lcode.c 38 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360
  1. /*
  2. ** $Id: lcode.c,v 2.121 2017/06/29 15:06:44 roberto Exp roberto $
  3. ** Code generator for Lua
  4. ** See Copyright Notice in lua.h
  5. */
  6. #define lcode_c
  7. #define LUA_CORE
  8. #include "lprefix.h"
  9. #include <limits.h>
  10. #include <math.h>
  11. #include <stdlib.h>
  12. #include "lua.h"
  13. #include "lcode.h"
  14. #include "ldebug.h"
  15. #include "ldo.h"
  16. #include "lgc.h"
  17. #include "llex.h"
  18. #include "lmem.h"
  19. #include "lobject.h"
  20. #include "lopcodes.h"
  21. #include "lparser.h"
  22. #include "lstring.h"
  23. #include "ltable.h"
  24. #include "lvm.h"
  25. /* Maximum number of registers in a Lua function (must fit in 8 bits) */
  26. #define MAXREGS 255
  27. #define hasjumps(e) ((e)->t != (e)->f)
  28. /*
  29. ** If expression is a numeric constant, fills 'v' with its value
  30. ** and returns 1. Otherwise, returns 0.
  31. */
  32. static int tonumeral(const expdesc *e, TValue *v) {
  33. if (hasjumps(e))
  34. return 0; /* not a numeral */
  35. switch (e->k) {
  36. case VKINT:
  37. if (v) setivalue(v, e->u.ival);
  38. return 1;
  39. case VKFLT:
  40. if (v) setfltvalue(v, e->u.nval);
  41. return 1;
  42. default: return 0;
  43. }
  44. }
  45. /*
  46. ** Create a OP_LOADNIL instruction, but try to optimize: if the previous
  47. ** instruction is also OP_LOADNIL and ranges are compatible, adjust
  48. ** range of previous instruction instead of emitting a new one. (For
  49. ** instance, 'local a; local b' will generate a single opcode.)
  50. */
  51. void luaK_nil (FuncState *fs, int from, int n) {
  52. Instruction *previous;
  53. int l = from + n - 1; /* last register to set nil */
  54. if (fs->pc > fs->lasttarget) { /* no jumps to current position? */
  55. previous = &fs->f->code[fs->pc-1];
  56. if (GET_OPCODE(*previous) == OP_LOADNIL) { /* previous is LOADNIL? */
  57. int pfrom = GETARG_A(*previous); /* get previous range */
  58. int pl = pfrom + GETARG_B(*previous);
  59. if ((pfrom <= from && from <= pl + 1) ||
  60. (from <= pfrom && pfrom <= l + 1)) { /* can connect both? */
  61. if (pfrom < from) from = pfrom; /* from = min(from, pfrom) */
  62. if (pl > l) l = pl; /* l = max(l, pl) */
  63. SETARG_A(*previous, from);
  64. SETARG_B(*previous, l - from);
  65. return;
  66. }
  67. } /* else go through */
  68. }
  69. luaK_codeABC(fs, OP_LOADNIL, from, n - 1, 0); /* else no optimization */
  70. }
  71. /*
  72. ** Gets the destination address of a jump instruction. Used to traverse
  73. ** a list of jumps.
  74. */
  75. static int getjump (FuncState *fs, int pc) {
  76. int offset = GETARG_sBx(fs->f->code[pc]);
  77. if (offset == NO_JUMP) /* point to itself represents end of list */
  78. return NO_JUMP; /* end of list */
  79. else
  80. return (pc+1)+offset; /* turn offset into absolute position */
  81. }
  82. /*
  83. ** Fix jump instruction at position 'pc' to jump to 'dest'.
  84. ** (Jump addresses are relative in Lua)
  85. */
  86. static void fixjump (FuncState *fs, int pc, int dest) {
  87. Instruction *jmp = &fs->f->code[pc];
  88. int offset = dest - (pc + 1);
  89. lua_assert(dest != NO_JUMP);
  90. if (abs(offset) > MAXARG_sBx)
  91. luaX_syntaxerror(fs->ls, "control structure too long");
  92. SETARG_sBx(*jmp, offset);
  93. }
  94. /*
  95. ** Concatenate jump-list 'l2' into jump-list 'l1'
  96. */
  97. void luaK_concat (FuncState *fs, int *l1, int l2) {
  98. if (l2 == NO_JUMP) return; /* nothing to concatenate? */
  99. else if (*l1 == NO_JUMP) /* no original list? */
  100. *l1 = l2; /* 'l1' points to 'l2' */
  101. else {
  102. int list = *l1;
  103. int next;
  104. while ((next = getjump(fs, list)) != NO_JUMP) /* find last element */
  105. list = next;
  106. fixjump(fs, list, l2); /* last element links to 'l2' */
  107. }
  108. }
  109. /*
  110. ** Create a jump instruction and return its position, so its destination
  111. ** can be fixed later (with 'fixjump'). If there are jumps to
  112. ** this position (kept in 'jpc'), link them all together so that
  113. ** 'patchlistaux' will fix all them directly to the final destination.
  114. */
  115. int luaK_jump (FuncState *fs) {
  116. int jpc = fs->jpc; /* save list of jumps to here */
  117. int j;
  118. fs->jpc = NO_JUMP; /* no more jumps to here */
  119. j = luaK_codeAsBx(fs, OP_JMP, 0, NO_JUMP);
  120. luaK_concat(fs, &j, jpc); /* keep them on hold */
  121. return j;
  122. }
  123. /*
  124. ** Code a 'return' instruction
  125. */
  126. void luaK_ret (FuncState *fs, int first, int nret) {
  127. luaK_codeABC(fs, OP_RETURN, first, nret+1, 0);
  128. }
  129. /*
  130. ** Code a "conditional jump", that is, a test or comparison opcode
  131. ** followed by a jump. Return jump position.
  132. */
  133. static int condjump (FuncState *fs, OpCode op, int A, int B, int C) {
  134. luaK_codeABC(fs, op, A, B, C);
  135. return luaK_jump(fs);
  136. }
  137. /*
  138. ** returns current 'pc' and marks it as a jump target (to avoid wrong
  139. ** optimizations with consecutive instructions not in the same basic block).
  140. */
  141. int luaK_getlabel (FuncState *fs) {
  142. fs->lasttarget = fs->pc;
  143. return fs->pc;
  144. }
  145. /*
  146. ** Returns the position of the instruction "controlling" a given
  147. ** jump (that is, its condition), or the jump itself if it is
  148. ** unconditional.
  149. */
  150. static Instruction *getjumpcontrol (FuncState *fs, int pc) {
  151. Instruction *pi = &fs->f->code[pc];
  152. if (pc >= 1 && testTMode(GET_OPCODE(*(pi-1))))
  153. return pi-1;
  154. else
  155. return pi;
  156. }
  157. /*
  158. ** Patch destination register for a TESTSET instruction.
  159. ** If instruction in position 'node' is not a TESTSET, return 0 ("fails").
  160. ** Otherwise, if 'reg' is not 'NO_REG', set it as the destination
  161. ** register. Otherwise, change instruction to a simple 'TEST' (produces
  162. ** no register value)
  163. */
  164. static int patchtestreg (FuncState *fs, int node, int reg) {
  165. Instruction *i = getjumpcontrol(fs, node);
  166. if (GET_OPCODE(*i) != OP_TESTSET)
  167. return 0; /* cannot patch other instructions */
  168. if (reg != NO_REG && reg != GETARG_B(*i))
  169. SETARG_A(*i, reg);
  170. else {
  171. /* no register to put value or register already has the value;
  172. change instruction to simple test */
  173. *i = CREATE_ABC(OP_TEST, GETARG_B(*i), 0, GETARG_C(*i));
  174. }
  175. return 1;
  176. }
  177. /*
  178. ** Traverse a list of tests ensuring no one produces a value
  179. */
  180. static void removevalues (FuncState *fs, int list) {
  181. for (; list != NO_JUMP; list = getjump(fs, list))
  182. patchtestreg(fs, list, NO_REG);
  183. }
  184. /*
  185. ** Traverse a list of tests, patching their destination address and
  186. ** registers: tests producing values jump to 'vtarget' (and put their
  187. ** values in 'reg'), other tests jump to 'dtarget'.
  188. */
  189. static void patchlistaux (FuncState *fs, int list, int vtarget, int reg,
  190. int dtarget) {
  191. while (list != NO_JUMP) {
  192. int next = getjump(fs, list);
  193. if (patchtestreg(fs, list, reg))
  194. fixjump(fs, list, vtarget);
  195. else
  196. fixjump(fs, list, dtarget); /* jump to default target */
  197. list = next;
  198. }
  199. }
  200. /*
  201. ** Ensure all pending jumps to current position are fixed (jumping
  202. ** to current position with no values) and reset list of pending
  203. ** jumps
  204. */
  205. static void dischargejpc (FuncState *fs) {
  206. patchlistaux(fs, fs->jpc, fs->pc, NO_REG, fs->pc);
  207. fs->jpc = NO_JUMP;
  208. }
  209. /*
  210. ** Add elements in 'list' to list of pending jumps to "here"
  211. ** (current position)
  212. */
  213. void luaK_patchtohere (FuncState *fs, int list) {
  214. luaK_getlabel(fs); /* mark "here" as a jump target */
  215. luaK_concat(fs, &fs->jpc, list);
  216. }
  217. /*
  218. ** Path all jumps in 'list' to jump to 'target'.
  219. ** (The assert means that we cannot fix a jump to a forward address
  220. ** because we only know addresses once code is generated.)
  221. */
  222. void luaK_patchlist (FuncState *fs, int list, int target) {
  223. if (target == fs->pc) /* 'target' is current position? */
  224. luaK_patchtohere(fs, list); /* add list to pending jumps */
  225. else {
  226. lua_assert(target < fs->pc);
  227. patchlistaux(fs, list, target, NO_REG, target);
  228. }
  229. }
  230. /*
  231. ** Check whether some jump in given list needs a close instruction.
  232. */
  233. int luaK_needclose (FuncState *fs, int list) {
  234. for (; list != NO_JUMP; list = getjump(fs, list)) {
  235. if (GETARG_A(fs->f->code[list])) /* needs close? */
  236. return 1;
  237. }
  238. return 0;
  239. }
  240. /*
  241. ** Correct a jump list to jump to 'target'. If 'hasclose' is true,
  242. ** 'target' contains an OP_CLOSE instruction (see first assert).
  243. ** Only jumps with the A arg true need that close; other jumps
  244. ** avoid it jumping to the next instruction.
  245. */
  246. void luaK_patchgoto (FuncState *fs, int list, int target, int hasclose) {
  247. lua_assert(!hasclose || GET_OPCODE(fs->f->code[target]) == OP_CLOSE);
  248. while (list != NO_JUMP) {
  249. int next = getjump(fs, list);
  250. lua_assert(!GETARG_A(fs->f->code[list]) || hasclose);
  251. patchtestreg(fs, list, NO_REG); /* do not generate values */
  252. if (!hasclose || GETARG_A(fs->f->code[list]))
  253. fixjump(fs, list, target);
  254. else /* there is a CLOSE instruction but jump does not need it */
  255. fixjump(fs, list, target + 1); /* avoid CLOSE instruction */
  256. list = next;
  257. }
  258. }
  259. /*
  260. ** Mark (using the A arg) all jumps in 'list' to close upvalues. Mark
  261. ** will instruct 'luaK_patchgoto' to make these jumps go to OP_CLOSE
  262. ** instructions.
  263. */
  264. void luaK_patchclose (FuncState *fs, int list) {
  265. for (; list != NO_JUMP; list = getjump(fs, list)) {
  266. lua_assert(GET_OPCODE(fs->f->code[list]) == OP_JMP);
  267. SETARG_A(fs->f->code[list], 1);
  268. }
  269. }
  270. #if !defined(MAXIWTHABS)
  271. #define MAXIWTHABS 120
  272. #endif
  273. /*
  274. ** Save line info for a new instruction. If difference from last line
  275. ** does not fit in a byte, of after that many instructions, save a new
  276. ** absolute line info; (in that case, the special value 'ABSLINEINFO'
  277. ** in 'lineinfo' signals the existence of this absolute information.)
  278. ** Otherwise, store the difference from last line in 'lineinfo'.
  279. */
  280. static void savelineinfo (FuncState *fs, Proto *f, int pc, int line) {
  281. int linedif = line - fs->previousline;
  282. if (abs(linedif) >= 0x80 || fs->iwthabs++ > MAXIWTHABS) {
  283. luaM_growvector(fs->ls->L, f->abslineinfo, fs->nabslineinfo,
  284. f->sizeabslineinfo, AbsLineInfo, MAX_INT, "lines");
  285. f->abslineinfo[fs->nabslineinfo].pc = pc;
  286. f->abslineinfo[fs->nabslineinfo++].line = line;
  287. linedif = ABSLINEINFO; /* signal there is absolute information */
  288. fs->iwthabs = 0; /* restart counter */
  289. }
  290. luaM_growvector(fs->ls->L, f->lineinfo, pc, f->sizelineinfo, ls_byte,
  291. MAX_INT, "opcodes");
  292. f->lineinfo[pc] = linedif;
  293. fs->previousline = line; /* last line saved */
  294. }
  295. /*
  296. ** Emit instruction 'i', checking for array sizes and saving also its
  297. ** line information. Return 'i' position.
  298. */
  299. static int luaK_code (FuncState *fs, Instruction i) {
  300. Proto *f = fs->f;
  301. dischargejpc(fs); /* 'pc' will change */
  302. /* put new instruction in code array */
  303. luaM_growvector(fs->ls->L, f->code, fs->pc, f->sizecode, Instruction,
  304. MAX_INT, "opcodes");
  305. f->code[fs->pc] = i;
  306. savelineinfo(fs, f, fs->pc, fs->ls->lastline);
  307. return fs->pc++;
  308. }
  309. /*
  310. ** Format and emit an 'iABC' instruction. (Assertions check consistency
  311. ** of parameters versus opcode.)
  312. */
  313. int luaK_codeABC (FuncState *fs, OpCode o, int a, int b, int c) {
  314. lua_assert(getOpMode(o) == iABC);
  315. lua_assert(getBMode(o) != OpArgN || b == 0);
  316. lua_assert(getCMode(o) != OpArgN || c == 0);
  317. lua_assert(a <= MAXARG_A && b <= MAXARG_B && c <= MAXARG_C);
  318. return luaK_code(fs, CREATE_ABC(o, a, b, c));
  319. }
  320. /*
  321. ** Format and emit an 'iABx' instruction.
  322. */
  323. int luaK_codeABx (FuncState *fs, OpCode o, int a, unsigned int bc) {
  324. lua_assert(getOpMode(o) == iABx || getOpMode(o) == iAsBx);
  325. lua_assert(getCMode(o) == OpArgN);
  326. lua_assert(a <= MAXARG_A && bc <= MAXARG_Bx);
  327. return luaK_code(fs, CREATE_ABx(o, a, bc));
  328. }
  329. /*
  330. ** Emit an "extra argument" instruction (format 'iAx')
  331. */
  332. static int codeextraarg (FuncState *fs, int a) {
  333. lua_assert(a <= MAXARG_Ax);
  334. return luaK_code(fs, CREATE_Ax(OP_EXTRAARG, a));
  335. }
  336. /*
  337. ** Emit a "load constant" instruction, using either 'OP_LOADK'
  338. ** (if constant index 'k' fits in 18 bits) or an 'OP_LOADKX'
  339. ** instruction with "extra argument".
  340. */
  341. static int luaK_codek (FuncState *fs, int reg, int k) {
  342. if (k <= MAXARG_Bx)
  343. return luaK_codeABx(fs, OP_LOADK, reg, k);
  344. else {
  345. int p = luaK_codeABx(fs, OP_LOADKX, reg, 0);
  346. codeextraarg(fs, k);
  347. return p;
  348. }
  349. }
  350. /*
  351. ** Check register-stack level, keeping track of its maximum size
  352. ** in field 'maxstacksize'
  353. */
  354. void luaK_checkstack (FuncState *fs, int n) {
  355. int newstack = fs->freereg + n;
  356. if (newstack > fs->f->maxstacksize) {
  357. if (newstack >= MAXREGS)
  358. luaX_syntaxerror(fs->ls,
  359. "function or expression needs too many registers");
  360. fs->f->maxstacksize = cast_byte(newstack);
  361. }
  362. }
  363. /*
  364. ** Reserve 'n' registers in register stack
  365. */
  366. void luaK_reserveregs (FuncState *fs, int n) {
  367. luaK_checkstack(fs, n);
  368. fs->freereg += n;
  369. }
  370. /*
  371. ** Free register 'reg', if it is neither a constant index nor
  372. ** a local variable.
  373. )
  374. */
  375. static void freereg (FuncState *fs, int reg) {
  376. if (!ISK(reg) && reg >= fs->nactvar) {
  377. fs->freereg--;
  378. lua_assert(reg == fs->freereg);
  379. }
  380. }
  381. /*
  382. ** Free two registers in proper order
  383. */
  384. static void freeregs (FuncState *fs, int r1, int r2) {
  385. if (r1 > r2) {
  386. freereg(fs, r1);
  387. freereg(fs, r2);
  388. }
  389. else {
  390. freereg(fs, r2);
  391. freereg(fs, r1);
  392. }
  393. }
  394. /*
  395. ** Free register used by expression 'e' (if any)
  396. */
  397. static void freeexp (FuncState *fs, expdesc *e) {
  398. if (e->k == VNONRELOC)
  399. freereg(fs, e->u.info);
  400. }
  401. /*
  402. ** Free registers used by expressions 'e1' and 'e2' (if any) in proper
  403. ** order.
  404. */
  405. static void freeexps (FuncState *fs, expdesc *e1, expdesc *e2) {
  406. int r1 = (e1->k == VNONRELOC) ? e1->u.info : -1;
  407. int r2 = (e2->k == VNONRELOC) ? e2->u.info : -1;
  408. freeregs(fs, r1, r2);
  409. }
  410. /*
  411. ** Add constant 'v' to prototype's list of constants (field 'k').
  412. ** Use scanner's table to cache position of constants in constant list
  413. ** and try to reuse constants. Because some values should not be used
  414. ** as keys (nil cannot be a key, integer keys can collapse with float
  415. ** keys), the caller must provide a useful 'key' for indexing the cache.
  416. */
  417. static int addk (FuncState *fs, TValue *key, TValue *v) {
  418. lua_State *L = fs->ls->L;
  419. Proto *f = fs->f;
  420. TValue *idx = luaH_set(L, fs->ls->h, key); /* index scanner table */
  421. int k, oldsize;
  422. if (ttisinteger(idx)) { /* is there an index there? */
  423. k = cast_int(ivalue(idx));
  424. /* correct value? (warning: must distinguish floats from integers!) */
  425. if (k < fs->nk && ttype(&f->k[k]) == ttype(v) &&
  426. luaV_rawequalobj(&f->k[k], v))
  427. return k; /* reuse index */
  428. }
  429. /* constant not found; create a new entry */
  430. oldsize = f->sizek;
  431. k = fs->nk;
  432. /* numerical value does not need GC barrier;
  433. table has no metatable, so it does not need to invalidate cache */
  434. setivalue(idx, k);
  435. luaM_growvector(L, f->k, k, f->sizek, TValue, MAXARG_Ax, "constants");
  436. while (oldsize < f->sizek) setnilvalue(&f->k[oldsize++]);
  437. setobj(L, &f->k[k], v);
  438. fs->nk++;
  439. luaC_barrier(L, f, v);
  440. return k;
  441. }
  442. /*
  443. ** Add a string to list of constants and return its index.
  444. */
  445. int luaK_stringK (FuncState *fs, TString *s) {
  446. TValue o;
  447. setsvalue(fs->ls->L, &o, s);
  448. return addk(fs, &o, &o); /* use string itself as key */
  449. }
  450. /*
  451. ** Add an integer to list of constants and return its index.
  452. ** Integers use userdata as keys to avoid collision with floats with
  453. ** same value; conversion to 'void*' is used only for hashing, so there
  454. ** are no "precision" problems.
  455. */
  456. static int luaK_intK (FuncState *fs, lua_Integer n) {
  457. TValue k, o;
  458. setpvalue(&k, cast(void*, cast(size_t, n)));
  459. setivalue(&o, n);
  460. return addk(fs, &k, &o);
  461. }
  462. /*
  463. ** Add a float to list of constants and return its index.
  464. */
  465. static int luaK_numberK (FuncState *fs, lua_Number r) {
  466. TValue o;
  467. setfltvalue(&o, r);
  468. return addk(fs, &o, &o); /* use number itself as key */
  469. }
  470. /*
  471. ** Add a boolean to list of constants and return its index.
  472. */
  473. static int boolK (FuncState *fs, int b) {
  474. TValue o;
  475. setbvalue(&o, b);
  476. return addk(fs, &o, &o); /* use boolean itself as key */
  477. }
  478. /*
  479. ** Add nil to list of constants and return its index.
  480. */
  481. static int nilK (FuncState *fs) {
  482. TValue k, v;
  483. setnilvalue(&v);
  484. /* cannot use nil as key; instead use table itself to represent nil */
  485. sethvalue(fs->ls->L, &k, fs->ls->h);
  486. return addk(fs, &k, &v);
  487. }
  488. void luaK_int (FuncState *fs, int reg, lua_Integer i) {
  489. if (l_castS2U(i) + MAXARG_sBx <= l_castS2U(MAXARG_Bx))
  490. luaK_codeAsBx(fs, OP_LOADI, reg, cast_int(i));
  491. else
  492. luaK_codek(fs, reg, luaK_intK(fs, i));
  493. }
  494. /*
  495. ** Fix an expression to return the number of results 'nresults'.
  496. ** Either 'e' is a multi-ret expression (function call or vararg)
  497. ** or 'nresults' is LUA_MULTRET (as any expression can satisfy that).
  498. */
  499. void luaK_setreturns (FuncState *fs, expdesc *e, int nresults) {
  500. if (e->k == VCALL) { /* expression is an open function call? */
  501. SETARG_C(getinstruction(fs, e), nresults + 1);
  502. }
  503. else if (e->k == VVARARG) {
  504. Instruction *pc = &getinstruction(fs, e);
  505. SETARG_B(*pc, nresults + 1);
  506. SETARG_A(*pc, fs->freereg);
  507. luaK_reserveregs(fs, 1);
  508. }
  509. else lua_assert(nresults == LUA_MULTRET);
  510. }
  511. /*
  512. ** Fix an expression to return one result.
  513. ** If expression is not a multi-ret expression (function call or
  514. ** vararg), it already returns one result, so nothing needs to be done.
  515. ** Function calls become VNONRELOC expressions (as its result comes
  516. ** fixed in the base register of the call), while vararg expressions
  517. ** become VRELOCABLE (as OP_VARARG puts its results where it wants).
  518. ** (Calls are created returning one result, so that does not need
  519. ** to be fixed.)
  520. */
  521. void luaK_setoneret (FuncState *fs, expdesc *e) {
  522. if (e->k == VCALL) { /* expression is an open function call? */
  523. /* already returns 1 value */
  524. lua_assert(GETARG_C(getinstruction(fs, e)) == 2);
  525. e->k = VNONRELOC; /* result has fixed position */
  526. e->u.info = GETARG_A(getinstruction(fs, e));
  527. }
  528. else if (e->k == VVARARG) {
  529. SETARG_B(getinstruction(fs, e), 2);
  530. e->k = VRELOCABLE; /* can relocate its simple result */
  531. }
  532. }
  533. /*
  534. ** Ensure that expression 'e' is not a variable.
  535. */
  536. void luaK_dischargevars (FuncState *fs, expdesc *e) {
  537. switch (e->k) {
  538. case VLOCAL: { /* already in a register */
  539. e->k = VNONRELOC; /* becomes a non-relocatable value */
  540. break;
  541. }
  542. case VUPVAL: { /* move value to some (pending) register */
  543. e->u.info = luaK_codeABC(fs, OP_GETUPVAL, 0, e->u.info, 0);
  544. e->k = VRELOCABLE;
  545. break;
  546. }
  547. case VINDEXUP: {
  548. e->u.info = luaK_codeABC(fs, OP_GETTABUP, 0, e->u.ind.t, e->u.ind.idx);
  549. e->k = VRELOCABLE;
  550. break;
  551. }
  552. case VINDEXI: {
  553. freereg(fs, e->u.ind.t);
  554. e->u.info = luaK_codeABC(fs, OP_GETI, 0, e->u.ind.t, e->u.ind.idx);
  555. e->k = VRELOCABLE;
  556. break;
  557. }
  558. case VINDEXSTR: {
  559. freereg(fs, e->u.ind.t);
  560. e->u.info = luaK_codeABC(fs, OP_GETFIELD, 0, e->u.ind.t, e->u.ind.idx);
  561. e->k = VRELOCABLE;
  562. break;
  563. }
  564. case VINDEXED: {
  565. freeregs(fs, e->u.ind.t, e->u.ind.idx);
  566. e->u.info = luaK_codeABC(fs, OP_GETTABLE, 0, e->u.ind.t, e->u.ind.idx);
  567. e->k = VRELOCABLE;
  568. break;
  569. }
  570. case VVARARG: case VCALL: {
  571. luaK_setoneret(fs, e);
  572. break;
  573. }
  574. default: break; /* there is one value available (somewhere) */
  575. }
  576. }
  577. /*
  578. ** Ensures expression value is in register 'reg' (and therefore
  579. ** 'e' will become a non-relocatable expression).
  580. */
  581. static void discharge2reg (FuncState *fs, expdesc *e, int reg) {
  582. luaK_dischargevars(fs, e);
  583. switch (e->k) {
  584. case VNIL: {
  585. luaK_nil(fs, reg, 1);
  586. break;
  587. }
  588. case VFALSE: case VTRUE: {
  589. luaK_codeABC(fs, OP_LOADBOOL, reg, e->k == VTRUE, 0);
  590. break;
  591. }
  592. case VK: {
  593. luaK_codek(fs, reg, e->u.info);
  594. break;
  595. }
  596. case VKFLT: {
  597. luaK_codek(fs, reg, luaK_numberK(fs, e->u.nval));
  598. break;
  599. }
  600. case VKINT: {
  601. luaK_int(fs, reg, e->u.ival);
  602. break;
  603. }
  604. case VRELOCABLE: {
  605. Instruction *pc = &getinstruction(fs, e);
  606. SETARG_A(*pc, reg); /* instruction will put result in 'reg' */
  607. break;
  608. }
  609. case VNONRELOC: {
  610. if (reg != e->u.info)
  611. luaK_codeABC(fs, OP_MOVE, reg, e->u.info, 0);
  612. break;
  613. }
  614. default: {
  615. lua_assert(e->k == VJMP);
  616. return; /* nothing to do... */
  617. }
  618. }
  619. e->u.info = reg;
  620. e->k = VNONRELOC;
  621. }
  622. /*
  623. ** Ensures expression value is in any register.
  624. */
  625. static void discharge2anyreg (FuncState *fs, expdesc *e) {
  626. if (e->k != VNONRELOC) { /* no fixed register yet? */
  627. luaK_reserveregs(fs, 1); /* get a register */
  628. discharge2reg(fs, e, fs->freereg-1); /* put value there */
  629. }
  630. }
  631. static int code_loadbool (FuncState *fs, int A, int b, int jump) {
  632. luaK_getlabel(fs); /* those instructions may be jump targets */
  633. return luaK_codeABC(fs, OP_LOADBOOL, A, b, jump);
  634. }
  635. /*
  636. ** check whether list has any jump that do not produce a value
  637. ** or produce an inverted value
  638. */
  639. static int need_value (FuncState *fs, int list) {
  640. for (; list != NO_JUMP; list = getjump(fs, list)) {
  641. Instruction i = *getjumpcontrol(fs, list);
  642. if (GET_OPCODE(i) != OP_TESTSET) return 1;
  643. }
  644. return 0; /* not found */
  645. }
  646. /*
  647. ** Ensures final expression result (including results from its jump
  648. ** lists) is in register 'reg'.
  649. ** If expression has jumps, need to patch these jumps either to
  650. ** its final position or to "load" instructions (for those tests
  651. ** that do not produce values).
  652. */
  653. static void exp2reg (FuncState *fs, expdesc *e, int reg) {
  654. discharge2reg(fs, e, reg);
  655. if (e->k == VJMP) /* expression itself is a test? */
  656. luaK_concat(fs, &e->t, e->u.info); /* put this jump in 't' list */
  657. if (hasjumps(e)) {
  658. int final; /* position after whole expression */
  659. int p_f = NO_JUMP; /* position of an eventual LOAD false */
  660. int p_t = NO_JUMP; /* position of an eventual LOAD true */
  661. if (need_value(fs, e->t) || need_value(fs, e->f)) {
  662. int fj = (e->k == VJMP) ? NO_JUMP : luaK_jump(fs);
  663. p_f = code_loadbool(fs, reg, 0, 1);
  664. p_t = code_loadbool(fs, reg, 1, 0);
  665. luaK_patchtohere(fs, fj);
  666. }
  667. final = luaK_getlabel(fs);
  668. patchlistaux(fs, e->f, final, reg, p_f);
  669. patchlistaux(fs, e->t, final, reg, p_t);
  670. }
  671. e->f = e->t = NO_JUMP;
  672. e->u.info = reg;
  673. e->k = VNONRELOC;
  674. }
  675. /*
  676. ** Ensures final expression result (including results from its jump
  677. ** lists) is in next available register.
  678. */
  679. void luaK_exp2nextreg (FuncState *fs, expdesc *e) {
  680. luaK_dischargevars(fs, e);
  681. freeexp(fs, e);
  682. luaK_reserveregs(fs, 1);
  683. exp2reg(fs, e, fs->freereg - 1);
  684. }
  685. /*
  686. ** Ensures final expression result (including results from its jump
  687. ** lists) is in some (any) register and return that register.
  688. */
  689. int luaK_exp2anyreg (FuncState *fs, expdesc *e) {
  690. luaK_dischargevars(fs, e);
  691. if (e->k == VNONRELOC) { /* expression already has a register? */
  692. if (!hasjumps(e)) /* no jumps? */
  693. return e->u.info; /* result is already in a register */
  694. if (e->u.info >= fs->nactvar) { /* reg. is not a local? */
  695. exp2reg(fs, e, e->u.info); /* put final result in it */
  696. return e->u.info;
  697. }
  698. }
  699. luaK_exp2nextreg(fs, e); /* otherwise, use next available register */
  700. return e->u.info;
  701. }
  702. /*
  703. ** Ensures final expression result is either in a register or in an
  704. ** upvalue.
  705. */
  706. void luaK_exp2anyregup (FuncState *fs, expdesc *e) {
  707. if (e->k != VUPVAL || hasjumps(e))
  708. luaK_exp2anyreg(fs, e);
  709. }
  710. /*
  711. ** Ensures final expression result is either in a register or it is
  712. ** a constant.
  713. */
  714. void luaK_exp2val (FuncState *fs, expdesc *e) {
  715. if (hasjumps(e))
  716. luaK_exp2anyreg(fs, e);
  717. else
  718. luaK_dischargevars(fs, e);
  719. }
  720. /*
  721. ** Ensures final expression result is in a valid R/K index
  722. ** (that is, it is either in a register or in 'k' with an index
  723. ** in the range of R/K indices).
  724. ** Returns R/K index.
  725. */
  726. int luaK_exp2RK (FuncState *fs, expdesc *e) {
  727. luaK_exp2val(fs, e);
  728. switch (e->k) { /* move constants to 'k' */
  729. case VTRUE: e->u.info = boolK(fs, 1); goto vk;
  730. case VFALSE: e->u.info = boolK(fs, 0); goto vk;
  731. case VNIL: e->u.info = nilK(fs); goto vk;
  732. case VKINT: e->u.info = luaK_intK(fs, e->u.ival); goto vk;
  733. case VKFLT: e->u.info = luaK_numberK(fs, e->u.nval); goto vk;
  734. case VK:
  735. vk:
  736. e->k = VK;
  737. if (e->u.info <= MAXINDEXRK) /* constant fits in 'argC'? */
  738. return RKASK(e->u.info);
  739. else break;
  740. default: break;
  741. }
  742. /* not a constant in the right range: put it in a register */
  743. return luaK_exp2anyreg(fs, e);
  744. }
  745. /*
  746. ** Generate code to store result of expression 'ex' into variable 'var'.
  747. */
  748. void luaK_storevar (FuncState *fs, expdesc *var, expdesc *ex) {
  749. switch (var->k) {
  750. case VLOCAL: {
  751. freeexp(fs, ex);
  752. exp2reg(fs, ex, var->u.info); /* compute 'ex' into proper place */
  753. return;
  754. }
  755. case VUPVAL: {
  756. int e = luaK_exp2anyreg(fs, ex);
  757. luaK_codeABC(fs, OP_SETUPVAL, e, var->u.info, 0);
  758. break;
  759. }
  760. case VINDEXUP: {
  761. int e = luaK_exp2RK(fs, ex);
  762. luaK_codeABC(fs, OP_SETTABUP, var->u.ind.t, var->u.ind.idx, e);
  763. break;
  764. }
  765. case VINDEXI: {
  766. int e = luaK_exp2RK(fs, ex);
  767. luaK_codeABC(fs, OP_SETI, var->u.ind.t, var->u.ind.idx, e);
  768. break;
  769. }
  770. case VINDEXSTR: {
  771. int e = luaK_exp2RK(fs, ex);
  772. luaK_codeABC(fs, OP_SETFIELD, var->u.ind.t, var->u.ind.idx, e);
  773. break;
  774. }
  775. case VINDEXED: {
  776. int e = luaK_exp2RK(fs, ex);
  777. luaK_codeABC(fs, OP_SETTABLE, var->u.ind.t, var->u.ind.idx, e);
  778. break;
  779. }
  780. default: lua_assert(0); /* invalid var kind to store */
  781. }
  782. freeexp(fs, ex);
  783. }
  784. /*
  785. ** Emit SELF instruction (convert expression 'e' into 'e:key(e,').
  786. */
  787. void luaK_self (FuncState *fs, expdesc *e, expdesc *key) {
  788. int ereg;
  789. luaK_exp2anyreg(fs, e);
  790. ereg = e->u.info; /* register where 'e' was placed */
  791. freeexp(fs, e);
  792. e->u.info = fs->freereg; /* base register for op_self */
  793. e->k = VNONRELOC; /* self expression has a fixed register */
  794. luaK_reserveregs(fs, 2); /* function and 'self' produced by op_self */
  795. luaK_codeABC(fs, OP_SELF, e->u.info, ereg, luaK_exp2RK(fs, key));
  796. freeexp(fs, key);
  797. }
  798. /*
  799. ** Negate condition 'e' (where 'e' is a comparison).
  800. */
  801. static void negatecondition (FuncState *fs, expdesc *e) {
  802. Instruction *pc = getjumpcontrol(fs, e->u.info);
  803. lua_assert(testTMode(GET_OPCODE(*pc)) && GET_OPCODE(*pc) != OP_TESTSET &&
  804. GET_OPCODE(*pc) != OP_TEST);
  805. SETARG_A(*pc, !(GETARG_A(*pc)));
  806. }
  807. /*
  808. ** Emit instruction to jump if 'e' is 'cond' (that is, if 'cond'
  809. ** is true, code will jump if 'e' is true.) Return jump position.
  810. ** Optimize when 'e' is 'not' something, inverting the condition
  811. ** and removing the 'not'.
  812. */
  813. static int jumponcond (FuncState *fs, expdesc *e, int cond) {
  814. if (e->k == VRELOCABLE) {
  815. Instruction ie = getinstruction(fs, e);
  816. if (GET_OPCODE(ie) == OP_NOT) {
  817. fs->pc--; /* remove previous OP_NOT */
  818. return condjump(fs, OP_TEST, GETARG_B(ie), 0, !cond);
  819. }
  820. /* else go through */
  821. }
  822. discharge2anyreg(fs, e);
  823. freeexp(fs, e);
  824. return condjump(fs, OP_TESTSET, NO_REG, e->u.info, cond);
  825. }
  826. /*
  827. ** Emit code to go through if 'e' is true, jump otherwise.
  828. */
  829. void luaK_goiftrue (FuncState *fs, expdesc *e) {
  830. int pc; /* pc of new jump */
  831. luaK_dischargevars(fs, e);
  832. switch (e->k) {
  833. case VJMP: { /* condition? */
  834. negatecondition(fs, e); /* jump when it is false */
  835. pc = e->u.info; /* save jump position */
  836. break;
  837. }
  838. case VK: case VKFLT: case VKINT: case VTRUE: {
  839. pc = NO_JUMP; /* always true; do nothing */
  840. break;
  841. }
  842. default: {
  843. pc = jumponcond(fs, e, 0); /* jump when false */
  844. break;
  845. }
  846. }
  847. luaK_concat(fs, &e->f, pc); /* insert new jump in false list */
  848. luaK_patchtohere(fs, e->t); /* true list jumps to here (to go through) */
  849. e->t = NO_JUMP;
  850. }
  851. /*
  852. ** Emit code to go through if 'e' is false, jump otherwise.
  853. */
  854. void luaK_goiffalse (FuncState *fs, expdesc *e) {
  855. int pc; /* pc of new jump */
  856. luaK_dischargevars(fs, e);
  857. switch (e->k) {
  858. case VJMP: {
  859. pc = e->u.info; /* already jump if true */
  860. break;
  861. }
  862. case VNIL: case VFALSE: {
  863. pc = NO_JUMP; /* always false; do nothing */
  864. break;
  865. }
  866. default: {
  867. pc = jumponcond(fs, e, 1); /* jump if true */
  868. break;
  869. }
  870. }
  871. luaK_concat(fs, &e->t, pc); /* insert new jump in 't' list */
  872. luaK_patchtohere(fs, e->f); /* false list jumps to here (to go through) */
  873. e->f = NO_JUMP;
  874. }
  875. /*
  876. ** Code 'not e', doing constant folding.
  877. */
  878. static void codenot (FuncState *fs, expdesc *e) {
  879. luaK_dischargevars(fs, e);
  880. switch (e->k) {
  881. case VNIL: case VFALSE: {
  882. e->k = VTRUE; /* true == not nil == not false */
  883. break;
  884. }
  885. case VK: case VKFLT: case VKINT: case VTRUE: {
  886. e->k = VFALSE; /* false == not "x" == not 0.5 == not 1 == not true */
  887. break;
  888. }
  889. case VJMP: {
  890. negatecondition(fs, e);
  891. break;
  892. }
  893. case VRELOCABLE:
  894. case VNONRELOC: {
  895. discharge2anyreg(fs, e);
  896. freeexp(fs, e);
  897. e->u.info = luaK_codeABC(fs, OP_NOT, 0, e->u.info, 0);
  898. e->k = VRELOCABLE;
  899. break;
  900. }
  901. default: lua_assert(0); /* cannot happen */
  902. }
  903. /* interchange true and false lists */
  904. { int temp = e->f; e->f = e->t; e->t = temp; }
  905. removevalues(fs, e->f); /* values are useless when negated */
  906. removevalues(fs, e->t);
  907. }
  908. /*
  909. ** Check whether expression 'e' is a small literal string
  910. */
  911. static int isKstr (FuncState *fs, expdesc *e) {
  912. return (e->k == VK && !hasjumps(e) && e->u.info <= MAXARG_C &&
  913. ttisshrstring(&fs->f->k[e->u.info]));
  914. }
  915. /*
  916. ** Check whether expression 'e' is a literal integer in
  917. ** proper range
  918. */
  919. static int isKint (expdesc *e) {
  920. return (e->k == VKINT && !hasjumps(e) &&
  921. l_castS2U(e->u.ival) <= l_castS2U(MAXARG_C));
  922. }
  923. /*
  924. ** Create expression 't[k]'. 't' must have its final result already in a
  925. ** register or upvalue. Upvalues can only be indexed by literal strings.
  926. ** Keys can be literal strings in the constant table or arbitrary
  927. ** values in registers.
  928. */
  929. void luaK_indexed (FuncState *fs, expdesc *t, expdesc *k) {
  930. lua_assert(!hasjumps(t) && (vkisinreg(t->k) || t->k == VUPVAL));
  931. if (t->k == VUPVAL && !isKstr(fs, k)) /* upvalue indexed by non string? */
  932. luaK_exp2anyreg(fs, t); /* put it in a register */
  933. t->u.ind.t = t->u.info; /* register or upvalue index */
  934. if (t->k == VUPVAL) {
  935. t->u.ind.idx = k->u.info; /* literal string */
  936. t->k = VINDEXUP;
  937. }
  938. else if (isKstr(fs, k)) {
  939. t->u.ind.idx = k->u.info; /* literal string */
  940. t->k = VINDEXSTR;
  941. }
  942. else if (isKint(k)) {
  943. t->u.ind.idx = k->u.ival; /* integer constant */
  944. t->k = VINDEXI;
  945. }
  946. else {
  947. t->u.ind.idx = luaK_exp2anyreg(fs, k); /* register */
  948. t->k = VINDEXED;
  949. }
  950. }
  951. /*
  952. ** Return false if folding can raise an error.
  953. ** Bitwise operations need operands convertible to integers; division
  954. ** operations cannot have 0 as divisor.
  955. */
  956. static int validop (int op, TValue *v1, TValue *v2) {
  957. switch (op) {
  958. case LUA_OPBAND: case LUA_OPBOR: case LUA_OPBXOR:
  959. case LUA_OPSHL: case LUA_OPSHR: case LUA_OPBNOT: { /* conversion errors */
  960. lua_Integer i;
  961. return (tointeger(v1, &i) && tointeger(v2, &i));
  962. }
  963. case LUA_OPDIV: case LUA_OPIDIV: case LUA_OPMOD: /* division by 0 */
  964. return (nvalue(v2) != 0);
  965. default: return 1; /* everything else is valid */
  966. }
  967. }
  968. /*
  969. ** Try to "constant-fold" an operation; return 1 iff successful.
  970. ** (In this case, 'e1' has the final result.)
  971. */
  972. static int constfolding (FuncState *fs, int op, expdesc *e1,
  973. const expdesc *e2) {
  974. TValue v1, v2, res;
  975. if (!tonumeral(e1, &v1) || !tonumeral(e2, &v2) || !validop(op, &v1, &v2))
  976. return 0; /* non-numeric operands or not safe to fold */
  977. luaO_rawarith(fs->ls->L, op, &v1, &v2, &res); /* does operation */
  978. if (ttisinteger(&res)) {
  979. e1->k = VKINT;
  980. e1->u.ival = ivalue(&res);
  981. }
  982. else { /* folds neither NaN nor 0.0 (to avoid problems with -0.0) */
  983. lua_Number n = fltvalue(&res);
  984. if (luai_numisnan(n) || n == 0)
  985. return 0;
  986. e1->k = VKFLT;
  987. e1->u.nval = n;
  988. }
  989. return 1;
  990. }
  991. /*
  992. ** Emit code for unary expressions that "produce values"
  993. ** (everything but 'not').
  994. ** Expression to produce final result will be encoded in 'e'.
  995. */
  996. static void codeunexpval (FuncState *fs, OpCode op, expdesc *e, int line) {
  997. int r = luaK_exp2anyreg(fs, e); /* opcodes operate only on registers */
  998. freeexp(fs, e);
  999. e->u.info = luaK_codeABC(fs, op, 0, r, 0); /* generate opcode */
  1000. e->k = VRELOCABLE; /* all those operations are relocatable */
  1001. luaK_fixline(fs, line);
  1002. }
  1003. /*
  1004. ** Emit code for binary expressions that "produce values"
  1005. ** (everything but logical operators 'and'/'or' and comparison
  1006. ** operators).
  1007. ** Expression to produce final result will be encoded in 'e1'.
  1008. ** Because 'luaK_exp2RK' can free registers, its calls must be
  1009. ** in "stack order" (that is, first on 'e2', which may have more
  1010. ** recent registers to be released).
  1011. */
  1012. static void codebinexpval (FuncState *fs, OpCode op,
  1013. expdesc *e1, expdesc *e2, int line) {
  1014. int v1, v2;
  1015. if (op == OP_ADD && (isKint(e1) || isKint(e2))) {
  1016. if (isKint(e2)) {
  1017. v2 = cast_int(e2->u.ival);
  1018. v1 = luaK_exp2anyreg(fs, e1);
  1019. }
  1020. else { /* exchange operands to make 2nd one a constant */
  1021. v2 = cast_int(e1->u.ival);
  1022. v1 = luaK_exp2anyreg(fs, e2) | BITRK; /* K bit signal the exchange */
  1023. }
  1024. op = OP_ADDI;
  1025. }
  1026. else {
  1027. v2 = luaK_exp2RK(fs, e2); /* both operands are "RK" */
  1028. v1 = luaK_exp2RK(fs, e1);
  1029. }
  1030. freeexps(fs, e1, e2);
  1031. e1->u.info = luaK_codeABC(fs, op, 0, v1, v2); /* generate opcode */
  1032. e1->k = VRELOCABLE; /* all those operations are relocatable */
  1033. luaK_fixline(fs, line);
  1034. }
  1035. /*
  1036. ** Emit code for comparisons.
  1037. ** 'e1' was already put in R/K form by 'luaK_infix'.
  1038. */
  1039. static void codecomp (FuncState *fs, BinOpr opr, expdesc *e1, expdesc *e2) {
  1040. int rk1 = (e1->k == VK) ? RKASK(e1->u.info)
  1041. : check_exp(e1->k == VNONRELOC, e1->u.info);
  1042. int rk2 = luaK_exp2RK(fs, e2);
  1043. freeexps(fs, e1, e2);
  1044. switch (opr) {
  1045. case OPR_NE: { /* '(a ~= b)' ==> 'not (a == b)' */
  1046. e1->u.info = condjump(fs, OP_EQ, 0, rk1, rk2);
  1047. break;
  1048. }
  1049. case OPR_GT: case OPR_GE: {
  1050. /* '(a > b)' ==> '(b < a)'; '(a >= b)' ==> '(b <= a)' */
  1051. OpCode op = cast(OpCode, (opr - OPR_NE) + OP_EQ);
  1052. e1->u.info = condjump(fs, op, 1, rk2, rk1); /* invert operands */
  1053. break;
  1054. }
  1055. default: { /* '==', '<', '<=' use their own opcodes */
  1056. OpCode op = cast(OpCode, (opr - OPR_EQ) + OP_EQ);
  1057. e1->u.info = condjump(fs, op, 1, rk1, rk2);
  1058. break;
  1059. }
  1060. }
  1061. e1->k = VJMP;
  1062. }
  1063. /*
  1064. ** Aplly prefix operation 'op' to expression 'e'.
  1065. */
  1066. void luaK_prefix (FuncState *fs, UnOpr op, expdesc *e, int line) {
  1067. static const expdesc ef = {VKINT, {0}, NO_JUMP, NO_JUMP};
  1068. switch (op) {
  1069. case OPR_MINUS: case OPR_BNOT: /* use 'ef' as fake 2nd operand */
  1070. if (constfolding(fs, op + LUA_OPUNM, e, &ef))
  1071. break;
  1072. /* FALLTHROUGH */
  1073. case OPR_LEN:
  1074. codeunexpval(fs, cast(OpCode, op + OP_UNM), e, line);
  1075. break;
  1076. case OPR_NOT: codenot(fs, e); break;
  1077. default: lua_assert(0);
  1078. }
  1079. }
  1080. /*
  1081. ** Process 1st operand 'v' of binary operation 'op' before reading
  1082. ** 2nd operand.
  1083. */
  1084. void luaK_infix (FuncState *fs, BinOpr op, expdesc *v) {
  1085. switch (op) {
  1086. case OPR_AND: {
  1087. luaK_goiftrue(fs, v); /* go ahead only if 'v' is true */
  1088. break;
  1089. }
  1090. case OPR_OR: {
  1091. luaK_goiffalse(fs, v); /* go ahead only if 'v' is false */
  1092. break;
  1093. }
  1094. case OPR_CONCAT: {
  1095. luaK_exp2nextreg(fs, v); /* operand must be on the 'stack' */
  1096. break;
  1097. }
  1098. case OPR_ADD: case OPR_SUB:
  1099. case OPR_MUL: case OPR_DIV: case OPR_IDIV:
  1100. case OPR_MOD: case OPR_POW:
  1101. case OPR_BAND: case OPR_BOR: case OPR_BXOR:
  1102. case OPR_SHL: case OPR_SHR: {
  1103. if (!tonumeral(v, NULL))
  1104. luaK_exp2RK(fs, v);
  1105. /* else keep numeral, which may be folded with 2nd operand */
  1106. break;
  1107. }
  1108. default: {
  1109. luaK_exp2RK(fs, v);
  1110. break;
  1111. }
  1112. }
  1113. }
  1114. /*
  1115. ** Finalize code for binary operation, after reading 2nd operand.
  1116. ** For '(a .. b .. c)' (which is '(a .. (b .. c))', because
  1117. ** concatenation is right associative), merge second CONCAT into first
  1118. ** one.
  1119. */
  1120. void luaK_posfix (FuncState *fs, BinOpr op,
  1121. expdesc *e1, expdesc *e2, int line) {
  1122. switch (op) {
  1123. case OPR_AND: {
  1124. lua_assert(e1->t == NO_JUMP); /* list closed by 'luK_infix' */
  1125. luaK_dischargevars(fs, e2);
  1126. luaK_concat(fs, &e2->f, e1->f);
  1127. *e1 = *e2;
  1128. break;
  1129. }
  1130. case OPR_OR: {
  1131. lua_assert(e1->f == NO_JUMP); /* list closed by 'luK_infix' */
  1132. luaK_dischargevars(fs, e2);
  1133. luaK_concat(fs, &e2->t, e1->t);
  1134. *e1 = *e2;
  1135. break;
  1136. }
  1137. case OPR_CONCAT: {
  1138. luaK_exp2val(fs, e2);
  1139. if (e2->k == VRELOCABLE &&
  1140. GET_OPCODE(getinstruction(fs, e2)) == OP_CONCAT) {
  1141. lua_assert(e1->u.info == GETARG_B(getinstruction(fs, e2))-1);
  1142. freeexp(fs, e1);
  1143. SETARG_B(getinstruction(fs, e2), e1->u.info);
  1144. e1->k = VRELOCABLE; e1->u.info = e2->u.info;
  1145. }
  1146. else {
  1147. luaK_exp2nextreg(fs, e2); /* operand must be on the 'stack' */
  1148. codebinexpval(fs, OP_CONCAT, e1, e2, line);
  1149. }
  1150. break;
  1151. }
  1152. case OPR_ADD: case OPR_SUB: case OPR_MUL: case OPR_DIV:
  1153. case OPR_IDIV: case OPR_MOD: case OPR_POW:
  1154. case OPR_BAND: case OPR_BOR: case OPR_BXOR:
  1155. case OPR_SHL: case OPR_SHR: {
  1156. if (!constfolding(fs, op + LUA_OPADD, e1, e2))
  1157. codebinexpval(fs, cast(OpCode, op + OP_ADD), e1, e2, line);
  1158. break;
  1159. }
  1160. case OPR_EQ: case OPR_LT: case OPR_LE:
  1161. case OPR_NE: case OPR_GT: case OPR_GE: {
  1162. codecomp(fs, op, e1, e2);
  1163. break;
  1164. }
  1165. default: lua_assert(0);
  1166. }
  1167. }
  1168. /*
  1169. ** Change line information associated with current position. If that
  1170. ** information is absolute, just change it and correct 'previousline'.
  1171. ** Otherwise, restore 'previousline' to its value before saving the
  1172. ** current position and than saves the line information again, with the
  1173. ** new line.
  1174. */
  1175. void luaK_fixline (FuncState *fs, int line) {
  1176. Proto *f = fs->f;
  1177. if (f->lineinfo[fs->pc - 1] == ABSLINEINFO) {
  1178. lua_assert(f->abslineinfo[fs->nabslineinfo - 1].pc == fs->pc - 1);
  1179. f->abslineinfo[fs->nabslineinfo - 1].line = line;
  1180. fs->previousline = line;
  1181. }
  1182. else {
  1183. fs->previousline -= f->lineinfo[fs->pc - 1]; /* undo previous info. */
  1184. savelineinfo(fs, f, fs->pc - 1, line); /* redo it */
  1185. }
  1186. }
  1187. /*
  1188. ** Emit a SETLIST instruction.
  1189. ** 'base' is register that keeps table;
  1190. ** 'nelems' is #table plus those to be stored now;
  1191. ** 'tostore' is number of values (in registers 'base + 1',...) to add to
  1192. ** table (or LUA_MULTRET to add up to stack top).
  1193. */
  1194. void luaK_setlist (FuncState *fs, int base, int nelems, int tostore) {
  1195. int c = (nelems - 1)/LFIELDS_PER_FLUSH + 1;
  1196. int b = (tostore == LUA_MULTRET) ? 0 : tostore;
  1197. lua_assert(tostore != 0 && tostore <= LFIELDS_PER_FLUSH);
  1198. if (c <= MAXARG_C)
  1199. luaK_codeABC(fs, OP_SETLIST, base, b, c);
  1200. else if (c <= MAXARG_Ax) {
  1201. luaK_codeABC(fs, OP_SETLIST, base, b, 0);
  1202. codeextraarg(fs, c);
  1203. }
  1204. else
  1205. luaX_syntaxerror(fs->ls, "constructor too long");
  1206. fs->freereg = base + 1; /* free registers with list values */
  1207. }