lcode.c 52 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871
  1. /*
  2. ** $Id: lcode.c $
  3. ** Code generator for Lua
  4. ** See Copyright Notice in lua.h
  5. */
  6. #define lcode_c
  7. #define LUA_CORE
  8. #include "lprefix.h"
  9. #include <float.h>
  10. #include <limits.h>
  11. #include <math.h>
  12. #include <stdlib.h>
  13. #include "lua.h"
  14. #include "lcode.h"
  15. #include "ldebug.h"
  16. #include "ldo.h"
  17. #include "lgc.h"
  18. #include "llex.h"
  19. #include "lmem.h"
  20. #include "lobject.h"
  21. #include "lopcodes.h"
  22. #include "lparser.h"
  23. #include "lstring.h"
  24. #include "ltable.h"
  25. #include "lvm.h"
  26. /* Maximum number of registers in a Lua function (must fit in 8 bits) */
  27. #define MAXREGS 255
  28. #define hasjumps(e) ((e)->t != (e)->f)
  29. static int codesJ (FuncState *fs, OpCode o, int sj, int k);
  30. /* semantic error */
  31. l_noret luaK_semerror (LexState *ls, const char *msg) {
  32. ls->t.token = 0; /* remove "near <token>" from final message */
  33. luaX_syntaxerror(ls, msg);
  34. }
  35. /*
  36. ** If expression is a numeric constant, fills 'v' with its value
  37. ** and returns 1. Otherwise, returns 0.
  38. */
  39. static int tonumeral (const expdesc *e, TValue *v) {
  40. if (hasjumps(e))
  41. return 0; /* not a numeral */
  42. switch (e->k) {
  43. case VKINT:
  44. if (v) setivalue(v, e->u.ival);
  45. return 1;
  46. case VKFLT:
  47. if (v) setfltvalue(v, e->u.nval);
  48. return 1;
  49. default: return 0;
  50. }
  51. }
  52. /*
  53. ** Get the constant value from a constant expression
  54. */
  55. static TValue *const2val (FuncState *fs, const expdesc *e) {
  56. lua_assert(e->k == VCONST);
  57. return &fs->ls->dyd->actvar.arr[e->u.info].k;
  58. }
  59. /*
  60. ** If expression is a constant, fills 'v' with its value
  61. ** and returns 1. Otherwise, returns 0.
  62. */
  63. int luaK_exp2const (FuncState *fs, const expdesc *e, TValue *v) {
  64. if (hasjumps(e))
  65. return 0; /* not a constant */
  66. switch (e->k) {
  67. case VFALSE:
  68. setbfvalue(v);
  69. return 1;
  70. case VTRUE:
  71. setbtvalue(v);
  72. return 1;
  73. case VNIL:
  74. setnilvalue(v);
  75. return 1;
  76. case VKSTR: {
  77. setsvalue(fs->ls->L, v, e->u.strval);
  78. return 1;
  79. }
  80. case VCONST: {
  81. setobj(fs->ls->L, v, const2val(fs, e));
  82. return 1;
  83. }
  84. default: return tonumeral(e, v);
  85. }
  86. }
  87. /*
  88. ** Return the previous instruction of the current code. If there
  89. ** may be a jump target between the current instruction and the
  90. ** previous one, return an invalid instruction (to avoid wrong
  91. ** optimizations).
  92. */
  93. static Instruction *previousinstruction (FuncState *fs) {
  94. static const Instruction invalidinstruction = ~(Instruction)0;
  95. if (fs->pc > fs->lasttarget)
  96. return &fs->f->code[fs->pc - 1]; /* previous instruction */
  97. else
  98. return cast(Instruction*, &invalidinstruction);
  99. }
  100. /*
  101. ** Create a OP_LOADNIL instruction, but try to optimize: if the previous
  102. ** instruction is also OP_LOADNIL and ranges are compatible, adjust
  103. ** range of previous instruction instead of emitting a new one. (For
  104. ** instance, 'local a; local b' will generate a single opcode.)
  105. */
  106. void luaK_nil (FuncState *fs, int from, int n) {
  107. int l = from + n - 1; /* last register to set nil */
  108. Instruction *previous = previousinstruction(fs);
  109. if (GET_OPCODE(*previous) == OP_LOADNIL) { /* previous is LOADNIL? */
  110. int pfrom = GETARG_A(*previous); /* get previous range */
  111. int pl = pfrom + GETARG_B(*previous);
  112. if ((pfrom <= from && from <= pl + 1) ||
  113. (from <= pfrom && pfrom <= l + 1)) { /* can connect both? */
  114. if (pfrom < from) from = pfrom; /* from = min(from, pfrom) */
  115. if (pl > l) l = pl; /* l = max(l, pl) */
  116. SETARG_A(*previous, from);
  117. SETARG_B(*previous, l - from);
  118. return;
  119. } /* else go through */
  120. }
  121. luaK_codeABC(fs, OP_LOADNIL, from, n - 1, 0); /* else no optimization */
  122. }
  123. /*
  124. ** Gets the destination address of a jump instruction. Used to traverse
  125. ** a list of jumps.
  126. */
  127. static int getjump (FuncState *fs, int pc) {
  128. int offset = GETARG_sJ(fs->f->code[pc]);
  129. if (offset == NO_JUMP) /* point to itself represents end of list */
  130. return NO_JUMP; /* end of list */
  131. else
  132. return (pc+1)+offset; /* turn offset into absolute position */
  133. }
  134. /*
  135. ** Fix jump instruction at position 'pc' to jump to 'dest'.
  136. ** (Jump addresses are relative in Lua)
  137. */
  138. static void fixjump (FuncState *fs, int pc, int dest) {
  139. Instruction *jmp = &fs->f->code[pc];
  140. int offset = dest - (pc + 1);
  141. lua_assert(dest != NO_JUMP);
  142. if (!(-OFFSET_sJ <= offset && offset <= MAXARG_sJ - OFFSET_sJ))
  143. luaX_syntaxerror(fs->ls, "control structure too long");
  144. lua_assert(GET_OPCODE(*jmp) == OP_JMP);
  145. SETARG_sJ(*jmp, offset);
  146. }
  147. /*
  148. ** Concatenate jump-list 'l2' into jump-list 'l1'
  149. */
  150. void luaK_concat (FuncState *fs, int *l1, int l2) {
  151. if (l2 == NO_JUMP) return; /* nothing to concatenate? */
  152. else if (*l1 == NO_JUMP) /* no original list? */
  153. *l1 = l2; /* 'l1' points to 'l2' */
  154. else {
  155. int list = *l1;
  156. int next;
  157. while ((next = getjump(fs, list)) != NO_JUMP) /* find last element */
  158. list = next;
  159. fixjump(fs, list, l2); /* last element links to 'l2' */
  160. }
  161. }
  162. /*
  163. ** Create a jump instruction and return its position, so its destination
  164. ** can be fixed later (with 'fixjump').
  165. */
  166. int luaK_jump (FuncState *fs) {
  167. return codesJ(fs, OP_JMP, NO_JUMP, 0);
  168. }
  169. /*
  170. ** Code a 'return' instruction
  171. */
  172. void luaK_ret (FuncState *fs, int first, int nret) {
  173. OpCode op;
  174. switch (nret) {
  175. case 0: op = OP_RETURN0; break;
  176. case 1: op = OP_RETURN1; break;
  177. default: op = OP_RETURN; break;
  178. }
  179. luaK_codeABC(fs, op, first, nret + 1, 0);
  180. }
  181. /*
  182. ** Code a "conditional jump", that is, a test or comparison opcode
  183. ** followed by a jump. Return jump position.
  184. */
  185. static int condjump (FuncState *fs, OpCode op, int A, int B, int C, int k) {
  186. luaK_codeABCk(fs, op, A, B, C, k);
  187. return luaK_jump(fs);
  188. }
  189. /*
  190. ** returns current 'pc' and marks it as a jump target (to avoid wrong
  191. ** optimizations with consecutive instructions not in the same basic block).
  192. */
  193. int luaK_getlabel (FuncState *fs) {
  194. fs->lasttarget = fs->pc;
  195. return fs->pc;
  196. }
  197. /*
  198. ** Returns the position of the instruction "controlling" a given
  199. ** jump (that is, its condition), or the jump itself if it is
  200. ** unconditional.
  201. */
  202. static Instruction *getjumpcontrol (FuncState *fs, int pc) {
  203. Instruction *pi = &fs->f->code[pc];
  204. if (pc >= 1 && testTMode(GET_OPCODE(*(pi-1))))
  205. return pi-1;
  206. else
  207. return pi;
  208. }
  209. /*
  210. ** Patch destination register for a TESTSET instruction.
  211. ** If instruction in position 'node' is not a TESTSET, return 0 ("fails").
  212. ** Otherwise, if 'reg' is not 'NO_REG', set it as the destination
  213. ** register. Otherwise, change instruction to a simple 'TEST' (produces
  214. ** no register value)
  215. */
  216. static int patchtestreg (FuncState *fs, int node, int reg) {
  217. Instruction *i = getjumpcontrol(fs, node);
  218. if (GET_OPCODE(*i) != OP_TESTSET)
  219. return 0; /* cannot patch other instructions */
  220. if (reg != NO_REG && reg != GETARG_B(*i))
  221. SETARG_A(*i, reg);
  222. else {
  223. /* no register to put value or register already has the value;
  224. change instruction to simple test */
  225. *i = CREATE_ABCk(OP_TEST, GETARG_B(*i), 0, 0, GETARG_k(*i));
  226. }
  227. return 1;
  228. }
  229. /*
  230. ** Traverse a list of tests ensuring no one produces a value
  231. */
  232. static void removevalues (FuncState *fs, int list) {
  233. for (; list != NO_JUMP; list = getjump(fs, list))
  234. patchtestreg(fs, list, NO_REG);
  235. }
  236. /*
  237. ** Traverse a list of tests, patching their destination address and
  238. ** registers: tests producing values jump to 'vtarget' (and put their
  239. ** values in 'reg'), other tests jump to 'dtarget'.
  240. */
  241. static void patchlistaux (FuncState *fs, int list, int vtarget, int reg,
  242. int dtarget) {
  243. while (list != NO_JUMP) {
  244. int next = getjump(fs, list);
  245. if (patchtestreg(fs, list, reg))
  246. fixjump(fs, list, vtarget);
  247. else
  248. fixjump(fs, list, dtarget); /* jump to default target */
  249. list = next;
  250. }
  251. }
  252. /*
  253. ** Path all jumps in 'list' to jump to 'target'.
  254. ** (The assert means that we cannot fix a jump to a forward address
  255. ** because we only know addresses once code is generated.)
  256. */
  257. void luaK_patchlist (FuncState *fs, int list, int target) {
  258. lua_assert(target <= fs->pc);
  259. patchlistaux(fs, list, target, NO_REG, target);
  260. }
  261. void luaK_patchtohere (FuncState *fs, int list) {
  262. int hr = luaK_getlabel(fs); /* mark "here" as a jump target */
  263. luaK_patchlist(fs, list, hr);
  264. }
  265. /* limit for difference between lines in relative line info. */
  266. #define LIMLINEDIFF 0x80
  267. /*
  268. ** Save line info for a new instruction. If difference from last line
  269. ** does not fit in a byte, of after that many instructions, save a new
  270. ** absolute line info; (in that case, the special value 'ABSLINEINFO'
  271. ** in 'lineinfo' signals the existence of this absolute information.)
  272. ** Otherwise, store the difference from last line in 'lineinfo'.
  273. */
  274. static void savelineinfo (FuncState *fs, Proto *f, int line) {
  275. int linedif = line - fs->previousline;
  276. int pc = fs->pc - 1; /* last instruction coded */
  277. if (abs(linedif) >= LIMLINEDIFF || fs->iwthabs++ >= MAXIWTHABS) {
  278. luaM_growvector(fs->ls->L, f->abslineinfo, fs->nabslineinfo,
  279. f->sizeabslineinfo, AbsLineInfo, MAX_INT, "lines");
  280. f->abslineinfo[fs->nabslineinfo].pc = pc;
  281. f->abslineinfo[fs->nabslineinfo++].line = line;
  282. linedif = ABSLINEINFO; /* signal that there is absolute information */
  283. fs->iwthabs = 1; /* restart counter */
  284. }
  285. luaM_growvector(fs->ls->L, f->lineinfo, pc, f->sizelineinfo, ls_byte,
  286. MAX_INT, "opcodes");
  287. f->lineinfo[pc] = linedif;
  288. fs->previousline = line; /* last line saved */
  289. }
  290. /*
  291. ** Remove line information from the last instruction.
  292. ** If line information for that instruction is absolute, set 'iwthabs'
  293. ** above its max to force the new (replacing) instruction to have
  294. ** absolute line info, too.
  295. */
  296. static void removelastlineinfo (FuncState *fs) {
  297. Proto *f = fs->f;
  298. int pc = fs->pc - 1; /* last instruction coded */
  299. if (f->lineinfo[pc] != ABSLINEINFO) { /* relative line info? */
  300. fs->previousline -= f->lineinfo[pc]; /* correct last line saved */
  301. fs->iwthabs--; /* undo previous increment */
  302. }
  303. else { /* absolute line information */
  304. lua_assert(f->abslineinfo[fs->nabslineinfo - 1].pc == pc);
  305. fs->nabslineinfo--; /* remove it */
  306. fs->iwthabs = MAXIWTHABS + 1; /* force next line info to be absolute */
  307. }
  308. }
  309. /*
  310. ** Remove the last instruction created, correcting line information
  311. ** accordingly.
  312. */
  313. static void removelastinstruction (FuncState *fs) {
  314. removelastlineinfo(fs);
  315. fs->pc--;
  316. }
  317. /*
  318. ** Emit instruction 'i', checking for array sizes and saving also its
  319. ** line information. Return 'i' position.
  320. */
  321. int luaK_code (FuncState *fs, Instruction i) {
  322. Proto *f = fs->f;
  323. /* put new instruction in code array */
  324. luaM_growvector(fs->ls->L, f->code, fs->pc, f->sizecode, Instruction,
  325. MAX_INT, "opcodes");
  326. f->code[fs->pc++] = i;
  327. savelineinfo(fs, f, fs->ls->lastline);
  328. return fs->pc - 1; /* index of new instruction */
  329. }
  330. /*
  331. ** Format and emit an 'iABC' instruction. (Assertions check consistency
  332. ** of parameters versus opcode.)
  333. */
  334. int luaK_codeABCk (FuncState *fs, OpCode o, int a, int b, int c, int k) {
  335. lua_assert(getOpMode(o) == iABC);
  336. lua_assert(a <= MAXARG_A && b <= MAXARG_B &&
  337. c <= MAXARG_C && (k & ~1) == 0);
  338. return luaK_code(fs, CREATE_ABCk(o, a, b, c, k));
  339. }
  340. /*
  341. ** Format and emit an 'iABx' instruction.
  342. */
  343. int luaK_codeABx (FuncState *fs, OpCode o, int a, unsigned int bc) {
  344. lua_assert(getOpMode(o) == iABx);
  345. lua_assert(a <= MAXARG_A && bc <= MAXARG_Bx);
  346. return luaK_code(fs, CREATE_ABx(o, a, bc));
  347. }
  348. /*
  349. ** Format and emit an 'iAsBx' instruction.
  350. */
  351. static int codeAsBx (FuncState *fs, OpCode o, int a, int bc) {
  352. unsigned int b = bc + OFFSET_sBx;
  353. lua_assert(getOpMode(o) == iAsBx);
  354. lua_assert(a <= MAXARG_A && b <= MAXARG_Bx);
  355. return luaK_code(fs, CREATE_ABx(o, a, b));
  356. }
  357. /*
  358. ** Format and emit an 'isJ' instruction.
  359. */
  360. static int codesJ (FuncState *fs, OpCode o, int sj, int k) {
  361. unsigned int j = sj + OFFSET_sJ;
  362. lua_assert(getOpMode(o) == isJ);
  363. lua_assert(j <= MAXARG_sJ && (k & ~1) == 0);
  364. return luaK_code(fs, CREATE_sJ(o, j, k));
  365. }
  366. /*
  367. ** Emit an "extra argument" instruction (format 'iAx')
  368. */
  369. static int codeextraarg (FuncState *fs, int a) {
  370. lua_assert(a <= MAXARG_Ax);
  371. return luaK_code(fs, CREATE_Ax(OP_EXTRAARG, a));
  372. }
  373. /*
  374. ** Emit a "load constant" instruction, using either 'OP_LOADK'
  375. ** (if constant index 'k' fits in 18 bits) or an 'OP_LOADKX'
  376. ** instruction with "extra argument".
  377. */
  378. static int luaK_codek (FuncState *fs, int reg, int k) {
  379. if (k <= MAXARG_Bx)
  380. return luaK_codeABx(fs, OP_LOADK, reg, k);
  381. else {
  382. int p = luaK_codeABx(fs, OP_LOADKX, reg, 0);
  383. codeextraarg(fs, k);
  384. return p;
  385. }
  386. }
  387. /*
  388. ** Check register-stack level, keeping track of its maximum size
  389. ** in field 'maxstacksize'
  390. */
  391. void luaK_checkstack (FuncState *fs, int n) {
  392. int newstack = fs->freereg + n;
  393. if (newstack > fs->f->maxstacksize) {
  394. if (newstack >= MAXREGS)
  395. luaX_syntaxerror(fs->ls,
  396. "function or expression needs too many registers");
  397. fs->f->maxstacksize = cast_byte(newstack);
  398. }
  399. }
  400. /*
  401. ** Reserve 'n' registers in register stack
  402. */
  403. void luaK_reserveregs (FuncState *fs, int n) {
  404. luaK_checkstack(fs, n);
  405. fs->freereg += n;
  406. }
  407. /*
  408. ** Free register 'reg', if it is neither a constant index nor
  409. ** a local variable.
  410. )
  411. */
  412. static void freereg (FuncState *fs, int reg) {
  413. if (reg >= luaY_nvarstack(fs)) {
  414. fs->freereg--;
  415. lua_assert(reg == fs->freereg);
  416. }
  417. }
  418. /*
  419. ** Free two registers in proper order
  420. */
  421. static void freeregs (FuncState *fs, int r1, int r2) {
  422. if (r1 > r2) {
  423. freereg(fs, r1);
  424. freereg(fs, r2);
  425. }
  426. else {
  427. freereg(fs, r2);
  428. freereg(fs, r1);
  429. }
  430. }
  431. /*
  432. ** Free register used by expression 'e' (if any)
  433. */
  434. static void freeexp (FuncState *fs, expdesc *e) {
  435. if (e->k == VNONRELOC)
  436. freereg(fs, e->u.info);
  437. }
  438. /*
  439. ** Free registers used by expressions 'e1' and 'e2' (if any) in proper
  440. ** order.
  441. */
  442. static void freeexps (FuncState *fs, expdesc *e1, expdesc *e2) {
  443. int r1 = (e1->k == VNONRELOC) ? e1->u.info : -1;
  444. int r2 = (e2->k == VNONRELOC) ? e2->u.info : -1;
  445. freeregs(fs, r1, r2);
  446. }
  447. /*
  448. ** Add constant 'v' to prototype's list of constants (field 'k').
  449. ** Use scanner's table to cache position of constants in constant list
  450. ** and try to reuse constants. Because some values should not be used
  451. ** as keys (nil cannot be a key, integer keys can collapse with float
  452. ** keys), the caller must provide a useful 'key' for indexing the cache.
  453. ** Note that all functions share the same table, so entering or exiting
  454. ** a function can make some indices wrong.
  455. */
  456. static int addk (FuncState *fs, TValue *key, TValue *v) {
  457. lua_State *L = fs->ls->L;
  458. Proto *f = fs->f;
  459. TValue val = luaH_get(fs->ls->h, key); /* query scanner table */
  460. int k, oldsize;
  461. if (ttisintegerV(val)) { /* is there an index there? */
  462. k = cast_int(ivalue(&val));
  463. /* correct value? (warning: must distinguish floats from integers!) */
  464. if (k < fs->nk && ttypetag(&f->k[k]) == ttypetag(v) &&
  465. luaV_rawequalobj(&f->k[k], v))
  466. return k; /* reuse index */
  467. }
  468. /* constant not found; create a new entry */
  469. oldsize = f->sizek;
  470. k = fs->nk;
  471. /* numerical value does not need GC barrier;
  472. table has no metatable, so it does not need to invalidate cache */
  473. setivalue(&val, k);
  474. luaH_set(L, fs->ls->h, key, &val);
  475. luaM_growvector(L, f->k, k, f->sizek, TValue, MAXARG_Ax, "constants");
  476. while (oldsize < f->sizek) setnilvalue(&f->k[oldsize++]);
  477. setobj(L, &f->k[k], v);
  478. fs->nk++;
  479. luaC_barrier(L, f, v);
  480. return k;
  481. }
  482. /*
  483. ** Add a string to list of constants and return its index.
  484. */
  485. static int stringK (FuncState *fs, TString *s) {
  486. TValue o;
  487. setsvalue(fs->ls->L, &o, s);
  488. return addk(fs, &o, &o); /* use string itself as key */
  489. }
  490. /*
  491. ** Add an integer to list of constants and return its index.
  492. */
  493. static int luaK_intK (FuncState *fs, lua_Integer n) {
  494. TValue o;
  495. setivalue(&o, n);
  496. return addk(fs, &o, &o); /* use integer itself as key */
  497. }
  498. /*
  499. ** Add a float to list of constants and return its index. Floats
  500. ** with integral values need a different key, to avoid collision
  501. ** with actual integers. To that, we add to the number its smaller
  502. ** power-of-two fraction that is still significant in its scale.
  503. ** For doubles, that would be 1/2^52.
  504. ** (This method is not bulletproof: there may be another float
  505. ** with that value, and for floats larger than 2^53 the result is
  506. ** still an integer. At worst, this only wastes an entry with
  507. ** a duplicate.)
  508. */
  509. static int luaK_numberK (FuncState *fs, lua_Number r) {
  510. TValue o;
  511. lua_Integer ik;
  512. setfltvalue(&o, r);
  513. if (!luaV_flttointeger(r, &ik, F2Ieq)) /* not an integral value? */
  514. return addk(fs, &o, &o); /* use number itself as key */
  515. else { /* must build an alternative key */
  516. const int nbm = l_floatatt(MANT_DIG);
  517. const lua_Number q = l_mathop(ldexp)(l_mathop(1.0), -nbm + 1);
  518. const lua_Number k = (ik == 0) ? q : r + r*q; /* new key */
  519. TValue kv;
  520. setfltvalue(&kv, k);
  521. /* result is not an integral value, unless value is too large */
  522. lua_assert(!luaV_flttointeger(k, &ik, F2Ieq) ||
  523. l_mathop(fabs)(r) >= l_mathop(1e6));
  524. return addk(fs, &kv, &o);
  525. }
  526. }
  527. /*
  528. ** Add a false to list of constants and return its index.
  529. */
  530. static int boolF (FuncState *fs) {
  531. TValue o;
  532. setbfvalue(&o);
  533. return addk(fs, &o, &o); /* use boolean itself as key */
  534. }
  535. /*
  536. ** Add a true to list of constants and return its index.
  537. */
  538. static int boolT (FuncState *fs) {
  539. TValue o;
  540. setbtvalue(&o);
  541. return addk(fs, &o, &o); /* use boolean itself as key */
  542. }
  543. /*
  544. ** Add nil to list of constants and return its index.
  545. */
  546. static int nilK (FuncState *fs) {
  547. TValue k, v;
  548. setnilvalue(&v);
  549. /* cannot use nil as key; instead use table itself to represent nil */
  550. sethvalue(fs->ls->L, &k, fs->ls->h);
  551. return addk(fs, &k, &v);
  552. }
  553. /*
  554. ** Check whether 'i' can be stored in an 'sC' operand. Equivalent to
  555. ** (0 <= int2sC(i) && int2sC(i) <= MAXARG_C) but without risk of
  556. ** overflows in the hidden addition inside 'int2sC'.
  557. */
  558. static int fitsC (lua_Integer i) {
  559. return (l_castS2U(i) + OFFSET_sC <= cast_uint(MAXARG_C));
  560. }
  561. /*
  562. ** Check whether 'i' can be stored in an 'sBx' operand.
  563. */
  564. static int fitsBx (lua_Integer i) {
  565. return (-OFFSET_sBx <= i && i <= MAXARG_Bx - OFFSET_sBx);
  566. }
  567. void luaK_int (FuncState *fs, int reg, lua_Integer i) {
  568. if (fitsBx(i))
  569. codeAsBx(fs, OP_LOADI, reg, cast_int(i));
  570. else
  571. luaK_codek(fs, reg, luaK_intK(fs, i));
  572. }
  573. static void luaK_float (FuncState *fs, int reg, lua_Number f) {
  574. lua_Integer fi;
  575. if (luaV_flttointeger(f, &fi, F2Ieq) && fitsBx(fi))
  576. codeAsBx(fs, OP_LOADF, reg, cast_int(fi));
  577. else
  578. luaK_codek(fs, reg, luaK_numberK(fs, f));
  579. }
  580. /*
  581. ** Convert a constant in 'v' into an expression description 'e'
  582. */
  583. static void const2exp (TValue *v, expdesc *e) {
  584. switch (ttypetag(v)) {
  585. case LUA_VNUMINT:
  586. e->k = VKINT; e->u.ival = ivalue(v);
  587. break;
  588. case LUA_VNUMFLT:
  589. e->k = VKFLT; e->u.nval = fltvalue(v);
  590. break;
  591. case LUA_VFALSE:
  592. e->k = VFALSE;
  593. break;
  594. case LUA_VTRUE:
  595. e->k = VTRUE;
  596. break;
  597. case LUA_VNIL:
  598. e->k = VNIL;
  599. break;
  600. case LUA_VSHRSTR: case LUA_VLNGSTR:
  601. e->k = VKSTR; e->u.strval = tsvalue(v);
  602. break;
  603. default: lua_assert(0);
  604. }
  605. }
  606. /*
  607. ** Fix an expression to return the number of results 'nresults'.
  608. ** 'e' must be a multi-ret expression (function call or vararg).
  609. */
  610. void luaK_setreturns (FuncState *fs, expdesc *e, int nresults) {
  611. Instruction *pc = &getinstruction(fs, e);
  612. if (e->k == VCALL) /* expression is an open function call? */
  613. SETARG_C(*pc, nresults + 1);
  614. else {
  615. lua_assert(e->k == VVARARG);
  616. SETARG_C(*pc, nresults + 1);
  617. SETARG_A(*pc, fs->freereg);
  618. luaK_reserveregs(fs, 1);
  619. }
  620. }
  621. /*
  622. ** Convert a VKSTR to a VK
  623. */
  624. static void str2K (FuncState *fs, expdesc *e) {
  625. lua_assert(e->k == VKSTR);
  626. e->u.info = stringK(fs, e->u.strval);
  627. e->k = VK;
  628. }
  629. /*
  630. ** Fix an expression to return one result.
  631. ** If expression is not a multi-ret expression (function call or
  632. ** vararg), it already returns one result, so nothing needs to be done.
  633. ** Function calls become VNONRELOC expressions (as its result comes
  634. ** fixed in the base register of the call), while vararg expressions
  635. ** become VRELOC (as OP_VARARG puts its results where it wants).
  636. ** (Calls are created returning one result, so that does not need
  637. ** to be fixed.)
  638. */
  639. void luaK_setoneret (FuncState *fs, expdesc *e) {
  640. if (e->k == VCALL) { /* expression is an open function call? */
  641. /* already returns 1 value */
  642. lua_assert(GETARG_C(getinstruction(fs, e)) == 2);
  643. e->k = VNONRELOC; /* result has fixed position */
  644. e->u.info = GETARG_A(getinstruction(fs, e));
  645. }
  646. else if (e->k == VVARARG) {
  647. SETARG_C(getinstruction(fs, e), 2);
  648. e->k = VRELOC; /* can relocate its simple result */
  649. }
  650. }
  651. /*
  652. ** Ensure that expression 'e' is not a variable (nor a <const>).
  653. ** (Expression still may have jump lists.)
  654. */
  655. void luaK_dischargevars (FuncState *fs, expdesc *e) {
  656. switch (e->k) {
  657. case VCONST: {
  658. const2exp(const2val(fs, e), e);
  659. break;
  660. }
  661. case VLOCAL: { /* already in a register */
  662. e->u.info = e->u.var.ridx;
  663. e->k = VNONRELOC; /* becomes a non-relocatable value */
  664. break;
  665. }
  666. case VUPVAL: { /* move value to some (pending) register */
  667. e->u.info = luaK_codeABC(fs, OP_GETUPVAL, 0, e->u.info, 0);
  668. e->k = VRELOC;
  669. break;
  670. }
  671. case VINDEXUP: {
  672. e->u.info = luaK_codeABC(fs, OP_GETTABUP, 0, e->u.ind.t, e->u.ind.idx);
  673. e->k = VRELOC;
  674. break;
  675. }
  676. case VINDEXI: {
  677. freereg(fs, e->u.ind.t);
  678. e->u.info = luaK_codeABC(fs, OP_GETI, 0, e->u.ind.t, e->u.ind.idx);
  679. e->k = VRELOC;
  680. break;
  681. }
  682. case VINDEXSTR: {
  683. freereg(fs, e->u.ind.t);
  684. e->u.info = luaK_codeABC(fs, OP_GETFIELD, 0, e->u.ind.t, e->u.ind.idx);
  685. e->k = VRELOC;
  686. break;
  687. }
  688. case VINDEXED: {
  689. freeregs(fs, e->u.ind.t, e->u.ind.idx);
  690. e->u.info = luaK_codeABC(fs, OP_GETTABLE, 0, e->u.ind.t, e->u.ind.idx);
  691. e->k = VRELOC;
  692. break;
  693. }
  694. case VVARARG: case VCALL: {
  695. luaK_setoneret(fs, e);
  696. break;
  697. }
  698. default: break; /* there is one value available (somewhere) */
  699. }
  700. }
  701. /*
  702. ** Ensure expression value is in register 'reg', making 'e' a
  703. ** non-relocatable expression.
  704. ** (Expression still may have jump lists.)
  705. */
  706. static void discharge2reg (FuncState *fs, expdesc *e, int reg) {
  707. luaK_dischargevars(fs, e);
  708. switch (e->k) {
  709. case VNIL: {
  710. luaK_nil(fs, reg, 1);
  711. break;
  712. }
  713. case VFALSE: {
  714. luaK_codeABC(fs, OP_LOADFALSE, reg, 0, 0);
  715. break;
  716. }
  717. case VTRUE: {
  718. luaK_codeABC(fs, OP_LOADTRUE, reg, 0, 0);
  719. break;
  720. }
  721. case VKSTR: {
  722. str2K(fs, e);
  723. } /* FALLTHROUGH */
  724. case VK: {
  725. luaK_codek(fs, reg, e->u.info);
  726. break;
  727. }
  728. case VKFLT: {
  729. luaK_float(fs, reg, e->u.nval);
  730. break;
  731. }
  732. case VKINT: {
  733. luaK_int(fs, reg, e->u.ival);
  734. break;
  735. }
  736. case VRELOC: {
  737. Instruction *pc = &getinstruction(fs, e);
  738. SETARG_A(*pc, reg); /* instruction will put result in 'reg' */
  739. break;
  740. }
  741. case VNONRELOC: {
  742. if (reg != e->u.info)
  743. luaK_codeABC(fs, OP_MOVE, reg, e->u.info, 0);
  744. break;
  745. }
  746. default: {
  747. lua_assert(e->k == VJMP);
  748. return; /* nothing to do... */
  749. }
  750. }
  751. e->u.info = reg;
  752. e->k = VNONRELOC;
  753. }
  754. /*
  755. ** Ensure expression value is in a register, making 'e' a
  756. ** non-relocatable expression.
  757. ** (Expression still may have jump lists.)
  758. */
  759. static void discharge2anyreg (FuncState *fs, expdesc *e) {
  760. if (e->k != VNONRELOC) { /* no fixed register yet? */
  761. luaK_reserveregs(fs, 1); /* get a register */
  762. discharge2reg(fs, e, fs->freereg-1); /* put value there */
  763. }
  764. }
  765. static int code_loadbool (FuncState *fs, int A, OpCode op) {
  766. luaK_getlabel(fs); /* those instructions may be jump targets */
  767. return luaK_codeABC(fs, op, A, 0, 0);
  768. }
  769. /*
  770. ** check whether list has any jump that do not produce a value
  771. ** or produce an inverted value
  772. */
  773. static int need_value (FuncState *fs, int list) {
  774. for (; list != NO_JUMP; list = getjump(fs, list)) {
  775. Instruction i = *getjumpcontrol(fs, list);
  776. if (GET_OPCODE(i) != OP_TESTSET) return 1;
  777. }
  778. return 0; /* not found */
  779. }
  780. /*
  781. ** Ensures final expression result (which includes results from its
  782. ** jump lists) is in register 'reg'.
  783. ** If expression has jumps, need to patch these jumps either to
  784. ** its final position or to "load" instructions (for those tests
  785. ** that do not produce values).
  786. */
  787. static void exp2reg (FuncState *fs, expdesc *e, int reg) {
  788. discharge2reg(fs, e, reg);
  789. if (e->k == VJMP) /* expression itself is a test? */
  790. luaK_concat(fs, &e->t, e->u.info); /* put this jump in 't' list */
  791. if (hasjumps(e)) {
  792. int final; /* position after whole expression */
  793. int p_f = NO_JUMP; /* position of an eventual LOAD false */
  794. int p_t = NO_JUMP; /* position of an eventual LOAD true */
  795. if (need_value(fs, e->t) || need_value(fs, e->f)) {
  796. int fj = (e->k == VJMP) ? NO_JUMP : luaK_jump(fs);
  797. p_f = code_loadbool(fs, reg, OP_LFALSESKIP); /* skip next inst. */
  798. p_t = code_loadbool(fs, reg, OP_LOADTRUE);
  799. /* jump around these booleans if 'e' is not a test */
  800. luaK_patchtohere(fs, fj);
  801. }
  802. final = luaK_getlabel(fs);
  803. patchlistaux(fs, e->f, final, reg, p_f);
  804. patchlistaux(fs, e->t, final, reg, p_t);
  805. }
  806. e->f = e->t = NO_JUMP;
  807. e->u.info = reg;
  808. e->k = VNONRELOC;
  809. }
  810. /*
  811. ** Ensures final expression result is in next available register.
  812. */
  813. void luaK_exp2nextreg (FuncState *fs, expdesc *e) {
  814. luaK_dischargevars(fs, e);
  815. freeexp(fs, e);
  816. luaK_reserveregs(fs, 1);
  817. exp2reg(fs, e, fs->freereg - 1);
  818. }
  819. /*
  820. ** Ensures final expression result is in some (any) register
  821. ** and return that register.
  822. */
  823. int luaK_exp2anyreg (FuncState *fs, expdesc *e) {
  824. luaK_dischargevars(fs, e);
  825. if (e->k == VNONRELOC) { /* expression already has a register? */
  826. if (!hasjumps(e)) /* no jumps? */
  827. return e->u.info; /* result is already in a register */
  828. if (e->u.info >= luaY_nvarstack(fs)) { /* reg. is not a local? */
  829. exp2reg(fs, e, e->u.info); /* put final result in it */
  830. return e->u.info;
  831. }
  832. /* else expression has jumps and cannot change its register
  833. to hold the jump values, because it is a local variable.
  834. Go through to the default case. */
  835. }
  836. luaK_exp2nextreg(fs, e); /* default: use next available register */
  837. return e->u.info;
  838. }
  839. /*
  840. ** Ensures final expression result is either in a register
  841. ** or in an upvalue.
  842. */
  843. void luaK_exp2anyregup (FuncState *fs, expdesc *e) {
  844. if (e->k != VUPVAL || hasjumps(e))
  845. luaK_exp2anyreg(fs, e);
  846. }
  847. /*
  848. ** Ensures final expression result is either in a register
  849. ** or it is a constant.
  850. */
  851. void luaK_exp2val (FuncState *fs, expdesc *e) {
  852. if (hasjumps(e))
  853. luaK_exp2anyreg(fs, e);
  854. else
  855. luaK_dischargevars(fs, e);
  856. }
  857. /*
  858. ** Try to make 'e' a K expression with an index in the range of R/K
  859. ** indices. Return true iff succeeded.
  860. */
  861. static int luaK_exp2K (FuncState *fs, expdesc *e) {
  862. if (!hasjumps(e)) {
  863. int info;
  864. switch (e->k) { /* move constants to 'k' */
  865. case VTRUE: info = boolT(fs); break;
  866. case VFALSE: info = boolF(fs); break;
  867. case VNIL: info = nilK(fs); break;
  868. case VKINT: info = luaK_intK(fs, e->u.ival); break;
  869. case VKFLT: info = luaK_numberK(fs, e->u.nval); break;
  870. case VKSTR: info = stringK(fs, e->u.strval); break;
  871. case VK: info = e->u.info; break;
  872. default: return 0; /* not a constant */
  873. }
  874. if (info <= MAXINDEXRK) { /* does constant fit in 'argC'? */
  875. e->k = VK; /* make expression a 'K' expression */
  876. e->u.info = info;
  877. return 1;
  878. }
  879. }
  880. /* else, expression doesn't fit; leave it unchanged */
  881. return 0;
  882. }
  883. /*
  884. ** Ensures final expression result is in a valid R/K index
  885. ** (that is, it is either in a register or in 'k' with an index
  886. ** in the range of R/K indices).
  887. ** Returns 1 iff expression is K.
  888. */
  889. static int exp2RK (FuncState *fs, expdesc *e) {
  890. if (luaK_exp2K(fs, e))
  891. return 1;
  892. else { /* not a constant in the right range: put it in a register */
  893. luaK_exp2anyreg(fs, e);
  894. return 0;
  895. }
  896. }
  897. static void codeABRK (FuncState *fs, OpCode o, int a, int b,
  898. expdesc *ec) {
  899. int k = exp2RK(fs, ec);
  900. luaK_codeABCk(fs, o, a, b, ec->u.info, k);
  901. }
  902. /*
  903. ** Generate code to store result of expression 'ex' into variable 'var'.
  904. */
  905. void luaK_storevar (FuncState *fs, expdesc *var, expdesc *ex) {
  906. switch (var->k) {
  907. case VLOCAL: {
  908. freeexp(fs, ex);
  909. exp2reg(fs, ex, var->u.var.ridx); /* compute 'ex' into proper place */
  910. return;
  911. }
  912. case VUPVAL: {
  913. int e = luaK_exp2anyreg(fs, ex);
  914. luaK_codeABC(fs, OP_SETUPVAL, e, var->u.info, 0);
  915. break;
  916. }
  917. case VINDEXUP: {
  918. codeABRK(fs, OP_SETTABUP, var->u.ind.t, var->u.ind.idx, ex);
  919. break;
  920. }
  921. case VINDEXI: {
  922. codeABRK(fs, OP_SETI, var->u.ind.t, var->u.ind.idx, ex);
  923. break;
  924. }
  925. case VINDEXSTR: {
  926. codeABRK(fs, OP_SETFIELD, var->u.ind.t, var->u.ind.idx, ex);
  927. break;
  928. }
  929. case VINDEXED: {
  930. codeABRK(fs, OP_SETTABLE, var->u.ind.t, var->u.ind.idx, ex);
  931. break;
  932. }
  933. default: lua_assert(0); /* invalid var kind to store */
  934. }
  935. freeexp(fs, ex);
  936. }
  937. /*
  938. ** Emit SELF instruction (convert expression 'e' into 'e:key(e,').
  939. */
  940. void luaK_self (FuncState *fs, expdesc *e, expdesc *key) {
  941. int ereg;
  942. luaK_exp2anyreg(fs, e);
  943. ereg = e->u.info; /* register where 'e' was placed */
  944. freeexp(fs, e);
  945. e->u.info = fs->freereg; /* base register for op_self */
  946. e->k = VNONRELOC; /* self expression has a fixed register */
  947. luaK_reserveregs(fs, 2); /* function and 'self' produced by op_self */
  948. codeABRK(fs, OP_SELF, e->u.info, ereg, key);
  949. freeexp(fs, key);
  950. }
  951. /*
  952. ** Negate condition 'e' (where 'e' is a comparison).
  953. */
  954. static void negatecondition (FuncState *fs, expdesc *e) {
  955. Instruction *pc = getjumpcontrol(fs, e->u.info);
  956. lua_assert(testTMode(GET_OPCODE(*pc)) && GET_OPCODE(*pc) != OP_TESTSET &&
  957. GET_OPCODE(*pc) != OP_TEST);
  958. SETARG_k(*pc, (GETARG_k(*pc) ^ 1));
  959. }
  960. /*
  961. ** Emit instruction to jump if 'e' is 'cond' (that is, if 'cond'
  962. ** is true, code will jump if 'e' is true.) Return jump position.
  963. ** Optimize when 'e' is 'not' something, inverting the condition
  964. ** and removing the 'not'.
  965. */
  966. static int jumponcond (FuncState *fs, expdesc *e, int cond) {
  967. if (e->k == VRELOC) {
  968. Instruction ie = getinstruction(fs, e);
  969. if (GET_OPCODE(ie) == OP_NOT) {
  970. removelastinstruction(fs); /* remove previous OP_NOT */
  971. return condjump(fs, OP_TEST, GETARG_B(ie), 0, 0, !cond);
  972. }
  973. /* else go through */
  974. }
  975. discharge2anyreg(fs, e);
  976. freeexp(fs, e);
  977. return condjump(fs, OP_TESTSET, NO_REG, e->u.info, 0, cond);
  978. }
  979. /*
  980. ** Emit code to go through if 'e' is true, jump otherwise.
  981. */
  982. void luaK_goiftrue (FuncState *fs, expdesc *e) {
  983. int pc; /* pc of new jump */
  984. luaK_dischargevars(fs, e);
  985. switch (e->k) {
  986. case VJMP: { /* condition? */
  987. negatecondition(fs, e); /* jump when it is false */
  988. pc = e->u.info; /* save jump position */
  989. break;
  990. }
  991. case VK: case VKFLT: case VKINT: case VKSTR: case VTRUE: {
  992. pc = NO_JUMP; /* always true; do nothing */
  993. break;
  994. }
  995. default: {
  996. pc = jumponcond(fs, e, 0); /* jump when false */
  997. break;
  998. }
  999. }
  1000. luaK_concat(fs, &e->f, pc); /* insert new jump in false list */
  1001. luaK_patchtohere(fs, e->t); /* true list jumps to here (to go through) */
  1002. e->t = NO_JUMP;
  1003. }
  1004. /*
  1005. ** Emit code to go through if 'e' is false, jump otherwise.
  1006. */
  1007. void luaK_goiffalse (FuncState *fs, expdesc *e) {
  1008. int pc; /* pc of new jump */
  1009. luaK_dischargevars(fs, e);
  1010. switch (e->k) {
  1011. case VJMP: {
  1012. pc = e->u.info; /* already jump if true */
  1013. break;
  1014. }
  1015. case VNIL: case VFALSE: {
  1016. pc = NO_JUMP; /* always false; do nothing */
  1017. break;
  1018. }
  1019. default: {
  1020. pc = jumponcond(fs, e, 1); /* jump if true */
  1021. break;
  1022. }
  1023. }
  1024. luaK_concat(fs, &e->t, pc); /* insert new jump in 't' list */
  1025. luaK_patchtohere(fs, e->f); /* false list jumps to here (to go through) */
  1026. e->f = NO_JUMP;
  1027. }
  1028. /*
  1029. ** Code 'not e', doing constant folding.
  1030. */
  1031. static void codenot (FuncState *fs, expdesc *e) {
  1032. switch (e->k) {
  1033. case VNIL: case VFALSE: {
  1034. e->k = VTRUE; /* true == not nil == not false */
  1035. break;
  1036. }
  1037. case VK: case VKFLT: case VKINT: case VKSTR: case VTRUE: {
  1038. e->k = VFALSE; /* false == not "x" == not 0.5 == not 1 == not true */
  1039. break;
  1040. }
  1041. case VJMP: {
  1042. negatecondition(fs, e);
  1043. break;
  1044. }
  1045. case VRELOC:
  1046. case VNONRELOC: {
  1047. discharge2anyreg(fs, e);
  1048. freeexp(fs, e);
  1049. e->u.info = luaK_codeABC(fs, OP_NOT, 0, e->u.info, 0);
  1050. e->k = VRELOC;
  1051. break;
  1052. }
  1053. default: lua_assert(0); /* cannot happen */
  1054. }
  1055. /* interchange true and false lists */
  1056. { int temp = e->f; e->f = e->t; e->t = temp; }
  1057. removevalues(fs, e->f); /* values are useless when negated */
  1058. removevalues(fs, e->t);
  1059. }
  1060. /*
  1061. ** Check whether expression 'e' is a short literal string
  1062. */
  1063. static int isKstr (FuncState *fs, expdesc *e) {
  1064. return (e->k == VK && !hasjumps(e) && e->u.info <= MAXARG_B &&
  1065. ttisshrstring(&fs->f->k[e->u.info]));
  1066. }
  1067. /*
  1068. ** Check whether expression 'e' is a literal integer.
  1069. */
  1070. static int isKint (expdesc *e) {
  1071. return (e->k == VKINT && !hasjumps(e));
  1072. }
  1073. /*
  1074. ** Check whether expression 'e' is a literal integer in
  1075. ** proper range to fit in register C
  1076. */
  1077. static int isCint (expdesc *e) {
  1078. return isKint(e) && (l_castS2U(e->u.ival) <= l_castS2U(MAXARG_C));
  1079. }
  1080. /*
  1081. ** Check whether expression 'e' is a literal integer in
  1082. ** proper range to fit in register sC
  1083. */
  1084. static int isSCint (expdesc *e) {
  1085. return isKint(e) && fitsC(e->u.ival);
  1086. }
  1087. /*
  1088. ** Check whether expression 'e' is a literal integer or float in
  1089. ** proper range to fit in a register (sB or sC).
  1090. */
  1091. static int isSCnumber (expdesc *e, int *pi, int *isfloat) {
  1092. lua_Integer i;
  1093. if (e->k == VKINT)
  1094. i = e->u.ival;
  1095. else if (e->k == VKFLT && luaV_flttointeger(e->u.nval, &i, F2Ieq))
  1096. *isfloat = 1;
  1097. else
  1098. return 0; /* not a number */
  1099. if (!hasjumps(e) && fitsC(i)) {
  1100. *pi = int2sC(cast_int(i));
  1101. return 1;
  1102. }
  1103. else
  1104. return 0;
  1105. }
  1106. /*
  1107. ** Create expression 't[k]'. 't' must have its final result already in a
  1108. ** register or upvalue. Upvalues can only be indexed by literal strings.
  1109. ** Keys can be literal strings in the constant table or arbitrary
  1110. ** values in registers.
  1111. */
  1112. void luaK_indexed (FuncState *fs, expdesc *t, expdesc *k) {
  1113. if (k->k == VKSTR)
  1114. str2K(fs, k);
  1115. lua_assert(!hasjumps(t) &&
  1116. (t->k == VLOCAL || t->k == VNONRELOC || t->k == VUPVAL));
  1117. if (t->k == VUPVAL && !isKstr(fs, k)) /* upvalue indexed by non 'Kstr'? */
  1118. luaK_exp2anyreg(fs, t); /* put it in a register */
  1119. if (t->k == VUPVAL) {
  1120. lua_assert(isKstr(fs, k));
  1121. t->u.ind.t = t->u.info; /* upvalue index */
  1122. t->u.ind.idx = k->u.info; /* literal short string */
  1123. t->k = VINDEXUP;
  1124. }
  1125. else {
  1126. /* register index of the table */
  1127. t->u.ind.t = (t->k == VLOCAL) ? t->u.var.ridx: t->u.info;
  1128. if (isKstr(fs, k)) {
  1129. t->u.ind.idx = k->u.info; /* literal short string */
  1130. t->k = VINDEXSTR;
  1131. }
  1132. else if (isCint(k)) {
  1133. t->u.ind.idx = cast_int(k->u.ival); /* int. constant in proper range */
  1134. t->k = VINDEXI;
  1135. }
  1136. else {
  1137. t->u.ind.idx = luaK_exp2anyreg(fs, k); /* register */
  1138. t->k = VINDEXED;
  1139. }
  1140. }
  1141. }
  1142. /*
  1143. ** Return false if folding can raise an error.
  1144. ** Bitwise operations need operands convertible to integers; division
  1145. ** operations cannot have 0 as divisor.
  1146. */
  1147. static int validop (int op, TValue *v1, TValue *v2) {
  1148. switch (op) {
  1149. case LUA_OPBAND: case LUA_OPBOR: case LUA_OPBXOR:
  1150. case LUA_OPSHL: case LUA_OPSHR: case LUA_OPBNOT: { /* conversion errors */
  1151. lua_Integer i;
  1152. return (luaV_tointegerns(v1, &i, LUA_FLOORN2I) &&
  1153. luaV_tointegerns(v2, &i, LUA_FLOORN2I));
  1154. }
  1155. case LUA_OPDIV: case LUA_OPIDIV: case LUA_OPMOD: /* division by 0 */
  1156. return (nvalue(v2) != 0);
  1157. default: return 1; /* everything else is valid */
  1158. }
  1159. }
  1160. /*
  1161. ** Try to "constant-fold" an operation; return 1 iff successful.
  1162. ** (In this case, 'e1' has the final result.)
  1163. */
  1164. static int constfolding (FuncState *fs, int op, expdesc *e1,
  1165. const expdesc *e2) {
  1166. TValue v1, v2, res;
  1167. if (!tonumeral(e1, &v1) || !tonumeral(e2, &v2) || !validop(op, &v1, &v2))
  1168. return 0; /* non-numeric operands or not safe to fold */
  1169. luaO_rawarith(fs->ls->L, op, &v1, &v2, &res); /* does operation */
  1170. if (ttisinteger(&res)) {
  1171. e1->k = VKINT;
  1172. e1->u.ival = ivalue(&res);
  1173. }
  1174. else { /* folds neither NaN nor 0.0 (to avoid problems with -0.0) */
  1175. lua_Number n = fltvalue(&res);
  1176. if (luai_numisnan(n) || n == 0)
  1177. return 0;
  1178. e1->k = VKFLT;
  1179. e1->u.nval = n;
  1180. }
  1181. return 1;
  1182. }
  1183. /*
  1184. ** Convert a BinOpr to an OpCode (ORDER OPR - ORDER OP)
  1185. */
  1186. l_sinline OpCode binopr2op (BinOpr opr, BinOpr baser, OpCode base) {
  1187. lua_assert(baser <= opr &&
  1188. ((baser == OPR_ADD && opr <= OPR_SHR) ||
  1189. (baser == OPR_LT && opr <= OPR_LE)));
  1190. return cast(OpCode, (cast_int(opr) - cast_int(baser)) + cast_int(base));
  1191. }
  1192. /*
  1193. ** Convert a UnOpr to an OpCode (ORDER OPR - ORDER OP)
  1194. */
  1195. l_sinline OpCode unopr2op (UnOpr opr) {
  1196. return cast(OpCode, (cast_int(opr) - cast_int(OPR_MINUS)) +
  1197. cast_int(OP_UNM));
  1198. }
  1199. /*
  1200. ** Convert a BinOpr to a tag method (ORDER OPR - ORDER TM)
  1201. */
  1202. l_sinline TMS binopr2TM (BinOpr opr) {
  1203. lua_assert(OPR_ADD <= opr && opr <= OPR_SHR);
  1204. return cast(TMS, (cast_int(opr) - cast_int(OPR_ADD)) + cast_int(TM_ADD));
  1205. }
  1206. /*
  1207. ** Emit code for unary expressions that "produce values"
  1208. ** (everything but 'not').
  1209. ** Expression to produce final result will be encoded in 'e'.
  1210. */
  1211. static void codeunexpval (FuncState *fs, OpCode op, expdesc *e, int line) {
  1212. int r = luaK_exp2anyreg(fs, e); /* opcodes operate only on registers */
  1213. freeexp(fs, e);
  1214. e->u.info = luaK_codeABC(fs, op, 0, r, 0); /* generate opcode */
  1215. e->k = VRELOC; /* all those operations are relocatable */
  1216. luaK_fixline(fs, line);
  1217. }
  1218. /*
  1219. ** Emit code for binary expressions that "produce values"
  1220. ** (everything but logical operators 'and'/'or' and comparison
  1221. ** operators).
  1222. ** Expression to produce final result will be encoded in 'e1'.
  1223. */
  1224. static void finishbinexpval (FuncState *fs, expdesc *e1, expdesc *e2,
  1225. OpCode op, int v2, int flip, int line,
  1226. OpCode mmop, TMS event) {
  1227. int v1 = luaK_exp2anyreg(fs, e1);
  1228. int pc = luaK_codeABCk(fs, op, 0, v1, v2, 0);
  1229. freeexps(fs, e1, e2);
  1230. e1->u.info = pc;
  1231. e1->k = VRELOC; /* all those operations are relocatable */
  1232. luaK_fixline(fs, line);
  1233. luaK_codeABCk(fs, mmop, v1, v2, event, flip); /* to call metamethod */
  1234. luaK_fixline(fs, line);
  1235. }
  1236. /*
  1237. ** Emit code for binary expressions that "produce values" over
  1238. ** two registers.
  1239. */
  1240. static void codebinexpval (FuncState *fs, BinOpr opr,
  1241. expdesc *e1, expdesc *e2, int line) {
  1242. OpCode op = binopr2op(opr, OPR_ADD, OP_ADD);
  1243. int v2 = luaK_exp2anyreg(fs, e2); /* make sure 'e2' is in a register */
  1244. /* 'e1' must be already in a register or it is a constant */
  1245. lua_assert((VNIL <= e1->k && e1->k <= VKSTR) ||
  1246. e1->k == VNONRELOC || e1->k == VRELOC);
  1247. lua_assert(OP_ADD <= op && op <= OP_SHR);
  1248. finishbinexpval(fs, e1, e2, op, v2, 0, line, OP_MMBIN, binopr2TM(opr));
  1249. }
  1250. /*
  1251. ** Code binary operators with immediate operands.
  1252. */
  1253. static void codebini (FuncState *fs, OpCode op,
  1254. expdesc *e1, expdesc *e2, int flip, int line,
  1255. TMS event) {
  1256. int v2 = int2sC(cast_int(e2->u.ival)); /* immediate operand */
  1257. lua_assert(e2->k == VKINT);
  1258. finishbinexpval(fs, e1, e2, op, v2, flip, line, OP_MMBINI, event);
  1259. }
  1260. /*
  1261. ** Code binary operators with K operand.
  1262. */
  1263. static void codebinK (FuncState *fs, BinOpr opr,
  1264. expdesc *e1, expdesc *e2, int flip, int line) {
  1265. TMS event = binopr2TM(opr);
  1266. int v2 = e2->u.info; /* K index */
  1267. OpCode op = binopr2op(opr, OPR_ADD, OP_ADDK);
  1268. finishbinexpval(fs, e1, e2, op, v2, flip, line, OP_MMBINK, event);
  1269. }
  1270. /* Try to code a binary operator negating its second operand.
  1271. ** For the metamethod, 2nd operand must keep its original value.
  1272. */
  1273. static int finishbinexpneg (FuncState *fs, expdesc *e1, expdesc *e2,
  1274. OpCode op, int line, TMS event) {
  1275. if (!isKint(e2))
  1276. return 0; /* not an integer constant */
  1277. else {
  1278. lua_Integer i2 = e2->u.ival;
  1279. if (!(fitsC(i2) && fitsC(-i2)))
  1280. return 0; /* not in the proper range */
  1281. else { /* operating a small integer constant */
  1282. int v2 = cast_int(i2);
  1283. finishbinexpval(fs, e1, e2, op, int2sC(-v2), 0, line, OP_MMBINI, event);
  1284. /* correct metamethod argument */
  1285. SETARG_B(fs->f->code[fs->pc - 1], int2sC(v2));
  1286. return 1; /* successfully coded */
  1287. }
  1288. }
  1289. }
  1290. static void swapexps (expdesc *e1, expdesc *e2) {
  1291. expdesc temp = *e1; *e1 = *e2; *e2 = temp; /* swap 'e1' and 'e2' */
  1292. }
  1293. /*
  1294. ** Code binary operators with no constant operand.
  1295. */
  1296. static void codebinNoK (FuncState *fs, BinOpr opr,
  1297. expdesc *e1, expdesc *e2, int flip, int line) {
  1298. if (flip)
  1299. swapexps(e1, e2); /* back to original order */
  1300. codebinexpval(fs, opr, e1, e2, line); /* use standard operators */
  1301. }
  1302. /*
  1303. ** Code arithmetic operators ('+', '-', ...). If second operand is a
  1304. ** constant in the proper range, use variant opcodes with K operands.
  1305. */
  1306. static void codearith (FuncState *fs, BinOpr opr,
  1307. expdesc *e1, expdesc *e2, int flip, int line) {
  1308. if (tonumeral(e2, NULL) && luaK_exp2K(fs, e2)) /* K operand? */
  1309. codebinK(fs, opr, e1, e2, flip, line);
  1310. else /* 'e2' is neither an immediate nor a K operand */
  1311. codebinNoK(fs, opr, e1, e2, flip, line);
  1312. }
  1313. /*
  1314. ** Code commutative operators ('+', '*'). If first operand is a
  1315. ** numeric constant, change order of operands to try to use an
  1316. ** immediate or K operator.
  1317. */
  1318. static void codecommutative (FuncState *fs, BinOpr op,
  1319. expdesc *e1, expdesc *e2, int line) {
  1320. int flip = 0;
  1321. if (tonumeral(e1, NULL)) { /* is first operand a numeric constant? */
  1322. swapexps(e1, e2); /* change order */
  1323. flip = 1;
  1324. }
  1325. if (op == OPR_ADD && isSCint(e2)) /* immediate operand? */
  1326. codebini(fs, OP_ADDI, e1, e2, flip, line, TM_ADD);
  1327. else
  1328. codearith(fs, op, e1, e2, flip, line);
  1329. }
  1330. /*
  1331. ** Code bitwise operations; they are all commutative, so the function
  1332. ** tries to put an integer constant as the 2nd operand (a K operand).
  1333. */
  1334. static void codebitwise (FuncState *fs, BinOpr opr,
  1335. expdesc *e1, expdesc *e2, int line) {
  1336. int flip = 0;
  1337. if (e1->k == VKINT) {
  1338. swapexps(e1, e2); /* 'e2' will be the constant operand */
  1339. flip = 1;
  1340. }
  1341. if (e2->k == VKINT && luaK_exp2K(fs, e2)) /* K operand? */
  1342. codebinK(fs, opr, e1, e2, flip, line);
  1343. else /* no constants */
  1344. codebinNoK(fs, opr, e1, e2, flip, line);
  1345. }
  1346. /*
  1347. ** Emit code for order comparisons. When using an immediate operand,
  1348. ** 'isfloat' tells whether the original value was a float.
  1349. */
  1350. static void codeorder (FuncState *fs, BinOpr opr, expdesc *e1, expdesc *e2) {
  1351. int r1, r2;
  1352. int im;
  1353. int isfloat = 0;
  1354. OpCode op;
  1355. if (isSCnumber(e2, &im, &isfloat)) {
  1356. /* use immediate operand */
  1357. r1 = luaK_exp2anyreg(fs, e1);
  1358. r2 = im;
  1359. op = binopr2op(opr, OPR_LT, OP_LTI);
  1360. }
  1361. else if (isSCnumber(e1, &im, &isfloat)) {
  1362. /* transform (A < B) to (B > A) and (A <= B) to (B >= A) */
  1363. r1 = luaK_exp2anyreg(fs, e2);
  1364. r2 = im;
  1365. op = binopr2op(opr, OPR_LT, OP_GTI);
  1366. }
  1367. else { /* regular case, compare two registers */
  1368. r1 = luaK_exp2anyreg(fs, e1);
  1369. r2 = luaK_exp2anyreg(fs, e2);
  1370. op = binopr2op(opr, OPR_LT, OP_LT);
  1371. }
  1372. freeexps(fs, e1, e2);
  1373. e1->u.info = condjump(fs, op, r1, r2, isfloat, 1);
  1374. e1->k = VJMP;
  1375. }
  1376. /*
  1377. ** Emit code for equality comparisons ('==', '~=').
  1378. ** 'e1' was already put as RK by 'luaK_infix'.
  1379. */
  1380. static void codeeq (FuncState *fs, BinOpr opr, expdesc *e1, expdesc *e2) {
  1381. int r1, r2;
  1382. int im;
  1383. int isfloat = 0; /* not needed here, but kept for symmetry */
  1384. OpCode op;
  1385. if (e1->k != VNONRELOC) {
  1386. lua_assert(e1->k == VK || e1->k == VKINT || e1->k == VKFLT);
  1387. swapexps(e1, e2);
  1388. }
  1389. r1 = luaK_exp2anyreg(fs, e1); /* 1st expression must be in register */
  1390. if (isSCnumber(e2, &im, &isfloat)) {
  1391. op = OP_EQI;
  1392. r2 = im; /* immediate operand */
  1393. }
  1394. else if (exp2RK(fs, e2)) { /* 2nd expression is constant? */
  1395. op = OP_EQK;
  1396. r2 = e2->u.info; /* constant index */
  1397. }
  1398. else {
  1399. op = OP_EQ; /* will compare two registers */
  1400. r2 = luaK_exp2anyreg(fs, e2);
  1401. }
  1402. freeexps(fs, e1, e2);
  1403. e1->u.info = condjump(fs, op, r1, r2, isfloat, (opr == OPR_EQ));
  1404. e1->k = VJMP;
  1405. }
  1406. /*
  1407. ** Apply prefix operation 'op' to expression 'e'.
  1408. */
  1409. void luaK_prefix (FuncState *fs, UnOpr opr, expdesc *e, int line) {
  1410. static const expdesc ef = {VKINT, {0}, NO_JUMP, NO_JUMP};
  1411. luaK_dischargevars(fs, e);
  1412. switch (opr) {
  1413. case OPR_MINUS: case OPR_BNOT: /* use 'ef' as fake 2nd operand */
  1414. if (constfolding(fs, opr + LUA_OPUNM, e, &ef))
  1415. break;
  1416. /* else */ /* FALLTHROUGH */
  1417. case OPR_LEN:
  1418. codeunexpval(fs, unopr2op(opr), e, line);
  1419. break;
  1420. case OPR_NOT: codenot(fs, e); break;
  1421. default: lua_assert(0);
  1422. }
  1423. }
  1424. /*
  1425. ** Process 1st operand 'v' of binary operation 'op' before reading
  1426. ** 2nd operand.
  1427. */
  1428. void luaK_infix (FuncState *fs, BinOpr op, expdesc *v) {
  1429. luaK_dischargevars(fs, v);
  1430. switch (op) {
  1431. case OPR_AND: {
  1432. luaK_goiftrue(fs, v); /* go ahead only if 'v' is true */
  1433. break;
  1434. }
  1435. case OPR_OR: {
  1436. luaK_goiffalse(fs, v); /* go ahead only if 'v' is false */
  1437. break;
  1438. }
  1439. case OPR_CONCAT: {
  1440. luaK_exp2nextreg(fs, v); /* operand must be on the stack */
  1441. break;
  1442. }
  1443. case OPR_ADD: case OPR_SUB:
  1444. case OPR_MUL: case OPR_DIV: case OPR_IDIV:
  1445. case OPR_MOD: case OPR_POW:
  1446. case OPR_BAND: case OPR_BOR: case OPR_BXOR:
  1447. case OPR_SHL: case OPR_SHR: {
  1448. if (!tonumeral(v, NULL))
  1449. luaK_exp2anyreg(fs, v);
  1450. /* else keep numeral, which may be folded or used as an immediate
  1451. operand */
  1452. break;
  1453. }
  1454. case OPR_EQ: case OPR_NE: {
  1455. if (!tonumeral(v, NULL))
  1456. exp2RK(fs, v);
  1457. /* else keep numeral, which may be an immediate operand */
  1458. break;
  1459. }
  1460. case OPR_LT: case OPR_LE:
  1461. case OPR_GT: case OPR_GE: {
  1462. int dummy, dummy2;
  1463. if (!isSCnumber(v, &dummy, &dummy2))
  1464. luaK_exp2anyreg(fs, v);
  1465. /* else keep numeral, which may be an immediate operand */
  1466. break;
  1467. }
  1468. default: lua_assert(0);
  1469. }
  1470. }
  1471. /*
  1472. ** Create code for '(e1 .. e2)'.
  1473. ** For '(e1 .. e2.1 .. e2.2)' (which is '(e1 .. (e2.1 .. e2.2))',
  1474. ** because concatenation is right associative), merge both CONCATs.
  1475. */
  1476. static void codeconcat (FuncState *fs, expdesc *e1, expdesc *e2, int line) {
  1477. Instruction *ie2 = previousinstruction(fs);
  1478. if (GET_OPCODE(*ie2) == OP_CONCAT) { /* is 'e2' a concatenation? */
  1479. int n = GETARG_B(*ie2); /* # of elements concatenated in 'e2' */
  1480. lua_assert(e1->u.info + 1 == GETARG_A(*ie2));
  1481. freeexp(fs, e2);
  1482. SETARG_A(*ie2, e1->u.info); /* correct first element ('e1') */
  1483. SETARG_B(*ie2, n + 1); /* will concatenate one more element */
  1484. }
  1485. else { /* 'e2' is not a concatenation */
  1486. luaK_codeABC(fs, OP_CONCAT, e1->u.info, 2, 0); /* new concat opcode */
  1487. freeexp(fs, e2);
  1488. luaK_fixline(fs, line);
  1489. }
  1490. }
  1491. /*
  1492. ** Finalize code for binary operation, after reading 2nd operand.
  1493. */
  1494. void luaK_posfix (FuncState *fs, BinOpr opr,
  1495. expdesc *e1, expdesc *e2, int line) {
  1496. luaK_dischargevars(fs, e2);
  1497. if (foldbinop(opr) && constfolding(fs, opr + LUA_OPADD, e1, e2))
  1498. return; /* done by folding */
  1499. switch (opr) {
  1500. case OPR_AND: {
  1501. lua_assert(e1->t == NO_JUMP); /* list closed by 'luaK_infix' */
  1502. luaK_concat(fs, &e2->f, e1->f);
  1503. *e1 = *e2;
  1504. break;
  1505. }
  1506. case OPR_OR: {
  1507. lua_assert(e1->f == NO_JUMP); /* list closed by 'luaK_infix' */
  1508. luaK_concat(fs, &e2->t, e1->t);
  1509. *e1 = *e2;
  1510. break;
  1511. }
  1512. case OPR_CONCAT: { /* e1 .. e2 */
  1513. luaK_exp2nextreg(fs, e2);
  1514. codeconcat(fs, e1, e2, line);
  1515. break;
  1516. }
  1517. case OPR_ADD: case OPR_MUL: {
  1518. codecommutative(fs, opr, e1, e2, line);
  1519. break;
  1520. }
  1521. case OPR_SUB: {
  1522. if (finishbinexpneg(fs, e1, e2, OP_ADDI, line, TM_SUB))
  1523. break; /* coded as (r1 + -I) */
  1524. /* ELSE */
  1525. } /* FALLTHROUGH */
  1526. case OPR_DIV: case OPR_IDIV: case OPR_MOD: case OPR_POW: {
  1527. codearith(fs, opr, e1, e2, 0, line);
  1528. break;
  1529. }
  1530. case OPR_BAND: case OPR_BOR: case OPR_BXOR: {
  1531. codebitwise(fs, opr, e1, e2, line);
  1532. break;
  1533. }
  1534. case OPR_SHL: {
  1535. if (isSCint(e1)) {
  1536. swapexps(e1, e2);
  1537. codebini(fs, OP_SHLI, e1, e2, 1, line, TM_SHL); /* I << r2 */
  1538. }
  1539. else if (finishbinexpneg(fs, e1, e2, OP_SHRI, line, TM_SHL)) {
  1540. /* coded as (r1 >> -I) */;
  1541. }
  1542. else /* regular case (two registers) */
  1543. codebinexpval(fs, opr, e1, e2, line);
  1544. break;
  1545. }
  1546. case OPR_SHR: {
  1547. if (isSCint(e2))
  1548. codebini(fs, OP_SHRI, e1, e2, 0, line, TM_SHR); /* r1 >> I */
  1549. else /* regular case (two registers) */
  1550. codebinexpval(fs, opr, e1, e2, line);
  1551. break;
  1552. }
  1553. case OPR_EQ: case OPR_NE: {
  1554. codeeq(fs, opr, e1, e2);
  1555. break;
  1556. }
  1557. case OPR_GT: case OPR_GE: {
  1558. /* '(a > b)' <=> '(b < a)'; '(a >= b)' <=> '(b <= a)' */
  1559. swapexps(e1, e2);
  1560. opr = cast(BinOpr, (opr - OPR_GT) + OPR_LT);
  1561. } /* FALLTHROUGH */
  1562. case OPR_LT: case OPR_LE: {
  1563. codeorder(fs, opr, e1, e2);
  1564. break;
  1565. }
  1566. default: lua_assert(0);
  1567. }
  1568. }
  1569. /*
  1570. ** Change line information associated with current position, by removing
  1571. ** previous info and adding it again with new line.
  1572. */
  1573. void luaK_fixline (FuncState *fs, int line) {
  1574. removelastlineinfo(fs);
  1575. savelineinfo(fs, fs->f, line);
  1576. }
  1577. void luaK_settablesize (FuncState *fs, int pc, int ra, int asize, int hsize) {
  1578. Instruction *inst = &fs->f->code[pc];
  1579. int rb = (hsize != 0) ? luaO_ceillog2(hsize) + 1 : 0; /* hash size */
  1580. int extra = asize / (MAXARG_C + 1); /* higher bits of array size */
  1581. int rc = asize % (MAXARG_C + 1); /* lower bits of array size */
  1582. int k = (extra > 0); /* true iff needs extra argument */
  1583. *inst = CREATE_ABCk(OP_NEWTABLE, ra, rb, rc, k);
  1584. *(inst + 1) = CREATE_Ax(OP_EXTRAARG, extra);
  1585. }
  1586. /*
  1587. ** Emit a SETLIST instruction.
  1588. ** 'base' is register that keeps table;
  1589. ** 'nelems' is #table plus those to be stored now;
  1590. ** 'tostore' is number of values (in registers 'base + 1',...) to add to
  1591. ** table (or LUA_MULTRET to add up to stack top).
  1592. */
  1593. void luaK_setlist (FuncState *fs, int base, int nelems, int tostore) {
  1594. lua_assert(tostore != 0 && tostore <= LFIELDS_PER_FLUSH);
  1595. if (tostore == LUA_MULTRET)
  1596. tostore = 0;
  1597. if (nelems <= MAXARG_C)
  1598. luaK_codeABC(fs, OP_SETLIST, base, tostore, nelems);
  1599. else {
  1600. int extra = nelems / (MAXARG_C + 1);
  1601. nelems %= (MAXARG_C + 1);
  1602. luaK_codeABCk(fs, OP_SETLIST, base, tostore, nelems, 1);
  1603. codeextraarg(fs, extra);
  1604. }
  1605. fs->freereg = base + 1; /* free registers with list values */
  1606. }
  1607. /*
  1608. ** return the final target of a jump (skipping jumps to jumps)
  1609. */
  1610. static int finaltarget (Instruction *code, int i) {
  1611. int count;
  1612. for (count = 0; count < 100; count++) { /* avoid infinite loops */
  1613. Instruction pc = code[i];
  1614. if (GET_OPCODE(pc) != OP_JMP)
  1615. break;
  1616. else
  1617. i += GETARG_sJ(pc) + 1;
  1618. }
  1619. return i;
  1620. }
  1621. /*
  1622. ** Do a final pass over the code of a function, doing small peephole
  1623. ** optimizations and adjustments.
  1624. */
  1625. void luaK_finish (FuncState *fs) {
  1626. int i;
  1627. Proto *p = fs->f;
  1628. for (i = 0; i < fs->pc; i++) {
  1629. Instruction *pc = &p->code[i];
  1630. lua_assert(i == 0 || isOT(*(pc - 1)) == isIT(*pc));
  1631. switch (GET_OPCODE(*pc)) {
  1632. case OP_RETURN0: case OP_RETURN1: {
  1633. if (!(fs->needclose || (p->flag & PF_ISVARARG)))
  1634. break; /* no extra work */
  1635. /* else use OP_RETURN to do the extra work */
  1636. SET_OPCODE(*pc, OP_RETURN);
  1637. } /* FALLTHROUGH */
  1638. case OP_RETURN: case OP_TAILCALL: {
  1639. if (fs->needclose)
  1640. SETARG_k(*pc, 1); /* signal that it needs to close */
  1641. if (p->flag & PF_ISVARARG)
  1642. SETARG_C(*pc, p->numparams + 1); /* signal that it is vararg */
  1643. break;
  1644. }
  1645. case OP_JMP: {
  1646. int target = finaltarget(p->code, i);
  1647. fixjump(fs, i, target);
  1648. break;
  1649. }
  1650. default: break;
  1651. }
  1652. }
  1653. }