna' enters with the total number of
  190. ** integer keys in the table and leaves with the number of keys that
  191. ** will go to the array part; return the optimal size.
  192. */
  193. static unsigned int computesizes (unsigned int nums[], unsigned int *pna) {
  194. int i;
  195. unsigned int twotoi; /* 2^i (candidate for optimal size) */
  196. unsigned int a = 0; /* number of elements smaller than 2^i */
  197. unsigned int na = 0; /* number of elements to go to array part */
  198. unsigned int optimal = 0; /* optimal size for array part */
  199. /* loop while keys can fill more than half of total size */
  200. for (i = 0, twotoi = 1; *pna > twotoi / 2; i++, twotoi *= 2) {
  201. if (nums[i] > 0) {
  202. a += nums[i];
  203. if (a > twotoi/2) { /* more than half elements present? */
  204. optimal = twotoi; /* optimal size (till now) */
  205. na = a; /* all elements up to 'optimal' will go to array part */
  206. }
  207. }
  208. }
  209. lua_assert((optimal == 0 || optimal / 2 < na) && na <= optimal);
  210. *pna = na;
  211. return optimal;
  212. }
  213. static int countint (const TValue *key, unsigned int *nums) {
  214. unsigned int k = arrayindex(key);
  215. if (k != 0) { /* is 'key' an appropriate array index? */
  216. nums[luaO_ceillog2(k)]++; /* count as such */
  217. return 1;
  218. }
  219. else
  220. return 0;
  221. }
  222. /*
  223. ** Count keys in array part of table 't': Fill 'nums[i]' with
  224. ** number of keys that will go into corresponding slice and return
  225. ** total number of non-nil keys.
  226. */
  227. static unsigned int numusearray (const Table *t, unsigned int *nums) {
  228. int lg;
  229. unsigned int ttlg; /* 2^lg */
  230. unsigned int ause = 0; /* summation of 'nums' */
  231. unsigned int i = 1; /* count to traverse all array keys */
  232. /* traverse each slice */
  233. for (lg = 0, ttlg = 1; lg <= MAXABITS; lg++, ttlg *= 2) {
  234. unsigned int lc = 0; /* counter */
  235. unsigned int lim = ttlg;
  236. if (lim > t->sizearray) {
  237. lim = t->sizearray; /* adjust upper limit */
  238. if (i > lim)
  239. break; /* no more elements to count */
  240. }
  241. /* count elements in range (2^(lg - 1), 2^lg] */
  242. for (; i <= lim; i++) {
  243. if (!ttisnil(&t->array[i-1]))
  244. lc++;
  245. }
  246. nums[lg] += lc;
  247. ause += lc;
  248. }
  249. return ause;
  250. }
  251. static int numusehash (const Table *t, unsigned int *nums, unsigned int *pna) {
  252. int totaluse = 0; /* total number of elements */
  253. int ause = 0; /* elements added to 'nums' (can go to array part) */
  254. int i = sizenode(t);
  255. while (i--) {
  256. Node *n = &t->node[i];
  257. if (!ttisnil(gval(n))) {
  258. ause += countint(gkey(n), nums);
  259. totaluse++;
  260. }
  261. }
  262. *pna += ause;
  263. return totaluse;
  264. }
  265. static void setarrayvector (lua_State *L, Table *t, unsigned int size) {
  266. unsigned int i;
  267. luaM_reallocvector(L, t->array, t->sizearray, size, TValue);
  268. for (i=t->sizearray; i<size; i++)
  269. setnilvalue(&t->array[i]);
  270. t->sizearray = size;
  271. }
  272. static void setnodevector (lua_State *L, Table *t, unsigned int size) {
  273. int lsize;
  274. if (size == 0) { /* no elements to hash part? */
  275. t->node = cast(Node *, dummynode); /* use common 'dummynode' */
  276. lsize = 0;
  277. }
  278. else {
  279. int i;
  280. lsize = luaO_ceillog2(size);
  281. if (lsize > MAXHBITS)
  282. luaG_runerror(L, "table overflow");
  283. size = twoto(lsize);
  284. t->node = luaM_newvector(L, size, Node);
  285. for (i = 0; i < (int)size; i++) {
  286. Node *n = gnode(t, i);
  287. gnext(n) = 0;
  288. setnilvalue(wgkey(n));
  289. setnilvalue(gval(n));
  290. }
  291. }
  292. t->lsizenode = cast_byte(lsize);
  293. t->lastfree = gnode(t, size); /* all positions are free */
  294. }
  295. void luaH_resize (lua_State *L, Table *t, unsigned int nasize,
  296. unsigned int nhsize) {
  297. unsigned int i;
  298. int j;
  299. unsigned int oldasize = t->sizearray;
  300. int oldhsize = t->lsizenode;
  301. Node *nold = t->node; /* save old hash ... */
  302. if (nasize > oldasize) /* array part must grow? */
  303. setarrayvector(L, t, nasize);
  304. /* create new hash part with appropriate size */
  305. setnodevector(L, t, nhsize);
  306. if (nasize < oldasize) { /* array part must shrink? */
  307. t->sizearray = nasize;
  308. /* re-insert elements from vanishing slice */
  309. for (i=nasize; i<oldasize; i++) {
  310. if (!ttisnil(&t->array[i]))
  311. luaH_setint(L, t, i + 1, &t->array[i]);
  312. }
  313. /* shrink array */
  314. luaM_reallocvector(L, t->array, oldasize, nasize, TValue);
  315. }
  316. /* re-insert elements from hash part */
  317. for (j = twoto(oldhsize) - 1; j >= 0; j--) {
  318. Node *old = nold + j;
  319. if (!ttisnil(gval(old))) {
  320. /* doesn't need barrier/invalidate cache, as entry was
  321. already present in the table */
  322. setobjt2t(L, luaH_set(L, t, gkey(old)), gval(old));
  323. }
  324. }
  325. if (!isdummy(nold))
  326. luaM_freearray(L, nold, cast(size_t, twoto(oldhsize))); /* free old hash */
  327. }
  328. void luaH_resizearray (lua_State *L, Table *t, unsigned int nasize) {
  329. int nsize = isdummy(t->node) ? 0 : sizenode(t);
  330. luaH_resize(L, t, nasize, nsize);
  331. }
  332. /*
  333. ** nums[i] = number of keys 'k' where 2^(i - 1) < k <= 2^i
  334. */
  335. static void rehash (lua_State *L, Table *t, const TValue *ek) {
  336. unsigned int asize; /* optimal size for array part */
  337. unsigned int na; /* number of keys in the array part */
  338. unsigned int nums[MAXABITS + 1];
  339. int i;
  340. int totaluse;
  341. for (i = 0; i <= MAXABITS; i++) nums[i] = 0; /* reset counts */
  342. na = numusearray(t, nums); /* count keys in array part */
  343. totaluse = na; /* all those keys are integer keys */
  344. totaluse += numusehash(t, nums, &na); /* count keys in hash part */
  345. /* count extra key */
  346. na += countint(ek, nums);
  347. totaluse++;
  348. /* compute new size for array part */
  349. asize = computesizes(nums, &na);
  350. /* resize the table to new computed sizes */
  351. luaH_resize(L, t, asize, totaluse - na);
  352. }
  353. /*
  354. ** }=============================================================
  355. */
  356. Table *luaH_new (lua_State *L) {
  357. GCObject *o = luaC_newobj(L, LUA_TTABLE, sizeof(Table));
  358. Table *t = gco2t(o);
  359. t->metatable = NULL;
  360. t->flags = cast_byte(~0);
  361. t->array = NULL;
  362. t->sizearray = 0;
  363. setnodevector(L, t, 0);
  364. return t;
  365. }
  366. void luaH_free (lua_State *L, Table *t) {
  367. if (!isdummy(t->node))
  368. luaM_freearray(L, t->node, cast(size_t, sizenode(t)));
  369. luaM_freearray(L, t->array, t->sizearray);
  370. luaM_free(L, t);
  371. }
  372. static Node *getfreepos (Table *t) {
  373. while (t->lastfree > t->node) {
  374. t->lastfree--;
  375. if (ttisnil(gkey(t->lastfree)))
  376. return t->lastfree;
  377. }
  378. return NULL; /* could not find a free place */
  379. }
  380. /*
  381. ** inserts a new key into a hash table; first, check whether key's main
  382. ** position is free. If not, check whether colliding node is in its main
  383. ** position or not: if it is not, move colliding node to an empty place and
  384. ** put new key in its main position; otherwise (colliding node is in its main
  385. ** position), new key goes to an empty position.
  386. */
  387. TValue *luaH_newkey (lua_State *L, Table *t, const TValue *key) {
  388. Node *mp;
  389. TValue aux;
  390. if (ttisnil(key)) luaG_runerror(L, "table index is nil");
  391. else if (ttisfloat(key)) {
  392. lua_Integer k;
  393. if (luaV_tointeger(key, &k, 0)) { /* index is int? */
  394. setivalue(&aux, k);
  395. key = &aux; /* insert it as an integer */
  396. }
  397. else if (luai_numisnan(fltvalue(key)))
  398. luaG_runerror(L, "table index is NaN");
  399. }
  400. mp = mainposition(t, key);
  401. if (!ttisnil(gval(mp)) || isdummy(mp)) { /* main position is taken? */
  402. Node *othern;
  403. Node *f = getfreepos(t); /* get a free place */
  404. if (f == NULL) { /* cannot find a free place? */
  405. rehash(L, t, key); /* grow table */
  406. /* whatever called 'newkey' takes care of TM cache and GC barrier */
  407. return luaH_set(L, t, key); /* insert key into grown table */
  408. }
  409. lua_assert(!isdummy(f));
  410. othern = mainposition(t, gkey(mp));
  411. if (othern != mp) { /* is colliding node out of its main position? */
  412. /* yes; move colliding node into free position */
  413. while (othern + gnext(othern) != mp) /* find previous */
  414. othern += gnext(othern);
  415. gnext(othern) = cast_int(f - othern); /* rechain to point to 'f' */
  416. *f = *mp; /* copy colliding node into free pos. (mp->next also goes) */
  417. if (gnext(mp) != 0) {
  418. gnext(f) += cast_int(mp - f); /* correct 'next' */
  419. gnext(mp) = 0; /* now 'mp' is free */
  420. }
  421. setnilvalue(gval(mp));
  422. }
  423. else { /* colliding node is in its own main position */
  424. /* new node will go into free position */
  425. if (gnext(mp) != 0)
  426. gnext(f) = cast_int((mp + gnext(mp)) - f); /* chain new position */
  427. else lua_assert(gnext(f) == 0);
  428. gnext(mp) = cast_int(f - mp);
  429. mp = f;
  430. }
  431. }
  432. setnodekey(L, &mp->i_key, key);
  433. luaC_barrierback(L, t, key);
  434. lua_assert(ttisnil(gval(mp)));
  435. return gval(mp);
  436. }
  437. /*
  438. ** search function for integers
  439. */
  440. const TValue *luaH_getint (Table *t, lua_Integer key) {
  441. /* (1 <= key && key <= t->sizearray) */
  442. if (l_castS2U(key - 1) < t->sizearray)
  443. return &t->array[key - 1];
  444. else {
  445. Node *n = hashint(t, key);
  446. for (;;) { /* check whether 'key' is somewhere in the chain */
  447. if (ttisinteger(gkey(n)) && ivalue(gkey(n)) == key)
  448. return gval(n); /* that's it */
  449. else {
  450. int nx = gnext(n);
  451. if (nx == 0) break;
  452. n += nx;
  453. }
  454. };
  455. return luaO_nilobject;
  456. }
  457. }
  458. /*
  459. ** search function for short strings
  460. */
  461. const TValue *luaH_getstr (Table *t, TString *key) {
  462. Node *n = hashstr(t, key);
  463. lua_assert(key->tt == LUA_TSHRSTR);
  464. for (;;) { /* check whether 'key' is somewhere in the chain */
  465. const TValue *k = gkey(n);
  466. if (ttisshrstring(k) && eqshrstr(tsvalue(k), key))
  467. return gval(n); /* that's it */
  468. else {
  469. int nx = gnext(n);
  470. if (nx == 0) break;
  471. n += nx;
  472. }
  473. };
  474. return luaO_nilobject;
  475. }
  476. /*
  477. ** main search function
  478. */
  479. const TValue *luaH_get (Table *t, const TValue *key) {
  480. switch (ttype(key)) {
  481. case LUA_TSHRSTR: return luaH_getstr(t, tsvalue(key));
  482. case LUA_TNUMINT: return luaH_getint(t, ivalue(key));
  483. case LUA_TNIL: return luaO_nilobject;
  484. case LUA_TNUMFLT: {
  485. lua_Integer k;
  486. if (luaV_tointeger(key, &k, 0)) /* index is int? */
  487. return luaH_getint(t, k); /* use specialized version */
  488. /* else *//* FALLTHROUGH */
  489. }
  490. default: {
  491. Node *n = mainposition(t, key);
  492. for (;;) { /* check whether 'key' is somewhere in the chain */
  493. if (luaV_rawequalobj(gkey(n), key))
  494. return gval(n); /* that's it */
  495. else {
  496. int nx = gnext(n);
  497. if (nx == 0) break;
  498. n += nx;
  499. }
  500. };
  501. return luaO_nilobject;
  502. }
  503. }
  504. }
  505. /*
  506. ** beware: when using this function you probably need to check a GC
  507. ** barrier and invalidate the TM cache.
  508. */
  509. TValue *luaH_set (lua_State *L, Table *t, const TValue *key) {
  510. const TValue *p = luaH_get(t, key);
  511. if (p != luaO_nilobject)
  512. return cast(TValue *, p);
  513. else return luaH_newkey(L, t, key);
  514. }
  515. void luaH_setint (lua_State *L, Table *t, lua_Integer key, TValue *value) {
  516. const TValue *p = luaH_getint(t, key);
  517. TValue *cell;
  518. if (p != luaO_nilobject)
  519. cell = cast(TValue *, p);
  520. else {
  521. TValue k;
  522. setivalue(&k, key);
  523. cell = luaH_newkey(L, t, &k);
  524. }
  525. setobj2t(L, cell, value);
  526. }
  527. static int unbound_search (Table *t, unsigned int j) {
  528. unsigned int i = j; /* i is zero or a present index */
  529. j++;
  530. /* find 'i' and 'j' such that i is present and j is not */
  531. while (!ttisnil(luaH_getint(t, j))) {
  532. i = j;
  533. if (j > cast(unsigned int, MAX_INT)/2) { /* overflow? */
  534. /* table was built with bad purposes: resort to linear search */
  535. i = 1;
  536. while (!ttisnil(luaH_getint(t, i))) i++;
  537. return i - 1;
  538. }
  539. j *= 2;
  540. }
  541. /* now do a binary search between them */
  542. while (j - i > 1) {
  543. unsigned int m = (i+j)/2;
  544. if (ttisnil(luaH_getint(t, m))) j = m;
  545. else i = m;
  546. }
  547. return i;
  548. }
  549. /*
  550. ** Try to find a boundary in table 't'. A 'boundary' is an integer index
  551. ** such that t[i] is non-nil and t[i+1] is nil (and 0 if t[1] is nil).
  552. */
  553. int luaH_getn (Table *t) {
  554. unsigned int j = t->sizearray;
  555. if (j > 0 && ttisnil(&t->array[j - 1])) {
  556. /* there is a boundary in the array part: (binary) search for it */
  557. unsigned int i = 0;
  558. while (j - i > 1) {
  559. unsigned int m = (i+j)/2;
  560. if (ttisnil(&t->array[m - 1])) j = m;
  561. else i = m;
  562. }
  563. return i;
  564. }
  565. /* else must find a boundary in hash part */
  566. else if (isdummy(t->node)) /* hash part is empty? */
  567. return j; /* that is easy... */
  568. else return unbound_search(t, j);
  569. }
  570. #if defined(LUA_DEBUG)
  571. Node *luaH_mainposition (const Table *t, const TValue *key) {
  572. return mainposition(t, key);
  573. }
  574. int luaH_isdummy (Node *n) { return isdummy(n); }
  575. #endif