lcode.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579
  1. /*
  2. ** $Id: lcode.c,v 1.20 2000/04/05 17:51:58 roberto Exp roberto $
  3. ** Code generator for Lua
  4. ** See Copyright Notice in lua.h
  5. */
  6. #include "stdlib.h"
  7. #define LUA_REENTRANT
  8. #include "lcode.h"
  9. #include "ldo.h"
  10. #include "llex.h"
  11. #include "lmem.h"
  12. #include "lobject.h"
  13. #include "lopcodes.h"
  14. #include "lparser.h"
  15. #include "lstring.h"
  16. void luaK_error (LexState *ls, const char *msg) {
  17. luaX_error(ls, msg, ls->token);
  18. }
  19. /*
  20. ** Returns the the previous instruction, for optimizations.
  21. ** If there is a jump target between this and the current instruction,
  22. ** returns a dummy instruction to avoid wrong optimizations.
  23. */
  24. static Instruction previous_instruction (FuncState *fs) {
  25. if (fs->pc > fs->lasttarget) /* no jumps to current position? */
  26. return fs->f->code[fs->pc-1]; /* returns previous instruction */
  27. else
  28. return CREATE_0(OP_END); /* no optimizations after an `END' */
  29. }
  30. int luaK_code (FuncState *fs, Instruction i, int delta) {
  31. luaK_deltastack(fs, delta);
  32. luaM_growvector(fs->L, fs->f->code, fs->pc, 1, Instruction, codeEM, MAX_INT);
  33. fs->f->code[fs->pc] = i;
  34. return fs->pc++;
  35. }
  36. int luaK_0(FuncState *fs, OpCode o, int d) {
  37. return luaK_code(fs, CREATE_0(o), d);
  38. }
  39. int luaK_U(FuncState *fs, OpCode o, int u, int d) {
  40. return luaK_code(fs, CREATE_U(o,u), d);
  41. }
  42. int luaK_S(FuncState *fs, OpCode o, int s, int d) {
  43. return luaK_code(fs, CREATE_S(o,s), d);
  44. }
  45. int luaK_AB(FuncState *fs, OpCode o, int a, int b, int d) {
  46. return luaK_code(fs, CREATE_AB(o,a,b), d);
  47. }
  48. static Instruction prepare (FuncState *fs, Instruction i, int delta) {
  49. Instruction previous = previous_instruction(fs);
  50. luaK_code(fs, i, delta);
  51. return previous;
  52. }
  53. static void setprevious (FuncState *fs, Instruction i) {
  54. fs->pc--; /* remove last instruction */
  55. fs->f->code[fs->pc-1] = i; /* change previous instruction */
  56. }
  57. static void luaK_minus (FuncState *fs) {
  58. /* PUSHINT s; MINUS -> PUSHINT -s (-k) */
  59. /* PUSHNUM u; MINUS -> PUSHNEGNUM u (-k) */
  60. Instruction previous = prepare(fs, CREATE_0(OP_MINUS), 0);
  61. switch(GET_OPCODE(previous)) {
  62. case OP_PUSHINT: SETARG_S(previous, -GETARG_S(previous)); break;
  63. case OP_PUSHNUM: SET_OPCODE(previous, OP_PUSHNEGNUM); break;
  64. default: return;
  65. }
  66. setprevious(fs, previous);
  67. }
  68. static void luaK_gettable (FuncState *fs) {
  69. /* PUSHSTRING u; GETTABLE -> GETDOTTED u (t.x) */
  70. Instruction previous = prepare(fs, CREATE_0(OP_GETTABLE), -1);
  71. switch(GET_OPCODE(previous)) {
  72. case OP_PUSHSTRING: SET_OPCODE(previous, OP_GETDOTTED); break;
  73. default: return;
  74. }
  75. setprevious(fs, previous);
  76. }
  77. static void luaK_add (FuncState *fs) {
  78. /* PUSHINT s; ADD -> ADDI s (a+k) */
  79. Instruction previous = prepare(fs, CREATE_0(OP_ADD), -1);
  80. switch(GET_OPCODE(previous)) {
  81. case OP_PUSHINT: SET_OPCODE(previous, OP_ADDI); break;
  82. default: return;
  83. }
  84. setprevious(fs, previous);
  85. }
  86. static void luaK_sub (FuncState *fs) {
  87. /* PUSHINT s; SUB -> ADDI -s (a-k) */
  88. Instruction previous = prepare(fs, CREATE_0(OP_SUB), -1);
  89. switch(GET_OPCODE(previous)) {
  90. case OP_PUSHINT:
  91. SET_OPCODE(previous, OP_ADDI);
  92. SETARG_S(previous, -GETARG_S(previous));
  93. break;
  94. default: return;
  95. }
  96. setprevious(fs, previous);
  97. }
  98. static void luaK_conc (FuncState *fs) {
  99. /* CONC u; CONC 2 -> CONC u+1 (a..b..c) */
  100. Instruction previous = prepare(fs, CREATE_U(OP_CONC, 2), -1);
  101. switch(GET_OPCODE(previous)) {
  102. case OP_CONC: SETARG_U(previous, GETARG_U(previous)+1); break;
  103. default: return;
  104. }
  105. setprevious(fs, previous);
  106. }
  107. static void luaK_setlocal (FuncState *fs, int l) {
  108. /* PUSHLOCAL l; ADDI k, SETLOCAL l -> INCLOCAL k, l ((local)a=a+k) */
  109. Instruction *code = fs->f->code;
  110. int pc = fs->pc;
  111. if (pc-1 > fs->lasttarget && /* no jumps in-between instructions? */
  112. code[pc-2] == CREATE_U(OP_PUSHLOCAL, l) &&
  113. GET_OPCODE(code[pc-1]) == OP_ADDI &&
  114. abs(GETARG_S(code[pc-1])) <= MAXARG_sA) {
  115. int inc = GETARG_S(code[pc-1]);
  116. fs->pc = pc-1;
  117. code[pc-2] = CREATE_sAB(OP_INCLOCAL, inc, l);
  118. luaK_deltastack(fs, -1);
  119. }
  120. else
  121. luaK_U(fs, OP_SETLOCAL, l, -1);
  122. }
  123. static void luaK_eq (FuncState *fs) {
  124. /* PUSHNIL 1; JMPEQ -> NOT (a==nil) */
  125. Instruction previous = prepare(fs, CREATE_S(OP_JMPEQ, NO_JUMP), -2);
  126. if (previous == CREATE_U(OP_PUSHNIL, 1)) {
  127. setprevious(fs, CREATE_0(OP_NOT));
  128. luaK_deltastack(fs, 1); /* undo delta from `prepare' */
  129. }
  130. }
  131. static void luaK_neq (FuncState *fs) {
  132. /* PUSHNIL 1; JMPNEQ -> JMPT (a~=nil) */
  133. Instruction previous = prepare(fs, CREATE_S(OP_JMPNEQ, NO_JUMP), -2);
  134. if (previous == CREATE_U(OP_PUSHNIL, 1)) {
  135. setprevious(fs, CREATE_S(OP_JMPT, NO_JUMP));
  136. }
  137. }
  138. int luaK_jump (FuncState *fs) {
  139. int j = luaK_S(fs, OP_JMP, NO_JUMP, 0);
  140. if (j == fs->lasttarget) { /* possible jumps to this jump? */
  141. luaK_concat(fs, &j, fs->jlt); /* keep them on hold */
  142. fs->jlt = NO_JUMP;
  143. }
  144. return j;
  145. }
  146. void luaK_retcode (FuncState *fs, int nlocals, int nexps) {
  147. Instruction previous = prepare(fs, CREATE_U(OP_RETURN, nlocals), 0);
  148. if (nexps > 0 && GET_OPCODE(previous) == OP_CALL) {
  149. LUA_ASSERT(fs->L, GETARG_B(previous) == MULT_RET, "call should be open");
  150. SET_OPCODE(previous, OP_TAILCALL);
  151. SETARG_B(previous, nlocals);
  152. setprevious(fs, previous);
  153. }
  154. }
  155. static void luaK_pushnil (FuncState *fs, int n) {
  156. Instruction previous = prepare(fs, CREATE_U(OP_PUSHNIL, n), n);
  157. switch(GET_OPCODE(previous)) {
  158. case OP_PUSHNIL: SETARG_U(previous, GETARG_U(previous)+n); break;
  159. default: return;
  160. }
  161. setprevious(fs, previous);
  162. }
  163. static void luaK_fixjump (FuncState *fs, int pc, int dest) {
  164. Instruction *jmp = &fs->f->code[pc];
  165. if (dest == NO_JUMP)
  166. SETARG_S(*jmp, NO_JUMP); /* point to itself to represent end of list */
  167. else { /* jump is relative to position following jump instruction */
  168. int offset = dest-(pc+1);
  169. LUA_ASSERT(L, offset != NO_JUMP, "cannot link to itself");
  170. if (abs(offset) > MAXARG_S)
  171. luaK_error(fs->ls, "control structure too long");
  172. SETARG_S(*jmp, offset);
  173. }
  174. }
  175. static int luaK_getjump (FuncState *fs, int pc) {
  176. int offset = GETARG_S(fs->f->code[pc]);
  177. if (offset == NO_JUMP) /* point to itself represents end of list */
  178. return NO_JUMP; /* end of list */
  179. else
  180. return (pc+1)+offset; /* turn offset into absolute position */
  181. }
  182. /*
  183. ** discharge list of jumps to last target.
  184. ** returns current `pc' and marks it as a jump target (to avoid wrong
  185. ** optimizations with consecutive instructions not in the same basic block).
  186. */
  187. int luaK_getlabel (FuncState *fs) {
  188. if (fs->pc != fs->lasttarget) {
  189. int lasttarget = fs->lasttarget;
  190. fs->lasttarget = fs->pc;
  191. luaK_patchlist(fs, fs->jlt, lasttarget); /* discharge old list `jlt' */
  192. fs->jlt = NO_JUMP; /* nobody jumps to this new label (till now) */
  193. }
  194. return fs->pc;
  195. }
  196. void luaK_deltastack (FuncState *fs, int delta) {
  197. fs->stacklevel += delta;
  198. if (delta > 0 && fs->stacklevel > fs->f->maxstacksize) {
  199. if (fs->stacklevel > MAXSTACK)
  200. luaK_error(fs->ls, "function or expression too complex");
  201. fs->f->maxstacksize = fs->stacklevel;
  202. }
  203. }
  204. void luaK_kstr (LexState *ls, int c) {
  205. luaK_U(ls->fs, OP_PUSHSTRING, c, 1);
  206. }
  207. static int real_constant (FuncState *fs, Number r) {
  208. /* check whether `r' has appeared within the last LOOKBACKNUMS entries */
  209. Proto *f = fs->f;
  210. int c = f->nknum;
  211. int lim = c < LOOKBACKNUMS ? 0 : c-LOOKBACKNUMS;
  212. while (--c >= lim)
  213. if (f->knum[c] == r) return c;
  214. /* not found; create a new entry */
  215. luaM_growvector(fs->L, f->knum, f->nknum, 1, Number, constantEM, MAXARG_U);
  216. c = f->nknum++;
  217. f->knum[c] = r;
  218. return c;
  219. }
  220. void luaK_number (FuncState *fs, Number f) {
  221. if (f <= (Number)MAXARG_S && (int)f == f)
  222. luaK_S(fs, OP_PUSHINT, (int)f, 1); /* f has a short integer value */
  223. else
  224. luaK_U(fs, OP_PUSHNUM, real_constant(fs, f), 1);
  225. }
  226. void luaK_adjuststack (FuncState *fs, int n) {
  227. if (n > 0)
  228. luaK_U(fs, OP_POP, n, -n);
  229. else if (n < 0)
  230. luaK_pushnil(fs, -n);
  231. }
  232. int luaK_lastisopen (FuncState *fs) {
  233. /* check whether last instruction is an open function call */
  234. Instruction i = previous_instruction(fs);
  235. if (GET_OPCODE(i) == OP_CALL && GETARG_B(i) == MULT_RET)
  236. return 1;
  237. else return 0;
  238. }
  239. void luaK_setcallreturns (FuncState *fs, int nresults) {
  240. if (luaK_lastisopen(fs)) { /* expression is an open function call? */
  241. SETARG_B(fs->f->code[fs->pc-1], nresults); /* set number of results */
  242. luaK_deltastack(fs, nresults); /* push results */
  243. }
  244. }
  245. static void assertglobal (FuncState *fs, int index) {
  246. luaS_assertglobal(fs->L, fs->f->kstr[index]);
  247. }
  248. static int discharge (FuncState *fs, expdesc *var) {
  249. switch (var->k) {
  250. case VLOCAL:
  251. luaK_U(fs, OP_PUSHLOCAL, var->u.index, 1);
  252. break;
  253. case VGLOBAL:
  254. luaK_U(fs, OP_GETGLOBAL, var->u.index, 1);
  255. assertglobal(fs, var->u.index); /* make sure that there is a global */
  256. break;
  257. case VINDEXED:
  258. luaK_gettable(fs);
  259. break;
  260. case VEXP:
  261. return 0; /* nothing to do */
  262. }
  263. var->k = VEXP;
  264. var->u.l.t = var->u.l.f = NO_JUMP;
  265. return 1;
  266. }
  267. static void discharge1 (FuncState *fs, expdesc *var) {
  268. discharge(fs, var);
  269. /* if it has jumps it is already discharged */
  270. if (var->u.l.t == NO_JUMP && var->u.l.f == NO_JUMP)
  271. luaK_setcallreturns(fs, 1); /* call must return 1 value */
  272. }
  273. void luaK_storevar (LexState *ls, const expdesc *var) {
  274. FuncState *fs = ls->fs;
  275. switch (var->k) {
  276. case VLOCAL:
  277. luaK_setlocal(fs, var->u.index);
  278. break;
  279. case VGLOBAL:
  280. luaK_U(fs, OP_SETGLOBAL, var->u.index, -1);
  281. assertglobal(fs, var->u.index); /* make sure that there is a global */
  282. break;
  283. case VINDEXED:
  284. luaK_0(fs, OP_SETTABLEPOP, -3);
  285. break;
  286. default:
  287. LUA_INTERNALERROR(ls->L, "invalid var kind to store");
  288. }
  289. }
  290. static OpCode invertjump (OpCode op) {
  291. switch (op) {
  292. case OP_JMPNEQ: return OP_JMPEQ;
  293. case OP_JMPEQ: return OP_JMPNEQ;
  294. case OP_JMPLT: return OP_JMPGE;
  295. case OP_JMPLE: return OP_JMPGT;
  296. case OP_JMPGT: return OP_JMPLE;
  297. case OP_JMPGE: return OP_JMPLT;
  298. case OP_JMPT: case OP_JMPONT: return OP_JMPF;
  299. case OP_JMPF: case OP_JMPONF: return OP_JMPT;
  300. default:
  301. LUA_INTERNALERROR(NULL, "invalid jump instruction");
  302. return OP_END; /* to avoid warnings */
  303. }
  304. }
  305. static void luaK_condjump (FuncState *fs, OpCode jump) {
  306. Instruction previous = prepare(fs, CREATE_S(jump, NO_JUMP), -1);
  307. switch (GET_OPCODE(previous)) {
  308. case OP_NOT: previous = CREATE_S(invertjump(jump), NO_JUMP); break;
  309. default: return;
  310. }
  311. setprevious(fs, previous);
  312. }
  313. static void luaK_patchlistaux (FuncState *fs, int list, int target,
  314. OpCode special, int special_target) {
  315. Instruction *code = fs->f->code;
  316. while (list != NO_JUMP) {
  317. int next = luaK_getjump(fs, list);
  318. Instruction *i = &code[list];
  319. OpCode op = GET_OPCODE(*i);
  320. if (op == special) /* this `op' already has a value */
  321. luaK_fixjump(fs, list, special_target);
  322. else {
  323. luaK_fixjump(fs, list, target); /* do the patch */
  324. if (op == OP_JMPONT) /* remove eventual values */
  325. SET_OPCODE(*i, OP_JMPT);
  326. else if (op == OP_JMPONF)
  327. SET_OPCODE(*i, OP_JMPF);
  328. }
  329. list = next;
  330. }
  331. }
  332. void luaK_patchlist (FuncState *fs, int list, int target) {
  333. if (target == fs->lasttarget) /* same target that list `jlt'? */
  334. luaK_concat(fs, &fs->jlt, list); /* delay fixing */
  335. else
  336. luaK_patchlistaux(fs, list, target, OP_END, 0);
  337. }
  338. static int need_value (FuncState *fs, int list, OpCode hasvalue) {
  339. /* check whether list has a jump without a value */
  340. for (; list != NO_JUMP; list = luaK_getjump(fs, list))
  341. if (GET_OPCODE(fs->f->code[list]) != hasvalue) return 1;
  342. return 0; /* not found */
  343. }
  344. void luaK_concat (FuncState *fs, int *l1, int l2) {
  345. if (*l1 == NO_JUMP)
  346. *l1 = l2;
  347. else {
  348. int list = *l1;
  349. for (;;) { /* traverse `l1' */
  350. int next = luaK_getjump(fs, list);
  351. if (next == NO_JUMP) { /* end of list? */
  352. luaK_fixjump(fs, list, l2);
  353. return;
  354. }
  355. list = next;
  356. }
  357. }
  358. }
  359. static void luaK_testgo (FuncState *fs, expdesc *v, int invert, OpCode jump) {
  360. Instruction *previous;
  361. int *golist = &v->u.l.f;
  362. int *exitlist = &v->u.l.t;
  363. if (invert) { /* interchange `golist' and `exitlist' */
  364. int *temp = golist; golist = exitlist; exitlist = temp;
  365. }
  366. discharge1(fs, v);
  367. previous = &fs->f->code[fs->pc-1];
  368. LUA_ASSERT(L, GET_OPCODE(*previous) != OP_SETLINE, "bad place to set line");
  369. if (ISJUMP(GET_OPCODE(*previous))) {
  370. if (invert)
  371. SET_OPCODE(*previous, invertjump(GET_OPCODE(*previous)));
  372. }
  373. else
  374. luaK_condjump(fs, jump);
  375. luaK_concat(fs, exitlist, fs->pc-1); /* insert last jump in `exitlist' */
  376. luaK_patchlist(fs, *golist, luaK_getlabel(fs));
  377. *golist = NO_JUMP;
  378. }
  379. void luaK_goiftrue (FuncState *fs, expdesc *v, int keepvalue) {
  380. luaK_testgo(fs, v, 1, keepvalue ? OP_JMPONF : OP_JMPF);
  381. }
  382. void luaK_goiffalse (FuncState *fs, expdesc *v, int keepvalue) {
  383. luaK_testgo(fs, v, 0, keepvalue ? OP_JMPONT : OP_JMPT);
  384. }
  385. void luaK_tostack (LexState *ls, expdesc *v, int onlyone) {
  386. FuncState *fs = ls->fs;
  387. if (!discharge(fs, v)) { /* `v' is an expression? */
  388. OpCode previous = GET_OPCODE(fs->f->code[fs->pc-1]);
  389. LUA_ASSERT(L, previous != OP_SETLINE, "bad place to set line");
  390. if (!ISJUMP(previous) && v->u.l.f == NO_JUMP && v->u.l.t == NO_JUMP) {
  391. /* it is an expression without jumps */
  392. if (onlyone)
  393. luaK_setcallreturns(fs, 1); /* call must return 1 value */
  394. }
  395. else { /* expression has jumps... */
  396. int p_nil = 0; /* position of an eventual PUSHNIL */
  397. int p_1 = 0; /* position of an eventual PUSHINT */
  398. int final; /* position after whole expression */
  399. if (ISJUMP(previous)) {
  400. luaK_concat(fs, &v->u.l.t, fs->pc-1); /* put `previous' in true list */
  401. p_nil = luaK_0(fs, OP_PUSHNILJMP, 0);
  402. p_1 = luaK_S(fs, OP_PUSHINT, 1, 1);
  403. }
  404. else { /* still may need a PUSHNIL or a PUSHINT */
  405. int need_nil = need_value(fs, v->u.l.f, OP_JMPONF);
  406. int need_1 = need_value(fs, v->u.l.t, OP_JMPONT);
  407. if (need_nil && need_1) {
  408. luaK_S(fs, OP_JMP, 2, 0); /* skip both pushes */
  409. p_nil = luaK_0(fs, OP_PUSHNILJMP, 0);
  410. p_1 = luaK_S(fs, OP_PUSHINT, 1, 0);
  411. }
  412. else if (need_nil || need_1) {
  413. luaK_S(fs, OP_JMP, 1, 0); /* skip one push */
  414. if (need_nil)
  415. p_nil = luaK_U(fs, OP_PUSHNIL, 1, 0);
  416. else /* need_1 */
  417. p_1 = luaK_S(fs, OP_PUSHINT, 1, 0);
  418. }
  419. }
  420. final = luaK_getlabel(fs);
  421. luaK_patchlistaux(fs, v->u.l.f, p_nil, OP_JMPONF, final);
  422. luaK_patchlistaux(fs, v->u.l.t, p_1, OP_JMPONT, final);
  423. v->u.l.f = v->u.l.t = NO_JUMP;
  424. }
  425. }
  426. }
  427. void luaK_prefix (LexState *ls, int op, expdesc *v) {
  428. FuncState *fs = ls->fs;
  429. if (op == '-') {
  430. luaK_tostack(ls, v, 1);
  431. luaK_minus(fs);
  432. }
  433. else { /* op == NOT */
  434. Instruction *previous;
  435. discharge1(fs, v);
  436. previous = &fs->f->code[fs->pc-1];
  437. if (ISJUMP(GET_OPCODE(*previous)))
  438. SET_OPCODE(*previous, invertjump(GET_OPCODE(*previous)));
  439. else
  440. luaK_0(fs, OP_NOT, 0);
  441. /* interchange true and false lists */
  442. { int temp = v->u.l.f; v->u.l.f = v->u.l.t; v->u.l.t = temp; }
  443. }
  444. }
  445. void luaK_infix (LexState *ls, int op, expdesc *v) {
  446. FuncState *fs = ls->fs;
  447. if (op == TK_AND)
  448. luaK_goiftrue(fs, v, 1);
  449. else if (op == TK_OR)
  450. luaK_goiffalse(fs, v, 1);
  451. else
  452. luaK_tostack(ls, v, 1); /* all other binary operators need a value */
  453. }
  454. void luaK_posfix (LexState *ls, int op, expdesc *v1, expdesc *v2) {
  455. FuncState *fs = ls->fs;
  456. if (op == TK_AND) {
  457. LUA_ASSERT(ls->L, v1->u.l.t == NO_JUMP, "list must be closed");
  458. discharge1(fs, v2);
  459. v1->u.l.t = v2->u.l.t;
  460. luaK_concat(fs, &v1->u.l.f, v2->u.l.f);
  461. }
  462. else if (op == TK_OR) {
  463. LUA_ASSERT(ls->L, v1->u.l.f == NO_JUMP, "list must be closed");
  464. discharge1(fs, v2);
  465. v1->u.l.f = v2->u.l.f;
  466. luaK_concat(fs, &v1->u.l.t, v2->u.l.t);
  467. }
  468. else {
  469. luaK_tostack(ls, v2, 1); /* `v2' must be a value */
  470. switch (op) {
  471. case '+': luaK_add(fs); break;
  472. case '-': luaK_sub(fs); break;
  473. case '*': luaK_0(fs, OP_MULT, -1); break;
  474. case '/': luaK_0(fs, OP_DIV, -1); break;
  475. case '^': luaK_0(fs, OP_POW, -1); break;
  476. case TK_CONC: luaK_conc(fs); break;
  477. case TK_EQ: luaK_eq(fs); break;
  478. case TK_NE: luaK_neq(fs); break;
  479. case '>': luaK_S(fs, OP_JMPGT, NO_JUMP, -2); break;
  480. case '<': luaK_S(fs, OP_JMPLT, NO_JUMP, -2); break;
  481. case TK_GE: luaK_S(fs, OP_JMPGE, NO_JUMP, -2); break;
  482. case TK_LE: luaK_S(fs, OP_JMPLE, NO_JUMP, -2); break;
  483. }
  484. }
  485. }