lcode.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826
  1. /*
  2. ** $Id: lcode.c,v 2.27 2006/08/07 19:14:30 roberto Exp roberto $
  3. ** Code generator for Lua
  4. ** See Copyright Notice in lua.h
  5. */
  6. #include <stdlib.h>
  7. #define lcode_c
  8. #define LUA_CORE
  9. #include "lua.h"
  10. #include "lcode.h"
  11. #include "ldebug.h"
  12. #include "ldo.h"
  13. #include "lgc.h"
  14. #include "llex.h"
  15. #include "lmem.h"
  16. #include "lobject.h"
  17. #include "lopcodes.h"
  18. #include "lparser.h"
  19. #include "ltable.h"
  20. #define hasjumps(e) ((e)->t != (e)->f)
  21. static int isnumeral(expdesc *e) {
  22. return (e->k == VKNUM && e->t == NO_JUMP && e->f == NO_JUMP);
  23. }
  24. void luaK_nil (FuncState *fs, int from, int n) {
  25. Instruction *previous;
  26. if (fs->pc > fs->lasttarget) { /* no jumps to current position? */
  27. if (fs->pc == 0) /* function start? */
  28. return; /* positions are already clean */
  29. if (GET_OPCODE(*(previous = &fs->f->code[fs->pc-1])) == OP_LOADNIL) {
  30. int pfrom = GETARG_A(*previous);
  31. int pto = GETARG_B(*previous);
  32. if (pfrom <= from && from <= pto+1) { /* can connect both? */
  33. if (from+n-1 > pto)
  34. SETARG_B(*previous, from+n-1);
  35. return;
  36. }
  37. }
  38. }
  39. luaK_codeABC(fs, OP_LOADNIL, from, from+n-1, 0); /* else no optimization */
  40. }
  41. int luaK_jump (FuncState *fs) {
  42. int jpc = fs->jpc; /* save list of jumps to here */
  43. int j;
  44. fs->jpc = NO_JUMP;
  45. j = luaK_codeAsBx(fs, OP_JMP, 0, NO_JUMP);
  46. luaK_concat(fs, &j, jpc); /* keep them on hold */
  47. return j;
  48. }
  49. void luaK_ret (FuncState *fs, int first, int nret) {
  50. luaK_codeABC(fs, OP_RETURN, first, nret+1, 0);
  51. }
  52. static int condjump (FuncState *fs, OpCode op, int A, int B, int C) {
  53. luaK_codeABC(fs, op, A, B, C);
  54. return luaK_jump(fs);
  55. }
  56. static void fixjump (FuncState *fs, int pc, int dest) {
  57. Instruction *jmp = &fs->f->code[pc];
  58. int offset = dest-(pc+1);
  59. lua_assert(dest != NO_JUMP);
  60. if (abs(offset) > MAXARG_sBx)
  61. luaX_syntaxerror(fs->ls, "control structure too long");
  62. SETARG_sBx(*jmp, offset);
  63. }
  64. /*
  65. ** returns current `pc' and marks it as a jump target (to avoid wrong
  66. ** optimizations with consecutive instructions not in the same basic block).
  67. */
  68. int luaK_getlabel (FuncState *fs) {
  69. fs->lasttarget = fs->pc;
  70. return fs->pc;
  71. }
  72. static int getjump (FuncState *fs, int pc) {
  73. int offset = GETARG_sBx(fs->f->code[pc]);
  74. if (offset == NO_JUMP) /* point to itself represents end of list */
  75. return NO_JUMP; /* end of list */
  76. else
  77. return (pc+1)+offset; /* turn offset into absolute position */
  78. }
  79. static Instruction *getjumpcontrol (FuncState *fs, int pc) {
  80. Instruction *pi = &fs->f->code[pc];
  81. if (pc >= 1 && testTMode(GET_OPCODE(*(pi-1))))
  82. return pi-1;
  83. else
  84. return pi;
  85. }
  86. /*
  87. ** check whether list has any jump that do not produce a value
  88. ** (or produce an inverted value)
  89. */
  90. static int need_value (FuncState *fs, int list) {
  91. for (; list != NO_JUMP; list = getjump(fs, list)) {
  92. Instruction i = *getjumpcontrol(fs, list);
  93. if (GET_OPCODE(i) != OP_TESTSET) return 1;
  94. }
  95. return 0; /* not found */
  96. }
  97. static int patchtestreg (FuncState *fs, int node, int reg) {
  98. Instruction *i = getjumpcontrol(fs, node);
  99. if (GET_OPCODE(*i) != OP_TESTSET)
  100. return 0; /* cannot patch other instructions */
  101. if (reg != NO_REG && reg != GETARG_B(*i))
  102. SETARG_A(*i, reg);
  103. else /* no register to put value or register already has the value */
  104. *i = CREATE_ABC(OP_TEST, GETARG_B(*i), 0, GETARG_C(*i));
  105. return 1;
  106. }
  107. static void removevalues (FuncState *fs, int list) {
  108. for (; list != NO_JUMP; list = getjump(fs, list))
  109. patchtestreg(fs, list, NO_REG);
  110. }
  111. static void patchlistaux (FuncState *fs, int list, int vtarget, int reg,
  112. int dtarget) {
  113. while (list != NO_JUMP) {
  114. int next = getjump(fs, list);
  115. if (patchtestreg(fs, list, reg))
  116. fixjump(fs, list, vtarget);
  117. else
  118. fixjump(fs, list, dtarget); /* jump to default target */
  119. list = next;
  120. }
  121. }
  122. static void dischargejpc (FuncState *fs) {
  123. patchlistaux(fs, fs->jpc, fs->pc, NO_REG, fs->pc);
  124. fs->jpc = NO_JUMP;
  125. }
  126. void luaK_patchlist (FuncState *fs, int list, int target) {
  127. if (target == fs->pc)
  128. luaK_patchtohere(fs, list);
  129. else {
  130. lua_assert(target < fs->pc);
  131. patchlistaux(fs, list, target, NO_REG, target);
  132. }
  133. }
  134. void luaK_patchtohere (FuncState *fs, int list) {
  135. luaK_getlabel(fs);
  136. luaK_concat(fs, &fs->jpc, list);
  137. }
  138. void luaK_concat (FuncState *fs, int *l1, int l2) {
  139. if (l2 == NO_JUMP) return;
  140. else if (*l1 == NO_JUMP)
  141. *l1 = l2;
  142. else {
  143. int list = *l1;
  144. int next;
  145. while ((next = getjump(fs, list)) != NO_JUMP) /* find last element */
  146. list = next;
  147. fixjump(fs, list, l2);
  148. }
  149. }
  150. void luaK_checkstack (FuncState *fs, int n) {
  151. int newstack = fs->freereg + n;
  152. if (newstack > fs->f->maxstacksize) {
  153. if (newstack >= MAXSTACK)
  154. luaX_syntaxerror(fs->ls, "function or expression too complex");
  155. fs->f->maxstacksize = cast_byte(newstack);
  156. }
  157. }
  158. void luaK_reserveregs (FuncState *fs, int n) {
  159. luaK_checkstack(fs, n);
  160. fs->freereg += n;
  161. }
  162. static void freereg (FuncState *fs, int reg) {
  163. if (!ISK(reg) && reg >= fs->nactvar) {
  164. fs->freereg--;
  165. lua_assert(reg == fs->freereg);
  166. }
  167. }
  168. static void freeexp (FuncState *fs, expdesc *e) {
  169. if (e->k == VNONRELOC)
  170. freereg(fs, e->u.s.info);
  171. }
  172. static int addk (FuncState *fs, TValue *key, TValue *v) {
  173. lua_State *L = fs->L;
  174. TValue *idx = luaH_set(L, fs->h, key);
  175. Proto *f = fs->f;
  176. int k;
  177. if (ttisnumber(idx)) {
  178. lua_Number n = nvalue(idx);
  179. lua_number2int(k, n);
  180. lua_assert(luaO_rawequalObj(&f->k[k], v));
  181. }
  182. else { /* constant not found; create a new entry */
  183. int oldsize = f->sizek;
  184. k = fs->nk;
  185. setnvalue(idx, cast_num(k));
  186. luaM_growvector(L, f->k, k, f->sizek, TValue, MAXARG_Bx, "constant table");
  187. while (oldsize < f->sizek) setnilvalue(&f->k[oldsize++]);
  188. setobj(L, &f->k[k], v);
  189. fs->nk++;
  190. luaC_barrier(L, f, v);
  191. }
  192. return k;
  193. }
  194. int luaK_stringK (FuncState *fs, TString *s) {
  195. TValue o;
  196. setsvalue(fs->L, &o, s);
  197. return addk(fs, &o, &o);
  198. }
  199. int luaK_numberK (FuncState *fs, lua_Number r) {
  200. TValue o;
  201. setnvalue(&o, r);
  202. return addk(fs, &o, &o);
  203. }
  204. static int boolK (FuncState *fs, int b) {
  205. TValue o;
  206. setbvalue(&o, b);
  207. return addk(fs, &o, &o);
  208. }
  209. static int nilK (FuncState *fs) {
  210. TValue k, v;
  211. setnilvalue(&v);
  212. /* cannot use nil as key; instead use table itself to represent nil */
  213. sethvalue(fs->L, &k, fs->h);
  214. return addk(fs, &k, &v);
  215. }
  216. void luaK_setreturns (FuncState *fs, expdesc *e, int nresults) {
  217. if (e->k == VCALL) { /* expression is an open function call? */
  218. SETARG_C(getcode(fs, e), nresults+1);
  219. }
  220. else if (e->k == VVARARG) {
  221. SETARG_B(getcode(fs, e), nresults+1);
  222. SETARG_A(getcode(fs, e), fs->freereg);
  223. luaK_reserveregs(fs, 1);
  224. }
  225. }
  226. void luaK_setoneret (FuncState *fs, expdesc *e) {
  227. if (e->k == VCALL) { /* expression is an open function call? */
  228. e->k = VNONRELOC;
  229. e->u.s.info = GETARG_A(getcode(fs, e));
  230. }
  231. else if (e->k == VVARARG) {
  232. SETARG_B(getcode(fs, e), 2);
  233. e->k = VRELOCABLE; /* can relocate its simple result */
  234. }
  235. }
  236. void luaK_dischargevars (FuncState *fs, expdesc *e) {
  237. switch (e->k) {
  238. case VLOCAL: {
  239. e->k = VNONRELOC;
  240. break;
  241. }
  242. case VUPVAL: {
  243. e->u.s.info = luaK_codeABC(fs, OP_GETUPVAL, 0, e->u.s.info, 0);
  244. e->k = VRELOCABLE;
  245. break;
  246. }
  247. case VGLOBAL: {
  248. e->u.s.info = luaK_codeABx(fs, OP_GETGLOBAL, 0, e->u.s.info);
  249. e->k = VRELOCABLE;
  250. break;
  251. }
  252. case VINDEXED: {
  253. freereg(fs, e->u.s.aux);
  254. freereg(fs, e->u.s.info);
  255. e->u.s.info = luaK_codeABC(fs, OP_GETTABLE, 0, e->u.s.info, e->u.s.aux);
  256. e->k = VRELOCABLE;
  257. break;
  258. }
  259. case VVARARG:
  260. case VCALL: {
  261. luaK_setoneret(fs, e);
  262. break;
  263. }
  264. default: break; /* there is one value available (somewhere) */
  265. }
  266. }
  267. static int code_label (FuncState *fs, int A, int b, int jump) {
  268. luaK_getlabel(fs); /* those instructions may be jump targets */
  269. return luaK_codeABC(fs, OP_LOADBOOL, A, b, jump);
  270. }
  271. static void discharge2reg (FuncState *fs, expdesc *e, int reg) {
  272. luaK_dischargevars(fs, e);
  273. switch (e->k) {
  274. case VNIL: {
  275. luaK_nil(fs, reg, 1);
  276. break;
  277. }
  278. case VFALSE: case VTRUE: {
  279. luaK_codeABC(fs, OP_LOADBOOL, reg, e->k == VTRUE, 0);
  280. break;
  281. }
  282. case VK: {
  283. luaK_codeABx(fs, OP_LOADK, reg, e->u.s.info);
  284. break;
  285. }
  286. case VKNUM: {
  287. luaK_codeABx(fs, OP_LOADK, reg, luaK_numberK(fs, e->u.nval));
  288. break;
  289. }
  290. case VRELOCABLE: {
  291. Instruction *pc = &getcode(fs, e);
  292. SETARG_A(*pc, reg);
  293. break;
  294. }
  295. case VNONRELOC: {
  296. if (reg != e->u.s.info)
  297. luaK_codeABC(fs, OP_MOVE, reg, e->u.s.info, 0);
  298. break;
  299. }
  300. default: {
  301. lua_assert(e->k == VVOID || e->k == VJMP);
  302. return; /* nothing to do... */
  303. }
  304. }
  305. e->u.s.info = reg;
  306. e->k = VNONRELOC;
  307. }
  308. static void discharge2anyreg (FuncState *fs, expdesc *e) {
  309. if (e->k != VNONRELOC) {
  310. luaK_reserveregs(fs, 1);
  311. discharge2reg(fs, e, fs->freereg-1);
  312. }
  313. }
  314. static void exp2reg (FuncState *fs, expdesc *e, int reg) {
  315. discharge2reg(fs, e, reg);
  316. if (e->k == VJMP)
  317. luaK_concat(fs, &e->t, e->u.s.info); /* put this jump in `t' list */
  318. if (hasjumps(e)) {
  319. int final; /* position after whole expression */
  320. int p_f = NO_JUMP; /* position of an eventual LOAD false */
  321. int p_t = NO_JUMP; /* position of an eventual LOAD true */
  322. if (need_value(fs, e->t) || need_value(fs, e->f)) {
  323. int fj = (e->k == VJMP) ? NO_JUMP : luaK_jump(fs);
  324. p_f = code_label(fs, reg, 0, 1);
  325. p_t = code_label(fs, reg, 1, 0);
  326. luaK_patchtohere(fs, fj);
  327. }
  328. final = luaK_getlabel(fs);
  329. patchlistaux(fs, e->f, final, reg, p_f);
  330. patchlistaux(fs, e->t, final, reg, p_t);
  331. }
  332. e->f = e->t = NO_JUMP;
  333. e->u.s.info = reg;
  334. e->k = VNONRELOC;
  335. }
  336. void luaK_exp2nextreg (FuncState *fs, expdesc *e) {
  337. luaK_dischargevars(fs, e);
  338. freeexp(fs, e);
  339. luaK_reserveregs(fs, 1);
  340. exp2reg(fs, e, fs->freereg - 1);
  341. }
  342. int luaK_exp2anyreg (FuncState *fs, expdesc *e) {
  343. luaK_dischargevars(fs, e);
  344. if (e->k == VNONRELOC) {
  345. if (!hasjumps(e)) return e->u.s.info; /* exp is already in a register */
  346. if (e->u.s.info >= fs->nactvar) { /* reg. is not a local? */
  347. exp2reg(fs, e, e->u.s.info); /* put value on it */
  348. return e->u.s.info;
  349. }
  350. }
  351. luaK_exp2nextreg(fs, e); /* default */
  352. return e->u.s.info;
  353. }
  354. void luaK_exp2val (FuncState *fs, expdesc *e) {
  355. if (hasjumps(e))
  356. luaK_exp2anyreg(fs, e);
  357. else
  358. luaK_dischargevars(fs, e);
  359. }
  360. int luaK_exp2RK (FuncState *fs, expdesc *e) {
  361. luaK_exp2val(fs, e);
  362. switch (e->k) {
  363. case VKNUM:
  364. case VTRUE:
  365. case VFALSE:
  366. case VNIL: {
  367. if (fs->nk <= MAXINDEXRK) { /* constant fit in RK operand? */
  368. e->u.s.info = (e->k == VNIL) ? nilK(fs) :
  369. (e->k == VKNUM) ? luaK_numberK(fs, e->u.nval) :
  370. boolK(fs, (e->k == VTRUE));
  371. e->k = VK;
  372. return RKASK(e->u.s.info);
  373. }
  374. else break;
  375. }
  376. case VK: {
  377. if (e->u.s.info <= MAXINDEXRK) /* constant fit in argC? */
  378. return RKASK(e->u.s.info);
  379. else break;
  380. }
  381. default: break;
  382. }
  383. /* not a constant in the right range: put it in a register */
  384. return luaK_exp2anyreg(fs, e);
  385. }
  386. void luaK_storevar (FuncState *fs, expdesc *var, expdesc *ex) {
  387. switch (var->k) {
  388. case VLOCAL: {
  389. freeexp(fs, ex);
  390. exp2reg(fs, ex, var->u.s.info);
  391. return;
  392. }
  393. case VUPVAL: {
  394. int e = luaK_exp2anyreg(fs, ex);
  395. luaK_codeABC(fs, OP_SETUPVAL, e, var->u.s.info, 0);
  396. break;
  397. }
  398. case VGLOBAL: {
  399. int e = luaK_exp2anyreg(fs, ex);
  400. luaK_codeABx(fs, OP_SETGLOBAL, e, var->u.s.info);
  401. break;
  402. }
  403. case VINDEXED: {
  404. int e = luaK_exp2RK(fs, ex);
  405. luaK_codeABC(fs, OP_SETTABLE, var->u.s.info, var->u.s.aux, e);
  406. break;
  407. }
  408. default: {
  409. lua_assert(0); /* invalid var kind to store */
  410. break;
  411. }
  412. }
  413. freeexp(fs, ex);
  414. }
  415. void luaK_self (FuncState *fs, expdesc *e, expdesc *key) {
  416. int func;
  417. luaK_exp2anyreg(fs, e);
  418. freeexp(fs, e);
  419. func = fs->freereg;
  420. luaK_reserveregs(fs, 2);
  421. luaK_codeABC(fs, OP_SELF, func, e->u.s.info, luaK_exp2RK(fs, key));
  422. freeexp(fs, key);
  423. e->u.s.info = func;
  424. e->k = VNONRELOC;
  425. }
  426. static void invertjump (FuncState *fs, expdesc *e) {
  427. Instruction *pc = getjumpcontrol(fs, e->u.s.info);
  428. lua_assert(testTMode(GET_OPCODE(*pc)) && GET_OPCODE(*pc) != OP_TESTSET &&
  429. GET_OPCODE(*pc) != OP_TEST);
  430. SETARG_A(*pc, !(GETARG_A(*pc)));
  431. }
  432. static int jumponcond (FuncState *fs, expdesc *e, int cond) {
  433. if (e->k == VRELOCABLE) {
  434. Instruction ie = getcode(fs, e);
  435. if (GET_OPCODE(ie) == OP_NOT) {
  436. fs->pc--; /* remove previous OP_NOT */
  437. return condjump(fs, OP_TEST, GETARG_B(ie), 0, !cond);
  438. }
  439. /* else go through */
  440. }
  441. discharge2anyreg(fs, e);
  442. freeexp(fs, e);
  443. return condjump(fs, OP_TESTSET, NO_REG, e->u.s.info, cond);
  444. }
  445. void luaK_goiftrue (FuncState *fs, expdesc *e) {
  446. int pc; /* pc of last jump */
  447. luaK_dischargevars(fs, e);
  448. switch (e->k) {
  449. case VK: case VKNUM: case VTRUE: {
  450. pc = NO_JUMP; /* always true; do nothing */
  451. break;
  452. }
  453. case VFALSE: {
  454. pc = luaK_jump(fs); /* always jump */
  455. break;
  456. }
  457. case VJMP: {
  458. invertjump(fs, e);
  459. pc = e->u.s.info;
  460. break;
  461. }
  462. default: {
  463. pc = jumponcond(fs, e, 0);
  464. break;
  465. }
  466. }
  467. luaK_concat(fs, &e->f, pc); /* insert last jump in `f' list */
  468. luaK_patchtohere(fs, e->t);
  469. e->t = NO_JUMP;
  470. }
  471. static void luaK_goiffalse (FuncState *fs, expdesc *e) {
  472. int pc; /* pc of last jump */
  473. luaK_dischargevars(fs, e);
  474. switch (e->k) {
  475. case VNIL: case VFALSE: {
  476. pc = NO_JUMP; /* always false; do nothing */
  477. break;
  478. }
  479. case VTRUE: {
  480. pc = luaK_jump(fs); /* always jump */
  481. break;
  482. }
  483. case VJMP: {
  484. pc = e->u.s.info;
  485. break;
  486. }
  487. default: {
  488. pc = jumponcond(fs, e, 1);
  489. break;
  490. }
  491. }
  492. luaK_concat(fs, &e->t, pc); /* insert last jump in `t' list */
  493. luaK_patchtohere(fs, e->f);
  494. e->f = NO_JUMP;
  495. }
  496. static void codenot (FuncState *fs, expdesc *e) {
  497. luaK_dischargevars(fs, e);
  498. switch (e->k) {
  499. case VNIL: case VFALSE: {
  500. e->k = VTRUE;
  501. break;
  502. }
  503. case VK: case VKNUM: case VTRUE: {
  504. e->k = VFALSE;
  505. break;
  506. }
  507. case VJMP: {
  508. invertjump(fs, e);
  509. break;
  510. }
  511. case VRELOCABLE:
  512. case VNONRELOC: {
  513. discharge2anyreg(fs, e);
  514. freeexp(fs, e);
  515. e->u.s.info = luaK_codeABC(fs, OP_NOT, 0, e->u.s.info, 0);
  516. e->k = VRELOCABLE;
  517. break;
  518. }
  519. default: {
  520. lua_assert(0); /* cannot happen */
  521. break;
  522. }
  523. }
  524. /* interchange true and false lists */
  525. { int temp = e->f; e->f = e->t; e->t = temp; }
  526. removevalues(fs, e->f);
  527. removevalues(fs, e->t);
  528. }
  529. void luaK_indexed (FuncState *fs, expdesc *t, expdesc *k) {
  530. t->u.s.aux = luaK_exp2RK(fs, k);
  531. t->k = VINDEXED;
  532. }
  533. static int constfolding (OpCode op, expdesc *e1, expdesc *e2) {
  534. lua_Number v1, v2, r;
  535. if (!isnumeral(e1) || !isnumeral(e2)) return 0;
  536. v1 = e1->u.nval;
  537. v2 = e2->u.nval;
  538. switch (op) {
  539. case OP_ADD: r = luai_numadd(NULL, v1, v2); break;
  540. case OP_SUB: r = luai_numsub(NULL, v1, v2); break;
  541. case OP_MUL: r = luai_nummul(NULL, v1, v2); break;
  542. case OP_DIV:
  543. if (v2 == 0) return 0; /* do not attempt to divide by 0 */
  544. r = luai_numdiv(NULL, v1, v2); break;
  545. case OP_MOD:
  546. if (v2 == 0) return 0; /* do not attempt to divide by 0 */
  547. r = luai_nummod(NULL, v1, v2); break;
  548. case OP_POW: r = luai_numpow(NULL, v1, v2); break;
  549. case OP_UNM: r = luai_numunm(NULL, v1); break;
  550. case OP_LEN: return 0; /* no constant folding for 'len' */
  551. default: lua_assert(0); r = 0; break;
  552. }
  553. if (luai_numisnan(NULL, r)) return 0; /* do not attempt to produce NaN */
  554. e1->u.nval = r;
  555. return 1;
  556. }
  557. static void codearith (FuncState *fs, OpCode op, expdesc *e1, expdesc *e2) {
  558. if (constfolding(op, e1, e2))
  559. return;
  560. else {
  561. int o1 = luaK_exp2RK(fs, e1);
  562. int o2 = (op != OP_UNM && op != OP_LEN) ? luaK_exp2RK(fs, e2) : 0;
  563. freeexp(fs, e2);
  564. freeexp(fs, e1);
  565. e1->u.s.info = luaK_codeABC(fs, op, 0, o1, o2);
  566. e1->k = VRELOCABLE;
  567. }
  568. }
  569. static void codecomp (FuncState *fs, OpCode op, int cond, expdesc *e1,
  570. expdesc *e2) {
  571. int o1 = luaK_exp2RK(fs, e1);
  572. int o2 = luaK_exp2RK(fs, e2);
  573. freeexp(fs, e2);
  574. freeexp(fs, e1);
  575. if (cond == 0 && op != OP_EQ) {
  576. int temp; /* exchange args to replace by `<' or `<=' */
  577. temp = o1; o1 = o2; o2 = temp; /* o1 <==> o2 */
  578. cond = 1;
  579. }
  580. e1->u.s.info = condjump(fs, op, cond, o1, o2);
  581. e1->k = VJMP;
  582. }
  583. void luaK_prefix (FuncState *fs, UnOpr op, expdesc *e) {
  584. expdesc e2;
  585. e2.t = e2.f = NO_JUMP; e2.k = VKNUM; e2.u.nval = 0;
  586. switch (op) {
  587. case OPR_MINUS: {
  588. if (e->k == VK)
  589. luaK_exp2anyreg(fs, e); /* cannot operate on non-numeric constants */
  590. codearith(fs, OP_UNM, e, &e2);
  591. break;
  592. }
  593. case OPR_NOT: codenot(fs, e); break;
  594. case OPR_LEN: {
  595. luaK_exp2anyreg(fs, e); /* cannot operate on constants */
  596. codearith(fs, OP_LEN, e, &e2);
  597. break;
  598. }
  599. default: lua_assert(0);
  600. }
  601. }
  602. void luaK_infix (FuncState *fs, BinOpr op, expdesc *v) {
  603. switch (op) {
  604. case OPR_AND: {
  605. luaK_goiftrue(fs, v);
  606. break;
  607. }
  608. case OPR_OR: {
  609. luaK_goiffalse(fs, v);
  610. break;
  611. }
  612. case OPR_CONCAT: {
  613. luaK_exp2nextreg(fs, v); /* operand must be on the `stack' */
  614. break;
  615. }
  616. default: {
  617. if (!isnumeral(v)) luaK_exp2RK(fs, v);
  618. break;
  619. }
  620. }
  621. }
  622. void luaK_posfix (FuncState *fs, BinOpr op, expdesc *e1, expdesc *e2) {
  623. switch (op) {
  624. case OPR_AND: {
  625. lua_assert(e1->t == NO_JUMP); /* list must be closed */
  626. luaK_dischargevars(fs, e2);
  627. luaK_concat(fs, &e2->f, e1->f);
  628. *e1 = *e2;
  629. break;
  630. }
  631. case OPR_OR: {
  632. lua_assert(e1->f == NO_JUMP); /* list must be closed */
  633. luaK_dischargevars(fs, e2);
  634. luaK_concat(fs, &e2->t, e1->t);
  635. *e1 = *e2;
  636. break;
  637. }
  638. case OPR_CONCAT: {
  639. luaK_exp2val(fs, e2);
  640. if (e2->k == VRELOCABLE && GET_OPCODE(getcode(fs, e2)) == OP_CONCAT) {
  641. lua_assert(e1->u.s.info == GETARG_B(getcode(fs, e2))-1);
  642. freeexp(fs, e1);
  643. SETARG_B(getcode(fs, e2), e1->u.s.info);
  644. e1->k = VRELOCABLE; e1->u.s.info = e2->u.s.info;
  645. }
  646. else {
  647. luaK_exp2nextreg(fs, e2); /* operand must be on the 'stack' */
  648. codearith(fs, OP_CONCAT, e1, e2);
  649. }
  650. break;
  651. }
  652. case OPR_ADD: codearith(fs, OP_ADD, e1, e2); break;
  653. case OPR_SUB: codearith(fs, OP_SUB, e1, e2); break;
  654. case OPR_MUL: codearith(fs, OP_MUL, e1, e2); break;
  655. case OPR_DIV: codearith(fs, OP_DIV, e1, e2); break;
  656. case OPR_MOD: codearith(fs, OP_MOD, e1, e2); break;
  657. case OPR_POW: codearith(fs, OP_POW, e1, e2); break;
  658. case OPR_EQ: codecomp(fs, OP_EQ, 1, e1, e2); break;
  659. case OPR_NE: codecomp(fs, OP_EQ, 0, e1, e2); break;
  660. case OPR_LT: codecomp(fs, OP_LT, 1, e1, e2); break;
  661. case OPR_LE: codecomp(fs, OP_LE, 1, e1, e2); break;
  662. case OPR_GT: codecomp(fs, OP_LT, 0, e1, e2); break;
  663. case OPR_GE: codecomp(fs, OP_LE, 0, e1, e2); break;
  664. default: lua_assert(0);
  665. }
  666. }
  667. void luaK_fixline (FuncState *fs, int line) {
  668. fs->f->lineinfo[fs->pc - 1] = line;
  669. }
  670. static int luaK_code (FuncState *fs, Instruction i, int line) {
  671. Proto *f = fs->f;
  672. dischargejpc(fs); /* `pc' will change */
  673. /* put new instruction in code array */
  674. luaM_growvector(fs->L, f->code, fs->pc, f->sizecode, Instruction,
  675. MAX_INT, "code size");
  676. f->code[fs->pc] = i;
  677. /* save corresponding line information */
  678. luaM_growvector(fs->L, f->lineinfo, fs->pc, f->sizelineinfo, int,
  679. MAX_INT, "code size");
  680. f->lineinfo[fs->pc] = line;
  681. return fs->pc++;
  682. }
  683. int luaK_codeABC (FuncState *fs, OpCode o, int a, int b, int c) {
  684. lua_assert(getOpMode(o) == iABC);
  685. lua_assert(getBMode(o) != OpArgN || b == 0);
  686. lua_assert(getCMode(o) != OpArgN || c == 0);
  687. return luaK_code(fs, CREATE_ABC(o, a, b, c), fs->ls->lastline);
  688. }
  689. int luaK_codeABx (FuncState *fs, OpCode o, int a, unsigned int bc) {
  690. lua_assert(getOpMode(o) == iABx || getOpMode(o) == iAsBx);
  691. lua_assert(getCMode(o) == OpArgN);
  692. return luaK_code(fs, CREATE_ABx(o, a, bc), fs->ls->lastline);
  693. }
  694. void luaK_setlist (FuncState *fs, int base, int nelems, int tostore) {
  695. int c = (nelems - 1)/LFIELDS_PER_FLUSH + 1;
  696. int b = (tostore == LUA_MULTRET) ? 0 : tostore;
  697. lua_assert(tostore != 0);
  698. if (c <= MAXARG_C)
  699. luaK_codeABC(fs, OP_SETLIST, base, b, c);
  700. else {
  701. luaK_codeABC(fs, OP_SETLIST, base, b, 0);
  702. luaK_code(fs, cast(Instruction, c), fs->ls->lastline);
  703. }
  704. fs->freereg = base + 1; /* free registers with list values */
  705. }