lopcodes.h 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369
  1. /*
  2. ** $Id: lopcodes.h $
  3. ** Opcodes for Lua virtual machine
  4. ** See Copyright Notice in lua.h
  5. */
  6. #ifndef lopcodes_h
  7. #define lopcodes_h
  8. #include "llimits.h"
  9. /*===========================================================================
  10. We assume that instructions are unsigned 32-bit integers.
  11. All instructions have an opcode in the first 7 bits.
  12. Instructions can have the following formats:
  13. 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
  14. 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
  15. iABC C(8) | B(8) |k| A(8) | Op(7) |
  16. iABx Bx(17) | A(8) | Op(7) |
  17. iAsB sBx (signed)(17) | A(8) | Op(7) |
  18. iAx Ax(25) | Op(7) |
  19. isJ sJ(25) | Op(7) |
  20. A signed argument is represented in excess K: the represented value is
  21. the written unsigned value minus K, where K is half the maximum for the
  22. corresponding unsigned argument.
  23. ===========================================================================*/
  24. enum OpMode {iABC, iABx, iAsBx, iAx, isJ}; /* basic instruction formats */
  25. /*
  26. ** size and position of opcode arguments.
  27. */
  28. #define SIZE_C 8
  29. #define SIZE_B 8
  30. #define SIZE_Bx (SIZE_C + SIZE_B + 1)
  31. #define SIZE_A 8
  32. #define SIZE_Ax (SIZE_Bx + SIZE_A)
  33. #define SIZE_sJ (SIZE_Bx + SIZE_A)
  34. #define SIZE_OP 7
  35. #define POS_OP 0
  36. #define POS_A (POS_OP + SIZE_OP)
  37. #define POS_k (POS_A + SIZE_A)
  38. #define POS_B (POS_k + 1)
  39. #define POS_C (POS_B + SIZE_B)
  40. #define POS_Bx POS_k
  41. #define POS_Ax POS_A
  42. #define POS_sJ POS_A
  43. /*
  44. ** limits for opcode arguments.
  45. ** we use (signed) int to manipulate most arguments,
  46. ** so they must fit in LUAI_BITSINT-1 bits (-1 for sign)
  47. */
  48. #if SIZE_Bx < LUAI_BITSINT-1
  49. #define MAXARG_Bx ((1<<SIZE_Bx)-1)
  50. #else
  51. #define MAXARG_Bx MAX_INT
  52. #endif
  53. #define OFFSET_sBx (MAXARG_Bx>>1) /* 'sBx' is signed */
  54. #if SIZE_Ax < LUAI_BITSINT-1
  55. #define MAXARG_Ax ((1<<SIZE_Ax)-1)
  56. #else
  57. #define MAXARG_Ax MAX_INT
  58. #endif
  59. #if SIZE_sJ < LUAI_BITSINT-1
  60. #define MAXARG_sJ ((1 << SIZE_sJ) - 1)
  61. #else
  62. #define MAXARG_sJ MAX_INT
  63. #endif
  64. #define OFFSET_sJ (MAXARG_sJ >> 1)
  65. #define MAXARG_A ((1<<SIZE_A)-1)
  66. #define MAXARG_B ((1<<SIZE_B)-1)
  67. #define MAXARG_C ((1<<SIZE_C)-1)
  68. #define OFFSET_sC (MAXARG_C >> 1)
  69. /* creates a mask with 'n' 1 bits at position 'p' */
  70. #define MASK1(n,p) ((~((~(Instruction)0)<<(n)))<<(p))
  71. /* creates a mask with 'n' 0 bits at position 'p' */
  72. #define MASK0(n,p) (~MASK1(n,p))
  73. /*
  74. ** the following macros help to manipulate instructions
  75. */
  76. #define GET_OPCODE(i) (cast(OpCode, ((i)>>POS_OP) & MASK1(SIZE_OP,0)))
  77. #define SET_OPCODE(i,o) ((i) = (((i)&MASK0(SIZE_OP,POS_OP)) | \
  78. ((cast(Instruction, o)<<POS_OP)&MASK1(SIZE_OP,POS_OP))))
  79. #define checkopm(i,m) (getOpMode(GET_OPCODE(i)) == m)
  80. #define getarg(i,pos,size) (cast_int(((i)>>(pos)) & MASK1(size,0)))
  81. #define setarg(i,v,pos,size) ((i) = (((i)&MASK0(size,pos)) | \
  82. ((cast(Instruction, v)<<pos)&MASK1(size,pos))))
  83. #define GETARG_A(i) getarg(i, POS_A, SIZE_A)
  84. #define SETARG_A(i,v) setarg(i, v, POS_A, SIZE_A)
  85. #define GETARG_B(i) check_exp(checkopm(i, iABC), getarg(i, POS_B, SIZE_B))
  86. #define GETARG_sB(i) (GETARG_B(i) - OFFSET_sC)
  87. #define SETARG_B(i,v) setarg(i, v, POS_B, SIZE_B)
  88. #define GETARG_C(i) check_exp(checkopm(i, iABC), getarg(i, POS_C, SIZE_C))
  89. #define GETARG_sC(i) (GETARG_C(i) - OFFSET_sC)
  90. #define SETARG_C(i,v) setarg(i, v, POS_C, SIZE_C)
  91. #define TESTARG_k(i) (cast_int(((i) & (1u << POS_k))))
  92. #define GETARG_k(i) check_exp(checkopm(i, iABC), getarg(i, POS_k, 1))
  93. #define SETARG_k(i,v) setarg(i, v, POS_k, 1)
  94. #define GETARG_Bx(i) check_exp(checkopm(i, iABx), getarg(i, POS_Bx, SIZE_Bx))
  95. #define SETARG_Bx(i,v) setarg(i, v, POS_Bx, SIZE_Bx)
  96. #define GETARG_Ax(i) check_exp(checkopm(i, iAx), getarg(i, POS_Ax, SIZE_Ax))
  97. #define SETARG_Ax(i,v) setarg(i, v, POS_Ax, SIZE_Ax)
  98. #define GETARG_sBx(i) \
  99. check_exp(checkopm(i, iAsBx), getarg(i, POS_Bx, SIZE_Bx) - OFFSET_sBx)
  100. #define SETARG_sBx(i,b) SETARG_Bx((i),cast_uint((b)+OFFSET_sBx))
  101. #define GETARG_sJ(i) \
  102. check_exp(checkopm(i, isJ), getarg(i, POS_sJ, SIZE_sJ) - OFFSET_sJ)
  103. #define SETARG_sJ(i,j) \
  104. setarg(i, cast_uint((j)+OFFSET_sJ), POS_sJ, SIZE_sJ)
  105. #define CREATE_ABCk(o,a,b,c,k) ((cast(Instruction, o)<<POS_OP) \
  106. | (cast(Instruction, a)<<POS_A) \
  107. | (cast(Instruction, b)<<POS_B) \
  108. | (cast(Instruction, c)<<POS_C) \
  109. | (cast(Instruction, k)<<POS_k))
  110. #define CREATE_ABx(o,a,bc) ((cast(Instruction, o)<<POS_OP) \
  111. | (cast(Instruction, a)<<POS_A) \
  112. | (cast(Instruction, bc)<<POS_Bx))
  113. #define CREATE_Ax(o,a) ((cast(Instruction, o)<<POS_OP) \
  114. | (cast(Instruction, a)<<POS_Ax))
  115. #define CREATE_sJ(o,j,k) ((cast(Instruction, o) << POS_OP) \
  116. | (cast(Instruction, j) << POS_sJ) \
  117. | (cast(Instruction, k) << POS_k))
  118. #if !defined(MAXINDEXRK) /* (for debugging only) */
  119. #define MAXINDEXRK MAXARG_B
  120. #endif
  121. /*
  122. ** invalid register that fits in 8 bits
  123. */
  124. #define NO_REG MAXARG_A
  125. /*
  126. ** R(x) - register
  127. ** K(x) - constant (in constant table)
  128. ** RK(x) == if k(i) then K(x) else R(x)
  129. */
  130. /*
  131. ** grep "ORDER OP" if you change these enums
  132. */
  133. typedef enum {
  134. /*----------------------------------------------------------------------
  135. name args description
  136. ------------------------------------------------------------------------*/
  137. OP_MOVE,/* A B R(A) := R(B) */
  138. OP_LOADI,/* A sBx R(A) := sBx */
  139. OP_LOADF,/* A sBx R(A) := (lua_Number)sBx */
  140. OP_LOADK,/* A Bx R(A) := K(Bx) */
  141. OP_LOADKX,/* A R(A) := K(extra arg) */
  142. OP_LOADBOOL,/* A B C R(A) := (Bool)B; if (C) pc++ */
  143. OP_LOADNIL,/* A B R(A), R(A+1), ..., R(A+B) := nil */
  144. OP_GETUPVAL,/* A B R(A) := UpValue[B] */
  145. OP_SETUPVAL,/* A B UpValue[B] := R(A) */
  146. OP_GETTABUP,/* A B C R(A) := UpValue[B][K(C):string] */
  147. OP_GETTABLE,/* A B C R(A) := R(B)[R(C)] */
  148. OP_GETI,/* A B C R(A) := R(B)[C] */
  149. OP_GETFIELD,/* A B C R(A) := R(B)[K(C):string] */
  150. OP_SETTABUP,/* A B C UpValue[A][K(B):string] := RK(C) */
  151. OP_SETTABLE,/* A B C R(A)[R(B)] := RK(C) */
  152. OP_SETI,/* A B C R(A)[B] := RK(C) */
  153. OP_SETFIELD,/* A B C R(A)[K(B):string] := RK(C) */
  154. OP_NEWTABLE,/* A B C R(A) := {} (size = B,C) */
  155. OP_SELF,/* A B C R(A+1) := R(B); R(A) := R(B)[RK(C):string] */
  156. OP_ADDI,/* A B sC R(A) := R(B) + C */
  157. OP_SUBI,/* A B sC R(A) := R(B) - C */
  158. OP_MULI,/* A B sC R(A) := R(B) * C */
  159. OP_MODI,/* A B sC R(A) := R(B) % C */
  160. OP_POWI,/* A B sC R(A) := R(B) ^ C */
  161. OP_DIVI,/* A B sC R(A) := R(B) / C */
  162. OP_IDIVI,/* A B sC R(A) := R(B) // C */
  163. OP_ADDK,/* A B C R(A) := R(B) + K(C) */
  164. OP_SUBK,/* A B C R(A) := R(B) - K(C) */
  165. OP_MULK,/* A B C R(A) := R(B) * K(C) */
  166. OP_MODK,/* A B C R(A) := R(B) % K(C) */
  167. OP_POWK,/* A B C R(A) := R(B) ^ K(C) */
  168. OP_DIVK,/* A B C R(A) := R(B) / K(C) */
  169. OP_IDIVK,/* A B C R(A) := R(B) // K(C) */
  170. OP_BANDK,/* A B C R(A) := R(B) & K(C):integer */
  171. OP_BORK,/* A B C R(A) := R(B) | K(C):integer */
  172. OP_BXORK,/* A B C R(A) := R(B) ~ K(C):integer */
  173. OP_SHRI,/* A B sC R(A) := R(B) >> C */
  174. OP_SHLI,/* A B sC R(A) := C << R(B) */
  175. OP_ADD,/* A B C R(A) := R(B) + R(C) */
  176. OP_SUB,/* A B C R(A) := R(B) - R(C) */
  177. OP_MUL,/* A B C R(A) := R(B) * R(C) */
  178. OP_MOD,/* A B C R(A) := R(B) % R(C) */
  179. OP_POW,/* A B C R(A) := R(B) ^ R(C) */
  180. OP_DIV,/* A B C R(A) := R(B) / R(C) */
  181. OP_IDIV,/* A B C R(A) := R(B) // R(C) */
  182. OP_BAND,/* A B C R(A) := R(B) & R(C) */
  183. OP_BOR,/* A B C R(A) := R(B) | R(C) */
  184. OP_BXOR,/* A B C R(A) := R(B) ~ R(C) */
  185. OP_SHL,/* A B C R(A) := R(B) << R(C) */
  186. OP_SHR,/* A B C R(A) := R(B) >> R(C) */
  187. OP_UNM,/* A B R(A) := -R(B) */
  188. OP_BNOT,/* A B R(A) := ~R(B) */
  189. OP_NOT,/* A B R(A) := not R(B) */
  190. OP_LEN,/* A B R(A) := length of R(B) */
  191. OP_CONCAT,/* A B R(A) := R(A).. ... ..R(A + B - 1) */
  192. OP_CLOSE,/* A close all upvalues >= R(A) */
  193. OP_TBC,/* A mark variable A "to be closed" */
  194. OP_JMP,/* k sJ pc += sJ (k is used in code generation) */
  195. OP_EQ,/* A B if ((R(A) == R(B)) ~= k) then pc++ */
  196. OP_LT,/* A B if ((R(A) < R(B)) ~= k) then pc++ */
  197. OP_LE,/* A B if ((R(A) <= R(B)) ~= k) then pc++ */
  198. OP_EQK,/* A B if ((R(A) == K(B)) ~= k) then pc++ */
  199. OP_EQI,/* A sB if ((R(A) == sB) ~= k) then pc++ */
  200. OP_LTI,/* A sB if ((R(A) < sB) ~= k) then pc++ */
  201. OP_LEI,/* A sB if ((R(A) <= sB) ~= k) then pc++ */
  202. OP_GTI,/* A sB if ((R(A) > sB) ~= k) then pc++ */
  203. OP_GEI,/* A sB if ((R(A) >= sB) ~= k) then pc++ */
  204. OP_TEST,/* A if (not R(A) == k) then pc++ */
  205. OP_TESTSET,/* A B if (not R(B) == k) then pc++ else R(A) := R(B) */
  206. OP_CALL,/* A B C R(A), ... ,R(A+C-2) := R(A)(R(A+1), ... ,R(A+B-1)) */
  207. OP_TAILCALL,/* A B C return R(A)(R(A+1), ... ,R(A+B-1)) */
  208. OP_RETURN,/* A B C return R(A), ... ,R(A+B-2) (see note) */
  209. OP_RETURN0,/* return */
  210. OP_RETURN1,/* A return R(A) */
  211. OP_FORLOOP,/* A Bx R(A)+=R(A+2);
  212. if R(A) <?= R(A+1) then { pc-=Bx; R(A+3)=R(A) } */
  213. OP_FORPREP,/* A Bx R(A)-=R(A+2); pc+=Bx */
  214. OP_TFORPREP,/* A Bx create upvalue for R(A + 3); pc+=Bx */
  215. OP_TFORCALL,/* A C R(A+4), ... ,R(A+3+C) := R(A)(R(A+1), R(A+2)); */
  216. OP_TFORLOOP,/* A Bx if R(A+2) ~= nil then { R(A)=R(A+2); pc -= Bx } */
  217. OP_SETLIST,/* A B C R(A)[(C-1)*FPF+i] := R(A+i), 1 <= i <= B */
  218. OP_CLOSURE,/* A Bx R(A) := closure(KPROTO[Bx]) */
  219. OP_VARARG,/* A C R(A), R(A+1), ..., R(A+C-2) = vararg */
  220. OP_PREPVARARG,/*A (adjust vararg parameters) */
  221. OP_EXTRAARG/* Ax extra (larger) argument for previous opcode */
  222. } OpCode;
  223. #define NUM_OPCODES ((int)(OP_EXTRAARG) + 1)
  224. /*===========================================================================
  225. Notes:
  226. (*) In OP_CALL, if (B == 0) then B = top - A. If (C == 0), then
  227. 'top' is set to last_result+1, so next open instruction (OP_CALL,
  228. OP_RETURN*, OP_SETLIST) may use 'top'.
  229. (*) In OP_VARARG, if (C == 0) then use actual number of varargs and
  230. set top (like in OP_CALL with C == 0).
  231. (*) In OP_RETURN, if (B == 0) then return up to 'top'.
  232. (*) In OP_SETLIST, if (B == 0) then real B = 'top'; if (C == 0) then
  233. next 'instruction' is EXTRAARG(real C).
  234. (*) In OP_LOADKX, the next 'instruction' is always EXTRAARG.
  235. (*) For comparisons, k specifies what condition the test should accept
  236. (true or false).
  237. (*) All 'skips' (pc++) assume that next instruction is a jump.
  238. (*) In instructions OP_RETURN/OP_TAILCALL, 'k' specifies that the
  239. function either builds upvalues, which may need to be closed, or is
  240. vararg, which must be corrected before returning. When 'k' is true,
  241. C > 0 means the function is vararg and (C - 1) is its number of
  242. fixed parameters.
  243. ===========================================================================*/
  244. /*
  245. ** masks for instruction properties. The format is:
  246. ** bits 0-2: op mode
  247. ** bit 3: instruction set register A
  248. ** bit 4: operator is a test (next instruction must be a jump)
  249. ** bit 5: instruction uses 'L->top' set by previous instruction (when B == 0)
  250. ** bit 6: instruction sets 'L->top' for next instruction (when C == 0)
  251. */
  252. LUAI_DDEC(const lu_byte luaP_opmodes[NUM_OPCODES];)
  253. #define getOpMode(m) (cast(enum OpMode, luaP_opmodes[m] & 7))
  254. #define testAMode(m) (luaP_opmodes[m] & (1 << 3))
  255. #define testTMode(m) (luaP_opmodes[m] & (1 << 4))
  256. #define testITMode(m) (luaP_opmodes[m] & (1 << 5))
  257. #define testOTMode(m) (luaP_opmodes[m] & (1 << 6))
  258. /* "out top" (set top for next instruction) */
  259. #define isOT(i) \
  260. ((testOTMode(GET_OPCODE(i)) && GETARG_C(i) == 0) || \
  261. GET_OPCODE(i) == OP_TAILCALL)
  262. /* "in top" (uses top from previous instruction) */
  263. #define isIT(i) (testITMode(GET_OPCODE(i)) && GETARG_B(i) == 0)
  264. #define opmode(ot,it,t,a,m) (((ot)<<6) | ((it)<<5) | ((t)<<4) | ((a)<<3) | (m))
  265. /* number of list items to accumulate before a SETLIST instruction */
  266. #define LFIELDS_PER_FLUSH 50
  267. #endif