ltable.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460
  1. /*
  2. ** $Id: ltable.c,v 1.101 2002/02/14 21:41:08 roberto Exp roberto $
  3. ** Lua tables (hash)
  4. ** See Copyright Notice in lua.h
  5. */
  6. /*
  7. ** Implementation of tables (aka arrays, objects, or hash tables).
  8. ** Tables keep its elements in two parts: an array part and a hash part.
  9. ** Non-negative integer keys are all candidates to be kept in the array
  10. ** part. The actual size of the array is the largest `n' such that at
  11. ** least half the slots between 0 and n are in use.
  12. ** Hash uses a mix of chained scatter table with Brent's variation.
  13. ** A main invariant of these tables is that, if an element is not
  14. ** in its main position (i.e. the `original' position that its hash gives
  15. ** to it), then the colliding element is in its own main position.
  16. ** In other words, there are collisions only when two elements have the
  17. ** same main position (i.e. the same hash values for that table size).
  18. ** Because of that, the load factor of these tables can be 100% without
  19. ** performance penalties.
  20. */
  21. #include "lua.h"
  22. #include "ldo.h"
  23. #include "lmem.h"
  24. #include "lobject.h"
  25. #include "lstate.h"
  26. #include "ltable.h"
  27. /*
  28. ** max size of array part is 2^MAXBITS
  29. */
  30. #if BITS_INT > 26
  31. #define MAXBITS 24
  32. #else
  33. #define MAXBITS (BITS_INT-2)
  34. #endif
  35. /* check whether `x' < 2^MAXBITS */
  36. #define toobig(x) ((((x)-1) >> MAXBITS) != 0)
  37. #define TagDefault LUA_TTABLE
  38. #define hashnum(t,n) \
  39. (node(t, lmod(cast(lu_hash, cast(ls_hash, n)), sizenode(t))))
  40. #define hashstr(t,str) (node(t, lmod((str)->tsv.hash, sizenode(t))))
  41. #define hashboolean(t,p) (node(t, p)) /* `p' in [0,1] < minimum table size */
  42. /*
  43. ** for pointers, avoid modulus by power of 2, as they tend to have many
  44. ** 2 factors.
  45. */
  46. #define hashpointer(t,p) (node(t, (IntPoint(p) % (sizenode(t)-1))))
  47. /*
  48. ** returns the `main' position of an element in a table (that is, the index
  49. ** of its hash value)
  50. */
  51. Node *luaH_mainposition (const Table *t, const TObject *key) {
  52. switch (ttype(key)) {
  53. case LUA_TNUMBER:
  54. return hashnum(t, nvalue(key));
  55. case LUA_TSTRING:
  56. return hashstr(t, tsvalue(key));
  57. case LUA_TBOOLEAN:
  58. return hashboolean(t, bvalue(key));
  59. default: /* all other types are hashed as (void *) */
  60. return hashpointer(t, tsvalue(key));
  61. }
  62. }
  63. /*
  64. ** returns the index for `key' if `key' is an appropriate key to live in
  65. ** the array part of the table, -1 otherwise.
  66. */
  67. static int arrayindex (const TObject *key) {
  68. if (ttype(key) == LUA_TNUMBER) {
  69. int k;
  70. lua_number2int(k, (nvalue(key)));
  71. if (cast(lua_Number, k) == nvalue(key) && k >= 1 && !toobig(k))
  72. return k;
  73. }
  74. return -1; /* `key' did not match some condition */
  75. }
  76. /*
  77. ** returns the index of a `key' for table traversals. First goes all
  78. ** elements in the array part, then elements in the hash part. The
  79. ** beginning and end of a traversal are signalled by -1.
  80. */
  81. static int luaH_index (lua_State *L, Table *t, const TObject *key) {
  82. int i;
  83. if (ttype(key) == LUA_TNIL) return -1; /* first iteration */
  84. i = arrayindex(key);
  85. if (0 <= i && i <= t->sizearray) { /* is `key' inside array part? */
  86. return i-1; /* yes; that's the index (corrected to C) */
  87. }
  88. else {
  89. const TObject *v = luaH_get(t, key);
  90. if (v == &luaO_nilobject)
  91. luaD_error(L, "invalid key for `next'");
  92. i = cast(int, (cast(const lu_byte *, v) -
  93. cast(const lu_byte *, val(node(t, 0)))) / sizeof(Node));
  94. return i + t->sizearray; /* hash elements are numbered after array ones */
  95. }
  96. }
  97. int luaH_next (lua_State *L, Table *t, TObject *key) {
  98. int i = luaH_index(L, t, key); /* find original element */
  99. for (i++; i < t->sizearray; i++) { /* try first array part */
  100. if (ttype(&t->array[i]) != LUA_TNIL) { /* a non-nil value? */
  101. setnvalue(key, i+1);
  102. setobj(key+1, &t->array[i]);
  103. return 1;
  104. }
  105. }
  106. for (i -= t->sizearray; i < sizenode(t); i++) { /* then hash part */
  107. if (ttype(val(node(t, i))) != LUA_TNIL) { /* a non-nil value? */
  108. setobj(key, key(node(t, i)));
  109. setobj(key+1, val(node(t, i)));
  110. return 1;
  111. }
  112. }
  113. return 0; /* no more elements */
  114. }
  115. /*
  116. ** {=============================================================
  117. ** Rehash
  118. ** ==============================================================
  119. */
  120. static void computesizes (int nums[], int ntotal, int *narray, int *nhash) {
  121. int n = 0; /* (log of) optimal size for array part */
  122. int na = 0; /* number of elements to go to array part */
  123. int i;
  124. int a = nums[0]; /* number of elements smaller than 2^i */
  125. for (i = 1; i <= MAXBITS && *narray >= twoto(i-1); i++) {
  126. if (nums[i] == 0) continue;
  127. a += nums[i];
  128. if (a >= twoto(i-1)) { /* more than half elements in use? */
  129. n = i;
  130. na = a;
  131. }
  132. }
  133. lua_assert(na <= *narray && *narray <= ntotal);
  134. *nhash = ntotal - na;
  135. *narray = (n == 0) ? 0 : twoto(n);
  136. lua_assert(na <= *narray && na >= *narray/2);
  137. }
  138. static void numuse (const Table *t, int *narray, int *nhash) {
  139. int nums[MAXBITS+1];
  140. int i;
  141. int totaluse = 0;
  142. for (i=0; i<=MAXBITS; i++) nums[i] = 0; /* init `nums' */
  143. /* count elements in array part */
  144. i = luaO_log2(t->sizearray) + 1; /* number of `slices' */
  145. while (i--) { /* for each slice [2^(i-1) to 2^i) */
  146. int to = twoto(i);
  147. int from = to/2;
  148. if (to > t->sizearray) to = t->sizearray;
  149. for (; from < to; from++)
  150. if (ttype(&t->array[from]) != LUA_TNIL) {
  151. nums[i]++;
  152. totaluse++;
  153. }
  154. }
  155. *narray = totaluse; /* all previous uses were in array part */
  156. /* count elements in hash part */
  157. i = sizenode(t);
  158. while (i--) {
  159. if (ttype(val(&t->node[i])) != LUA_TNIL) {
  160. int k = arrayindex(key(&t->node[i]));
  161. if (k >= 0) { /* is `key' an appropriate array index? */
  162. nums[luaO_log2(k-1)+1]++; /* count as such */
  163. (*narray)++;
  164. }
  165. totaluse++;
  166. }
  167. }
  168. computesizes(nums, totaluse, narray, nhash);
  169. }
  170. /*
  171. ** (log2 of) minimum size for hash part of a table
  172. */
  173. #define MINHASHSIZE 1
  174. static void setarrayvector (lua_State *L, Table *t, int size) {
  175. int i;
  176. luaM_reallocvector(L, t->array, t->sizearray, size, TObject);
  177. for (i=t->sizearray; i<size; i++)
  178. setnilvalue(&t->array[i]);
  179. t->sizearray = size;
  180. }
  181. static void setnodevector (lua_State *L, Table *t, int lsize) {
  182. int i;
  183. int size;
  184. if (lsize < MINHASHSIZE) lsize = MINHASHSIZE;
  185. else if (lsize > MAXBITS)
  186. luaD_error(L, "table overflow");
  187. size = twoto(lsize);
  188. t->node = luaM_newvector(L, size, Node);
  189. for (i=0; i<size; i++) {
  190. t->node[i].next = NULL;
  191. setnilvalue(key(node(t, i)));
  192. setnilvalue(val(node(t, i)));
  193. }
  194. t->lsizenode = cast(lu_byte, lsize);
  195. t->firstfree = node(t, size-1); /* first free position to be used */
  196. }
  197. static void resize (lua_State *L, Table *t, int nasize, int nhsize) {
  198. int i;
  199. int oldasize, oldhsize;
  200. Node *nold;
  201. oldasize = t->sizearray;
  202. if (nasize > oldasize) /* should grow array part? */
  203. setarrayvector(L, t, nasize);
  204. /* create new hash part with appropriate size */
  205. nold = t->node; /* save old hash ... */
  206. oldhsize = t->lsizenode; /* ... and (log of) old size */
  207. setnodevector(L, t, nhsize);
  208. /* re-insert elements */
  209. if (nasize < oldasize) { /* array part must shrink? */
  210. t->sizearray = nasize;
  211. /* re-insert elements from vanishing slice */
  212. for (i=nasize; i<oldasize; i++) {
  213. if (ttype(&t->array[i]) != LUA_TNIL)
  214. luaH_setnum(L, t, i+1, &t->array[i]);
  215. }
  216. /* shink array */
  217. luaM_reallocvector(L, t->array, oldasize, nasize, TObject);
  218. }
  219. /* re-insert elements in hash part */
  220. i = twoto(oldhsize);
  221. while (i--) {
  222. Node *old = nold+i;
  223. if (ttype(val(old)) != LUA_TNIL)
  224. luaH_set(L, t, key(old), val(old));
  225. }
  226. luaM_freearray(L, nold, twoto(oldhsize), Node); /* free old array */
  227. }
  228. static void rehash (lua_State *L, Table *t) {
  229. int nasize, nhsize;
  230. numuse(t, &nasize, &nhsize); /* compute new sizes for array and hash parts */
  231. nhsize += nhsize/4; /* allow some extra for growing nhsize */
  232. resize(L, t, nasize, luaO_log2(nhsize)+1);
  233. }
  234. /*
  235. ** }=============================================================
  236. */
  237. Table *luaH_new (lua_State *L, int narray, int lnhash) {
  238. Table *t = luaM_new(L, Table);
  239. t->metatable = hvalue(defaultmeta(L));
  240. t->next = G(L)->roottable;
  241. G(L)->roottable = t;
  242. t->mark = t;
  243. t->flags = cast(unsigned short, ~0);
  244. /* temporary values (kept only if some malloc fails) */
  245. t->array = NULL;
  246. t->sizearray = 0;
  247. t->lsizenode = 0;
  248. t->node = NULL;
  249. setarrayvector(L, t, narray);
  250. setnodevector(L, t, lnhash);
  251. return t;
  252. }
  253. void luaH_free (lua_State *L, Table *t) {
  254. lua_assert(t->lsizenode > 0 || t->node == NULL);
  255. if (t->lsizenode > 0)
  256. luaM_freearray(L, t->node, sizenode(t), Node);
  257. luaM_freearray(L, t->array, t->sizearray, TObject);
  258. luaM_freelem(L, t);
  259. }
  260. #if 0
  261. /*
  262. ** try to remove an element from a hash table; cannot move any element
  263. ** (because gc can call `remove' during a table traversal)
  264. */
  265. void luaH_remove (Table *t, Node *e) {
  266. Node *mp = luaH_mainposition(t, key(e));
  267. if (e != mp) { /* element not in its main position? */
  268. while (mp->next != e) mp = mp->next; /* find previous */
  269. mp->next = e->next; /* remove `e' from its list */
  270. }
  271. else {
  272. if (e->next != NULL) ??
  273. }
  274. lua_assert(ttype(val(node)) == LUA_TNIL);
  275. setnilvalue(key(e)); /* clear node `e' */
  276. e->next = NULL;
  277. }
  278. #endif
  279. /*
  280. ** inserts a new key into a hash table; first, check whether key's main
  281. ** position is free. If not, check whether colliding node is in its main
  282. ** position or not: if it is not, move colliding node to an empty place and
  283. ** put new key in its main position; otherwise (colliding node is in its main
  284. ** position), new key goes to an empty position.
  285. */
  286. static void newkey (lua_State *L, Table *t, const TObject *key,
  287. const TObject *val) {
  288. Node *mp = luaH_mainposition(t, key);
  289. if (ttype(val(mp)) != LUA_TNIL) { /* main position is not free? */
  290. Node *othern = luaH_mainposition(t, key(mp)); /* `mp' of colliding node */
  291. Node *n = t->firstfree; /* get a free place */
  292. if (othern != mp) { /* is colliding node out of its main position? */
  293. /* yes; move colliding node into free position */
  294. while (othern->next != mp) othern = othern->next; /* find previous */
  295. othern->next = n; /* redo the chain with `n' in place of `mp' */
  296. *n = *mp; /* copy colliding node into free pos. (mp->next also goes) */
  297. mp->next = NULL; /* now `mp' is free */
  298. setnilvalue(val(mp));
  299. }
  300. else { /* colliding node is in its own main position */
  301. /* new node will go into free position */
  302. n->next = mp->next; /* chain new position */
  303. mp->next = n;
  304. mp = n;
  305. }
  306. }
  307. setobj(key(mp), key);
  308. lua_assert(ttype(val(mp)) == LUA_TNIL);
  309. settableval(val(mp), val);
  310. for (;;) { /* correct `firstfree' */
  311. if (ttype(key(t->firstfree)) == LUA_TNIL)
  312. return; /* OK; table still has a free place */
  313. else if (t->firstfree == t->node) break; /* cannot decrement from here */
  314. else (t->firstfree)--;
  315. }
  316. rehash(L, t); /* no more free places; must create one */
  317. }
  318. /*
  319. ** generic search function
  320. */
  321. static const TObject *luaH_getany (Table *t, const TObject *key) {
  322. if (ttype(key) == LUA_TNIL) return &luaO_nilobject;
  323. else {
  324. Node *n = luaH_mainposition(t, key);
  325. do { /* check whether `key' is somewhere in the chain */
  326. if (luaO_equalObj(key(n), key)) return val(n); /* that's it */
  327. else n = n->next;
  328. } while (n);
  329. return &luaO_nilobject;
  330. }
  331. }
  332. /*
  333. ** search function for integers
  334. */
  335. const TObject *luaH_getnum (Table *t, int key) {
  336. if (1 <= key && key <= t->sizearray)
  337. return &t->array[key-1];
  338. else {
  339. Node *n = hashnum(t, key);
  340. do { /* check whether `key' is somewhere in the chain */
  341. if (ttype(key(n)) == LUA_TNUMBER && nvalue(key(n)) == (lua_Number)key)
  342. return val(n); /* that's it */
  343. else n = n->next;
  344. } while (n);
  345. return &luaO_nilobject;
  346. }
  347. }
  348. /*
  349. ** search function for strings
  350. */
  351. const TObject *luaH_getstr (Table *t, TString *key) {
  352. Node *n = hashstr(t, key);
  353. do { /* check whether `key' is somewhere in the chain */
  354. if (ttype(key(n)) == LUA_TSTRING && tsvalue(key(n)) == key)
  355. return val(n); /* that's it */
  356. else n = n->next;
  357. } while (n);
  358. return &luaO_nilobject;
  359. }
  360. /*
  361. ** main search function
  362. */
  363. const TObject *luaH_get (Table *t, const TObject *key) {
  364. switch (ttype(key)) {
  365. case LUA_TSTRING: return luaH_getstr(t, tsvalue(key));
  366. case LUA_TNUMBER: {
  367. int k;
  368. lua_number2int(k, (nvalue(key)));
  369. if (cast(lua_Number, k) == nvalue(key)) /* is an integer index? */
  370. return luaH_getnum(t, k); /* use specialized version */
  371. /* else go through */
  372. }
  373. default: return luaH_getany(t, key);
  374. }
  375. }
  376. void luaH_set (lua_State *L, Table *t, const TObject *key, const TObject *val) {
  377. const TObject *p = luaH_get(t, key);
  378. if (p != &luaO_nilobject) {
  379. settableval(p, val);
  380. }
  381. else {
  382. if (ttype(key) == LUA_TNIL) luaD_error(L, "table index is nil");
  383. newkey(L, t, key, val);
  384. }
  385. t->flags = 0;
  386. }
  387. void luaH_setnum (lua_State *L, Table *t, int key, const TObject *val) {
  388. const TObject *p = luaH_getnum(t, key);
  389. if (p != &luaO_nilobject) {
  390. settableval(p, val);
  391. }
  392. else {
  393. TObject k;
  394. setnvalue(&k, key);
  395. newkey(L, t, &k, val);
  396. }
  397. }