lcode.c 53 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907
  1. /*
  2. ** $Id: lcode.c $
  3. ** Code generator for Lua
  4. ** See Copyright Notice in lua.h
  5. */
  6. #define lcode_c
  7. #define LUA_CORE
  8. #include "lprefix.h"
  9. #include <float.h>
  10. #include <limits.h>
  11. #include <math.h>
  12. #include <stdlib.h>
  13. #include "lua.h"
  14. #include "lcode.h"
  15. #include "ldebug.h"
  16. #include "ldo.h"
  17. #include "lgc.h"
  18. #include "llex.h"
  19. #include "lmem.h"
  20. #include "lobject.h"
  21. #include "lopcodes.h"
  22. #include "lparser.h"
  23. #include "lstring.h"
  24. #include "ltable.h"
  25. #include "lvm.h"
  26. /* (note that expressions VJMP also have jumps.) */
  27. #define hasjumps(e) ((e)->t != (e)->f)
  28. static int codesJ (FuncState *fs, OpCode o, int sj, int k);
  29. /* semantic error */
  30. l_noret luaK_semerror (LexState *ls, const char *fmt, ...) {
  31. const char *msg;
  32. va_list argp;
  33. pushvfstring(ls->L, argp, fmt, msg);
  34. ls->t.token = 0; /* remove "near <token>" from final message */
  35. luaX_syntaxerror(ls, msg);
  36. }
  37. /*
  38. ** If expression is a numeric constant, fills 'v' with its value
  39. ** and returns 1. Otherwise, returns 0.
  40. */
  41. static int tonumeral (const expdesc *e, TValue *v) {
  42. if (hasjumps(e))
  43. return 0; /* not a numeral */
  44. switch (e->k) {
  45. case VKINT:
  46. if (v) setivalue(v, e->u.ival);
  47. return 1;
  48. case VKFLT:
  49. if (v) setfltvalue(v, e->u.nval);
  50. return 1;
  51. default: return 0;
  52. }
  53. }
  54. /*
  55. ** Get the constant value from a constant expression
  56. */
  57. static TValue *const2val (FuncState *fs, const expdesc *e) {
  58. lua_assert(e->k == VCONST);
  59. return &fs->ls->dyd->actvar.arr[e->u.info].k;
  60. }
  61. /*
  62. ** If expression is a constant, fills 'v' with its value
  63. ** and returns 1. Otherwise, returns 0.
  64. */
  65. int luaK_exp2const (FuncState *fs, const expdesc *e, TValue *v) {
  66. if (hasjumps(e))
  67. return 0; /* not a constant */
  68. switch (e->k) {
  69. case VFALSE:
  70. setbfvalue(v);
  71. return 1;
  72. case VTRUE:
  73. setbtvalue(v);
  74. return 1;
  75. case VNIL:
  76. setnilvalue(v);
  77. return 1;
  78. case VKSTR: {
  79. setsvalue(fs->ls->L, v, e->u.strval);
  80. return 1;
  81. }
  82. case VCONST: {
  83. setobj(fs->ls->L, v, const2val(fs, e));
  84. return 1;
  85. }
  86. default: return tonumeral(e, v);
  87. }
  88. }
  89. /*
  90. ** Return the previous instruction of the current code. If there
  91. ** may be a jump target between the current instruction and the
  92. ** previous one, return an invalid instruction (to avoid wrong
  93. ** optimizations).
  94. */
  95. static Instruction *previousinstruction (FuncState *fs) {
  96. static const Instruction invalidinstruction = ~(Instruction)0;
  97. if (fs->pc > fs->lasttarget)
  98. return &fs->f->code[fs->pc - 1]; /* previous instruction */
  99. else
  100. return cast(Instruction*, &invalidinstruction);
  101. }
  102. /*
  103. ** Create a OP_LOADNIL instruction, but try to optimize: if the previous
  104. ** instruction is also OP_LOADNIL and ranges are compatible, adjust
  105. ** range of previous instruction instead of emitting a new one. (For
  106. ** instance, 'local a; local b' will generate a single opcode.)
  107. */
  108. void luaK_nil (FuncState *fs, int from, int n) {
  109. int l = from + n - 1; /* last register to set nil */
  110. Instruction *previous = previousinstruction(fs);
  111. if (GET_OPCODE(*previous) == OP_LOADNIL) { /* previous is LOADNIL? */
  112. int pfrom = GETARG_A(*previous); /* get previous range */
  113. int pl = pfrom + GETARG_B(*previous);
  114. if ((pfrom <= from && from <= pl + 1) ||
  115. (from <= pfrom && pfrom <= l + 1)) { /* can connect both? */
  116. if (pfrom < from) from = pfrom; /* from = min(from, pfrom) */
  117. if (pl > l) l = pl; /* l = max(l, pl) */
  118. SETARG_A(*previous, from);
  119. SETARG_B(*previous, l - from);
  120. return;
  121. } /* else go through */
  122. }
  123. luaK_codeABC(fs, OP_LOADNIL, from, n - 1, 0); /* else no optimization */
  124. }
  125. /*
  126. ** Gets the destination address of a jump instruction. Used to traverse
  127. ** a list of jumps.
  128. */
  129. static int getjump (FuncState *fs, int pc) {
  130. int offset = GETARG_sJ(fs->f->code[pc]);
  131. if (offset == NO_JUMP) /* point to itself represents end of list */
  132. return NO_JUMP; /* end of list */
  133. else
  134. return (pc+1)+offset; /* turn offset into absolute position */
  135. }
  136. /*
  137. ** Fix jump instruction at position 'pc' to jump to 'dest'.
  138. ** (Jump addresses are relative in Lua)
  139. */
  140. static void fixjump (FuncState *fs, int pc, int dest) {
  141. Instruction *jmp = &fs->f->code[pc];
  142. int offset = dest - (pc + 1);
  143. lua_assert(dest != NO_JUMP);
  144. if (!(-OFFSET_sJ <= offset && offset <= MAXARG_sJ - OFFSET_sJ))
  145. luaX_syntaxerror(fs->ls, "control structure too long");
  146. lua_assert(GET_OPCODE(*jmp) == OP_JMP);
  147. SETARG_sJ(*jmp, offset);
  148. }
  149. /*
  150. ** Concatenate jump-list 'l2' into jump-list 'l1'
  151. */
  152. void luaK_concat (FuncState *fs, int *l1, int l2) {
  153. if (l2 == NO_JUMP) return; /* nothing to concatenate? */
  154. else if (*l1 == NO_JUMP) /* no original list? */
  155. *l1 = l2; /* 'l1' points to 'l2' */
  156. else {
  157. int list = *l1;
  158. int next;
  159. while ((next = getjump(fs, list)) != NO_JUMP) /* find last element */
  160. list = next;
  161. fixjump(fs, list, l2); /* last element links to 'l2' */
  162. }
  163. }
  164. /*
  165. ** Create a jump instruction and return its position, so its destination
  166. ** can be fixed later (with 'fixjump').
  167. */
  168. int luaK_jump (FuncState *fs) {
  169. return codesJ(fs, OP_JMP, NO_JUMP, 0);
  170. }
  171. /*
  172. ** Code a 'return' instruction
  173. */
  174. void luaK_ret (FuncState *fs, int first, int nret) {
  175. OpCode op;
  176. switch (nret) {
  177. case 0: op = OP_RETURN0; break;
  178. case 1: op = OP_RETURN1; break;
  179. default: op = OP_RETURN; break;
  180. }
  181. luaY_checklimit(fs, nret + 1, MAXARG_B, "returns");
  182. luaK_codeABC(fs, op, first, nret + 1, 0);
  183. }
  184. /*
  185. ** Code a "conditional jump", that is, a test or comparison opcode
  186. ** followed by a jump. Return jump position.
  187. */
  188. static int condjump (FuncState *fs, OpCode op, int A, int B, int C, int k) {
  189. luaK_codeABCk(fs, op, A, B, C, k);
  190. return luaK_jump(fs);
  191. }
  192. /*
  193. ** returns current 'pc' and marks it as a jump target (to avoid wrong
  194. ** optimizations with consecutive instructions not in the same basic block).
  195. */
  196. int luaK_getlabel (FuncState *fs) {
  197. fs->lasttarget = fs->pc;
  198. return fs->pc;
  199. }
  200. /*
  201. ** Returns the position of the instruction "controlling" a given
  202. ** jump (that is, its condition), or the jump itself if it is
  203. ** unconditional.
  204. */
  205. static Instruction *getjumpcontrol (FuncState *fs, int pc) {
  206. Instruction *pi = &fs->f->code[pc];
  207. if (pc >= 1 && testTMode(GET_OPCODE(*(pi-1))))
  208. return pi-1;
  209. else
  210. return pi;
  211. }
  212. /*
  213. ** Patch destination register for a TESTSET instruction.
  214. ** If instruction in position 'node' is not a TESTSET, return 0 ("fails").
  215. ** Otherwise, if 'reg' is not 'NO_REG', set it as the destination
  216. ** register. Otherwise, change instruction to a simple 'TEST' (produces
  217. ** no register value)
  218. */
  219. static int patchtestreg (FuncState *fs, int node, int reg) {
  220. Instruction *i = getjumpcontrol(fs, node);
  221. if (GET_OPCODE(*i) != OP_TESTSET)
  222. return 0; /* cannot patch other instructions */
  223. if (reg != NO_REG && reg != GETARG_B(*i))
  224. SETARG_A(*i, reg);
  225. else {
  226. /* no register to put value or register already has the value;
  227. change instruction to simple test */
  228. *i = CREATE_ABCk(OP_TEST, GETARG_B(*i), 0, 0, GETARG_k(*i));
  229. }
  230. return 1;
  231. }
  232. /*
  233. ** Traverse a list of tests ensuring no one produces a value
  234. */
  235. static void removevalues (FuncState *fs, int list) {
  236. for (; list != NO_JUMP; list = getjump(fs, list))
  237. patchtestreg(fs, list, NO_REG);
  238. }
  239. /*
  240. ** Traverse a list of tests, patching their destination address and
  241. ** registers: tests producing values jump to 'vtarget' (and put their
  242. ** values in 'reg'), other tests jump to 'dtarget'.
  243. */
  244. static void patchlistaux (FuncState *fs, int list, int vtarget, int reg,
  245. int dtarget) {
  246. while (list != NO_JUMP) {
  247. int next = getjump(fs, list);
  248. if (patchtestreg(fs, list, reg))
  249. fixjump(fs, list, vtarget);
  250. else
  251. fixjump(fs, list, dtarget); /* jump to default target */
  252. list = next;
  253. }
  254. }
  255. /*
  256. ** Path all jumps in 'list' to jump to 'target'.
  257. ** (The assert means that we cannot fix a jump to a forward address
  258. ** because we only know addresses once code is generated.)
  259. */
  260. void luaK_patchlist (FuncState *fs, int list, int target) {
  261. lua_assert(target <= fs->pc);
  262. patchlistaux(fs, list, target, NO_REG, target);
  263. }
  264. void luaK_patchtohere (FuncState *fs, int list) {
  265. int hr = luaK_getlabel(fs); /* mark "here" as a jump target */
  266. luaK_patchlist(fs, list, hr);
  267. }
  268. /* limit for difference between lines in relative line info. */
  269. #define LIMLINEDIFF 0x80
  270. /*
  271. ** Save line info for a new instruction. If difference from last line
  272. ** does not fit in a byte, of after that many instructions, save a new
  273. ** absolute line info; (in that case, the special value 'ABSLINEINFO'
  274. ** in 'lineinfo' signals the existence of this absolute information.)
  275. ** Otherwise, store the difference from last line in 'lineinfo'.
  276. */
  277. static void savelineinfo (FuncState *fs, Proto *f, int line) {
  278. int linedif = line - fs->previousline;
  279. int pc = fs->pc - 1; /* last instruction coded */
  280. if (abs(linedif) >= LIMLINEDIFF || fs->iwthabs++ >= MAXIWTHABS) {
  281. luaM_growvector(fs->ls->L, f->abslineinfo, fs->nabslineinfo,
  282. f->sizeabslineinfo, AbsLineInfo, INT_MAX, "lines");
  283. f->abslineinfo[fs->nabslineinfo].pc = pc;
  284. f->abslineinfo[fs->nabslineinfo++].line = line;
  285. linedif = ABSLINEINFO; /* signal that there is absolute information */
  286. fs->iwthabs = 1; /* restart counter */
  287. }
  288. luaM_growvector(fs->ls->L, f->lineinfo, pc, f->sizelineinfo, ls_byte,
  289. INT_MAX, "opcodes");
  290. f->lineinfo[pc] = cast(ls_byte, linedif);
  291. fs->previousline = line; /* last line saved */
  292. }
  293. /*
  294. ** Remove line information from the last instruction.
  295. ** If line information for that instruction is absolute, set 'iwthabs'
  296. ** above its max to force the new (replacing) instruction to have
  297. ** absolute line info, too.
  298. */
  299. static void removelastlineinfo (FuncState *fs) {
  300. Proto *f = fs->f;
  301. int pc = fs->pc - 1; /* last instruction coded */
  302. if (f->lineinfo[pc] != ABSLINEINFO) { /* relative line info? */
  303. fs->previousline -= f->lineinfo[pc]; /* correct last line saved */
  304. fs->iwthabs--; /* undo previous increment */
  305. }
  306. else { /* absolute line information */
  307. lua_assert(f->abslineinfo[fs->nabslineinfo - 1].pc == pc);
  308. fs->nabslineinfo--; /* remove it */
  309. fs->iwthabs = MAXIWTHABS + 1; /* force next line info to be absolute */
  310. }
  311. }
  312. /*
  313. ** Remove the last instruction created, correcting line information
  314. ** accordingly.
  315. */
  316. static void removelastinstruction (FuncState *fs) {
  317. removelastlineinfo(fs);
  318. fs->pc--;
  319. }
  320. /*
  321. ** Emit instruction 'i', checking for array sizes and saving also its
  322. ** line information. Return 'i' position.
  323. */
  324. int luaK_code (FuncState *fs, Instruction i) {
  325. Proto *f = fs->f;
  326. /* put new instruction in code array */
  327. luaM_growvector(fs->ls->L, f->code, fs->pc, f->sizecode, Instruction,
  328. INT_MAX, "opcodes");
  329. f->code[fs->pc++] = i;
  330. savelineinfo(fs, f, fs->ls->lastline);
  331. return fs->pc - 1; /* index of new instruction */
  332. }
  333. /*
  334. ** Format and emit an 'iABC' instruction. (Assertions check consistency
  335. ** of parameters versus opcode.)
  336. */
  337. int luaK_codeABCk (FuncState *fs, OpCode o, int A, int B, int C, int k) {
  338. lua_assert(getOpMode(o) == iABC);
  339. lua_assert(A <= MAXARG_A && B <= MAXARG_B &&
  340. C <= MAXARG_C && (k & ~1) == 0);
  341. return luaK_code(fs, CREATE_ABCk(o, A, B, C, k));
  342. }
  343. int luaK_codevABCk (FuncState *fs, OpCode o, int A, int B, int C, int k) {
  344. lua_assert(getOpMode(o) == ivABC);
  345. lua_assert(A <= MAXARG_A && B <= MAXARG_vB &&
  346. C <= MAXARG_vC && (k & ~1) == 0);
  347. return luaK_code(fs, CREATE_vABCk(o, A, B, C, k));
  348. }
  349. /*
  350. ** Format and emit an 'iABx' instruction.
  351. */
  352. int luaK_codeABx (FuncState *fs, OpCode o, int A, int Bc) {
  353. lua_assert(getOpMode(o) == iABx);
  354. lua_assert(A <= MAXARG_A && Bc <= MAXARG_Bx);
  355. return luaK_code(fs, CREATE_ABx(o, A, Bc));
  356. }
  357. /*
  358. ** Format and emit an 'iAsBx' instruction.
  359. */
  360. static int codeAsBx (FuncState *fs, OpCode o, int A, int Bc) {
  361. int b = Bc + OFFSET_sBx;
  362. lua_assert(getOpMode(o) == iAsBx);
  363. lua_assert(A <= MAXARG_A && b <= MAXARG_Bx);
  364. return luaK_code(fs, CREATE_ABx(o, A, b));
  365. }
  366. /*
  367. ** Format and emit an 'isJ' instruction.
  368. */
  369. static int codesJ (FuncState *fs, OpCode o, int sj, int k) {
  370. int j = sj + OFFSET_sJ;
  371. lua_assert(getOpMode(o) == isJ);
  372. lua_assert(j <= MAXARG_sJ && (k & ~1) == 0);
  373. return luaK_code(fs, CREATE_sJ(o, j, k));
  374. }
  375. /*
  376. ** Emit an "extra argument" instruction (format 'iAx')
  377. */
  378. static int codeextraarg (FuncState *fs, int A) {
  379. lua_assert(A <= MAXARG_Ax);
  380. return luaK_code(fs, CREATE_Ax(OP_EXTRAARG, A));
  381. }
  382. /*
  383. ** Emit a "load constant" instruction, using either 'OP_LOADK'
  384. ** (if constant index 'k' fits in 18 bits) or an 'OP_LOADKX'
  385. ** instruction with "extra argument".
  386. */
  387. static int luaK_codek (FuncState *fs, int reg, int k) {
  388. if (k <= MAXARG_Bx)
  389. return luaK_codeABx(fs, OP_LOADK, reg, k);
  390. else {
  391. int p = luaK_codeABx(fs, OP_LOADKX, reg, 0);
  392. codeextraarg(fs, k);
  393. return p;
  394. }
  395. }
  396. /*
  397. ** Check register-stack level, keeping track of its maximum size
  398. ** in field 'maxstacksize'
  399. */
  400. void luaK_checkstack (FuncState *fs, int n) {
  401. int newstack = fs->freereg + n;
  402. if (newstack > fs->f->maxstacksize) {
  403. luaY_checklimit(fs, newstack, MAX_FSTACK, "registers");
  404. fs->f->maxstacksize = cast_byte(newstack);
  405. }
  406. }
  407. /*
  408. ** Reserve 'n' registers in register stack
  409. */
  410. void luaK_reserveregs (FuncState *fs, int n) {
  411. luaK_checkstack(fs, n);
  412. fs->freereg = cast_byte(fs->freereg + n);
  413. }
  414. /*
  415. ** Free register 'reg', if it is neither a constant index nor
  416. ** a local variable.
  417. )
  418. */
  419. static void freereg (FuncState *fs, int reg) {
  420. if (reg >= luaY_nvarstack(fs)) {
  421. fs->freereg--;
  422. lua_assert(reg == fs->freereg);
  423. }
  424. }
  425. /*
  426. ** Free two registers in proper order
  427. */
  428. static void freeregs (FuncState *fs, int r1, int r2) {
  429. if (r1 > r2) {
  430. freereg(fs, r1);
  431. freereg(fs, r2);
  432. }
  433. else {
  434. freereg(fs, r2);
  435. freereg(fs, r1);
  436. }
  437. }
  438. /*
  439. ** Free register used by expression 'e' (if any)
  440. */
  441. static void freeexp (FuncState *fs, expdesc *e) {
  442. if (e->k == VNONRELOC)
  443. freereg(fs, e->u.info);
  444. }
  445. /*
  446. ** Free registers used by expressions 'e1' and 'e2' (if any) in proper
  447. ** order.
  448. */
  449. static void freeexps (FuncState *fs, expdesc *e1, expdesc *e2) {
  450. int r1 = (e1->k == VNONRELOC) ? e1->u.info : -1;
  451. int r2 = (e2->k == VNONRELOC) ? e2->u.info : -1;
  452. freeregs(fs, r1, r2);
  453. }
  454. /*
  455. ** Add constant 'v' to prototype's list of constants (field 'k').
  456. */
  457. static int addk (FuncState *fs, Proto *f, TValue *v) {
  458. lua_State *L = fs->ls->L;
  459. int oldsize = f->sizek;
  460. int k = fs->nk;
  461. luaM_growvector(L, f->k, k, f->sizek, TValue, MAXARG_Ax, "constants");
  462. while (oldsize < f->sizek)
  463. setnilvalue(&f->k[oldsize++]);
  464. setobj(L, &f->k[k], v);
  465. fs->nk++;
  466. luaC_barrier(L, f, v);
  467. return k;
  468. }
  469. /*
  470. ** Use scanner's table to cache position of constants in constant list
  471. ** and try to reuse constants. Because some values should not be used
  472. ** as keys (nil cannot be a key, integer keys can collapse with float
  473. ** keys), the caller must provide a useful 'key' for indexing the cache.
  474. */
  475. static int k2proto (FuncState *fs, TValue *key, TValue *v) {
  476. TValue val;
  477. Proto *f = fs->f;
  478. int tag = luaH_get(fs->kcache, key, &val); /* query scanner table */
  479. int k;
  480. if (!tagisempty(tag)) { /* is there an index there? */
  481. k = cast_int(ivalue(&val));
  482. /* collisions can happen only for float keys */
  483. lua_assert(ttisfloat(key) || luaV_rawequalobj(&f->k[k], v));
  484. return k; /* reuse index */
  485. }
  486. /* constant not found; create a new entry */
  487. k = addk(fs, f, v);
  488. /* cache it for reuse; numerical value does not need GC barrier;
  489. table is not a metatable, so it does not need to invalidate cache */
  490. setivalue(&val, k);
  491. luaH_set(fs->ls->L, fs->kcache, key, &val);
  492. return k;
  493. }
  494. /*
  495. ** Add a string to list of constants and return its index.
  496. */
  497. static int stringK (FuncState *fs, TString *s) {
  498. TValue o;
  499. setsvalue(fs->ls->L, &o, s);
  500. return k2proto(fs, &o, &o); /* use string itself as key */
  501. }
  502. /*
  503. ** Add an integer to list of constants and return its index.
  504. */
  505. static int luaK_intK (FuncState *fs, lua_Integer n) {
  506. TValue o;
  507. setivalue(&o, n);
  508. return k2proto(fs, &o, &o); /* use integer itself as key */
  509. }
  510. /*
  511. ** Add a float to list of constants and return its index. Floats
  512. ** with integral values need a different key, to avoid collision
  513. ** with actual integers. To that, we add to the number its smaller
  514. ** power-of-two fraction that is still significant in its scale.
  515. ** For doubles, that would be 1/2^52.
  516. ** This method is not bulletproof: different numbers may generate the
  517. ** same key (e.g., very large numbers will overflow to 'inf') and for
  518. ** floats larger than 2^53 the result is still an integer. At worst,
  519. ** this only wastes an entry with a duplicate.
  520. */
  521. static int luaK_numberK (FuncState *fs, lua_Number r) {
  522. TValue o, kv;
  523. setfltvalue(&o, r); /* value as a TValue */
  524. if (r == 0) { /* handle zero as a special case */
  525. setpvalue(&kv, fs); /* use FuncState as index */
  526. return k2proto(fs, &kv, &o); /* cannot collide */
  527. }
  528. else {
  529. const int nbm = l_floatatt(MANT_DIG);
  530. const lua_Number q = l_mathop(ldexp)(l_mathop(1.0), -nbm + 1);
  531. const lua_Number k = r * (1 + q); /* key */
  532. lua_Integer ik;
  533. setfltvalue(&kv, k); /* key as a TValue */
  534. if (!luaV_flttointeger(k, &ik, F2Ieq)) { /* not an integral value? */
  535. int n = k2proto(fs, &kv, &o); /* use key */
  536. if (luaV_rawequalobj(&fs->f->k[n], &o)) /* correct value? */
  537. return n;
  538. }
  539. /* else, either key is still an integer or there was a collision;
  540. anyway, do not try to reuse constant; instead, create a new one */
  541. return addk(fs, fs->f, &o);
  542. }
  543. }
  544. /*
  545. ** Add a false to list of constants and return its index.
  546. */
  547. static int boolF (FuncState *fs) {
  548. TValue o;
  549. setbfvalue(&o);
  550. return k2proto(fs, &o, &o); /* use boolean itself as key */
  551. }
  552. /*
  553. ** Add a true to list of constants and return its index.
  554. */
  555. static int boolT (FuncState *fs) {
  556. TValue o;
  557. setbtvalue(&o);
  558. return k2proto(fs, &o, &o); /* use boolean itself as key */
  559. }
  560. /*
  561. ** Add nil to list of constants and return its index.
  562. */
  563. static int nilK (FuncState *fs) {
  564. TValue k, v;
  565. setnilvalue(&v);
  566. /* cannot use nil as key; instead use table itself */
  567. sethvalue(fs->ls->L, &k, fs->kcache);
  568. return k2proto(fs, &k, &v);
  569. }
  570. /*
  571. ** Check whether 'i' can be stored in an 'sC' operand. Equivalent to
  572. ** (0 <= int2sC(i) && int2sC(i) <= MAXARG_C) but without risk of
  573. ** overflows in the hidden addition inside 'int2sC'.
  574. */
  575. static int fitsC (lua_Integer i) {
  576. return (l_castS2U(i) + OFFSET_sC <= cast_uint(MAXARG_C));
  577. }
  578. /*
  579. ** Check whether 'i' can be stored in an 'sBx' operand.
  580. */
  581. static int fitsBx (lua_Integer i) {
  582. return (-OFFSET_sBx <= i && i <= MAXARG_Bx - OFFSET_sBx);
  583. }
  584. void luaK_int (FuncState *fs, int reg, lua_Integer i) {
  585. if (fitsBx(i))
  586. codeAsBx(fs, OP_LOADI, reg, cast_int(i));
  587. else
  588. luaK_codek(fs, reg, luaK_intK(fs, i));
  589. }
  590. static void luaK_float (FuncState *fs, int reg, lua_Number f) {
  591. lua_Integer fi;
  592. if (luaV_flttointeger(f, &fi, F2Ieq) && fitsBx(fi))
  593. codeAsBx(fs, OP_LOADF, reg, cast_int(fi));
  594. else
  595. luaK_codek(fs, reg, luaK_numberK(fs, f));
  596. }
  597. /*
  598. ** Convert a constant in 'v' into an expression description 'e'
  599. */
  600. static void const2exp (TValue *v, expdesc *e) {
  601. switch (ttypetag(v)) {
  602. case LUA_VNUMINT:
  603. e->k = VKINT; e->u.ival = ivalue(v);
  604. break;
  605. case LUA_VNUMFLT:
  606. e->k = VKFLT; e->u.nval = fltvalue(v);
  607. break;
  608. case LUA_VFALSE:
  609. e->k = VFALSE;
  610. break;
  611. case LUA_VTRUE:
  612. e->k = VTRUE;
  613. break;
  614. case LUA_VNIL:
  615. e->k = VNIL;
  616. break;
  617. case LUA_VSHRSTR: case LUA_VLNGSTR:
  618. e->k = VKSTR; e->u.strval = tsvalue(v);
  619. break;
  620. default: lua_assert(0);
  621. }
  622. }
  623. /*
  624. ** Fix an expression to return the number of results 'nresults'.
  625. ** 'e' must be a multi-ret expression (function call or vararg).
  626. */
  627. void luaK_setreturns (FuncState *fs, expdesc *e, int nresults) {
  628. Instruction *pc = &getinstruction(fs, e);
  629. luaY_checklimit(fs, nresults + 1, MAXARG_C, "multiple results");
  630. if (e->k == VCALL) /* expression is an open function call? */
  631. SETARG_C(*pc, nresults + 1);
  632. else {
  633. lua_assert(e->k == VVARARG);
  634. SETARG_C(*pc, nresults + 1);
  635. SETARG_A(*pc, fs->freereg);
  636. luaK_reserveregs(fs, 1);
  637. }
  638. }
  639. /*
  640. ** Convert a VKSTR to a VK
  641. */
  642. static void str2K (FuncState *fs, expdesc *e) {
  643. lua_assert(e->k == VKSTR);
  644. e->u.info = stringK(fs, e->u.strval);
  645. e->k = VK;
  646. }
  647. /*
  648. ** Fix an expression to return one result.
  649. ** If expression is not a multi-ret expression (function call or
  650. ** vararg), it already returns one result, so nothing needs to be done.
  651. ** Function calls become VNONRELOC expressions (as its result comes
  652. ** fixed in the base register of the call), while vararg expressions
  653. ** become VRELOC (as OP_VARARG puts its results where it wants).
  654. ** (Calls are created returning one result, so that does not need
  655. ** to be fixed.)
  656. */
  657. void luaK_setoneret (FuncState *fs, expdesc *e) {
  658. if (e->k == VCALL) { /* expression is an open function call? */
  659. /* already returns 1 value */
  660. lua_assert(GETARG_C(getinstruction(fs, e)) == 2);
  661. e->k = VNONRELOC; /* result has fixed position */
  662. e->u.info = GETARG_A(getinstruction(fs, e));
  663. }
  664. else if (e->k == VVARARG) {
  665. SETARG_C(getinstruction(fs, e), 2);
  666. e->k = VRELOC; /* can relocate its simple result */
  667. }
  668. }
  669. /*
  670. ** Ensure that expression 'e' is not a variable (nor a <const>).
  671. ** (Expression still may have jump lists.)
  672. */
  673. void luaK_dischargevars (FuncState *fs, expdesc *e) {
  674. switch (e->k) {
  675. case VCONST: {
  676. const2exp(const2val(fs, e), e);
  677. break;
  678. }
  679. case VLOCAL: { /* already in a register */
  680. int temp = e->u.var.ridx;
  681. e->u.info = temp; /* (can't do a direct assignment; values overlap) */
  682. e->k = VNONRELOC; /* becomes a non-relocatable value */
  683. break;
  684. }
  685. case VUPVAL: { /* move value to some (pending) register */
  686. e->u.info = luaK_codeABC(fs, OP_GETUPVAL, 0, e->u.info, 0);
  687. e->k = VRELOC;
  688. break;
  689. }
  690. case VINDEXUP: {
  691. e->u.info = luaK_codeABC(fs, OP_GETTABUP, 0, e->u.ind.t, e->u.ind.idx);
  692. e->k = VRELOC;
  693. break;
  694. }
  695. case VINDEXI: {
  696. freereg(fs, e->u.ind.t);
  697. e->u.info = luaK_codeABC(fs, OP_GETI, 0, e->u.ind.t, e->u.ind.idx);
  698. e->k = VRELOC;
  699. break;
  700. }
  701. case VINDEXSTR: {
  702. freereg(fs, e->u.ind.t);
  703. e->u.info = luaK_codeABC(fs, OP_GETFIELD, 0, e->u.ind.t, e->u.ind.idx);
  704. e->k = VRELOC;
  705. break;
  706. }
  707. case VINDEXED: {
  708. freeregs(fs, e->u.ind.t, e->u.ind.idx);
  709. e->u.info = luaK_codeABC(fs, OP_GETTABLE, 0, e->u.ind.t, e->u.ind.idx);
  710. e->k = VRELOC;
  711. break;
  712. }
  713. case VVARARG: case VCALL: {
  714. luaK_setoneret(fs, e);
  715. break;
  716. }
  717. default: break; /* there is one value available (somewhere) */
  718. }
  719. }
  720. /*
  721. ** Ensure expression value is in register 'reg', making 'e' a
  722. ** non-relocatable expression.
  723. ** (Expression still may have jump lists.)
  724. */
  725. static void discharge2reg (FuncState *fs, expdesc *e, int reg) {
  726. luaK_dischargevars(fs, e);
  727. switch (e->k) {
  728. case VNIL: {
  729. luaK_nil(fs, reg, 1);
  730. break;
  731. }
  732. case VFALSE: {
  733. luaK_codeABC(fs, OP_LOADFALSE, reg, 0, 0);
  734. break;
  735. }
  736. case VTRUE: {
  737. luaK_codeABC(fs, OP_LOADTRUE, reg, 0, 0);
  738. break;
  739. }
  740. case VKSTR: {
  741. str2K(fs, e);
  742. } /* FALLTHROUGH */
  743. case VK: {
  744. luaK_codek(fs, reg, e->u.info);
  745. break;
  746. }
  747. case VKFLT: {
  748. luaK_float(fs, reg, e->u.nval);
  749. break;
  750. }
  751. case VKINT: {
  752. luaK_int(fs, reg, e->u.ival);
  753. break;
  754. }
  755. case VRELOC: {
  756. Instruction *pc = &getinstruction(fs, e);
  757. SETARG_A(*pc, reg); /* instruction will put result in 'reg' */
  758. break;
  759. }
  760. case VNONRELOC: {
  761. if (reg != e->u.info)
  762. luaK_codeABC(fs, OP_MOVE, reg, e->u.info, 0);
  763. break;
  764. }
  765. default: {
  766. lua_assert(e->k == VJMP);
  767. return; /* nothing to do... */
  768. }
  769. }
  770. e->u.info = reg;
  771. e->k = VNONRELOC;
  772. }
  773. /*
  774. ** Ensure expression value is in a register, making 'e' a
  775. ** non-relocatable expression.
  776. ** (Expression still may have jump lists.)
  777. */
  778. static void discharge2anyreg (FuncState *fs, expdesc *e) {
  779. if (e->k != VNONRELOC) { /* no fixed register yet? */
  780. luaK_reserveregs(fs, 1); /* get a register */
  781. discharge2reg(fs, e, fs->freereg-1); /* put value there */
  782. }
  783. }
  784. static int code_loadbool (FuncState *fs, int A, OpCode op) {
  785. luaK_getlabel(fs); /* those instructions may be jump targets */
  786. return luaK_codeABC(fs, op, A, 0, 0);
  787. }
  788. /*
  789. ** check whether list has any jump that do not produce a value
  790. ** or produce an inverted value
  791. */
  792. static int need_value (FuncState *fs, int list) {
  793. for (; list != NO_JUMP; list = getjump(fs, list)) {
  794. Instruction i = *getjumpcontrol(fs, list);
  795. if (GET_OPCODE(i) != OP_TESTSET) return 1;
  796. }
  797. return 0; /* not found */
  798. }
  799. /*
  800. ** Ensures final expression result (which includes results from its
  801. ** jump lists) is in register 'reg'.
  802. ** If expression has jumps, need to patch these jumps either to
  803. ** its final position or to "load" instructions (for those tests
  804. ** that do not produce values).
  805. */
  806. static void exp2reg (FuncState *fs, expdesc *e, int reg) {
  807. discharge2reg(fs, e, reg);
  808. if (e->k == VJMP) /* expression itself is a test? */
  809. luaK_concat(fs, &e->t, e->u.info); /* put this jump in 't' list */
  810. if (hasjumps(e)) {
  811. int final; /* position after whole expression */
  812. int p_f = NO_JUMP; /* position of an eventual LOAD false */
  813. int p_t = NO_JUMP; /* position of an eventual LOAD true */
  814. if (need_value(fs, e->t) || need_value(fs, e->f)) {
  815. int fj = (e->k == VJMP) ? NO_JUMP : luaK_jump(fs);
  816. p_f = code_loadbool(fs, reg, OP_LFALSESKIP); /* skip next inst. */
  817. p_t = code_loadbool(fs, reg, OP_LOADTRUE);
  818. /* jump around these booleans if 'e' is not a test */
  819. luaK_patchtohere(fs, fj);
  820. }
  821. final = luaK_getlabel(fs);
  822. patchlistaux(fs, e->f, final, reg, p_f);
  823. patchlistaux(fs, e->t, final, reg, p_t);
  824. }
  825. e->f = e->t = NO_JUMP;
  826. e->u.info = reg;
  827. e->k = VNONRELOC;
  828. }
  829. /*
  830. ** Ensures final expression result is in next available register.
  831. */
  832. void luaK_exp2nextreg (FuncState *fs, expdesc *e) {
  833. luaK_dischargevars(fs, e);
  834. freeexp(fs, e);
  835. luaK_reserveregs(fs, 1);
  836. exp2reg(fs, e, fs->freereg - 1);
  837. }
  838. /*
  839. ** Ensures final expression result is in some (any) register
  840. ** and return that register.
  841. */
  842. int luaK_exp2anyreg (FuncState *fs, expdesc *e) {
  843. luaK_dischargevars(fs, e);
  844. if (e->k == VNONRELOC) { /* expression already has a register? */
  845. if (!hasjumps(e)) /* no jumps? */
  846. return e->u.info; /* result is already in a register */
  847. if (e->u.info >= luaY_nvarstack(fs)) { /* reg. is not a local? */
  848. exp2reg(fs, e, e->u.info); /* put final result in it */
  849. return e->u.info;
  850. }
  851. /* else expression has jumps and cannot change its register
  852. to hold the jump values, because it is a local variable.
  853. Go through to the default case. */
  854. }
  855. luaK_exp2nextreg(fs, e); /* default: use next available register */
  856. return e->u.info;
  857. }
  858. /*
  859. ** Ensures final expression result is either in a register
  860. ** or in an upvalue.
  861. */
  862. void luaK_exp2anyregup (FuncState *fs, expdesc *e) {
  863. if (e->k != VUPVAL || hasjumps(e))
  864. luaK_exp2anyreg(fs, e);
  865. }
  866. /*
  867. ** Ensures final expression result is either in a register
  868. ** or it is a constant.
  869. */
  870. void luaK_exp2val (FuncState *fs, expdesc *e) {
  871. if (e->k == VJMP || hasjumps(e))
  872. luaK_exp2anyreg(fs, e);
  873. else
  874. luaK_dischargevars(fs, e);
  875. }
  876. /*
  877. ** Try to make 'e' a K expression with an index in the range of R/K
  878. ** indices. Return true iff succeeded.
  879. */
  880. static int luaK_exp2K (FuncState *fs, expdesc *e) {
  881. if (!hasjumps(e)) {
  882. int info;
  883. switch (e->k) { /* move constants to 'k' */
  884. case VTRUE: info = boolT(fs); break;
  885. case VFALSE: info = boolF(fs); break;
  886. case VNIL: info = nilK(fs); break;
  887. case VKINT: info = luaK_intK(fs, e->u.ival); break;
  888. case VKFLT: info = luaK_numberK(fs, e->u.nval); break;
  889. case VKSTR: info = stringK(fs, e->u.strval); break;
  890. case VK: info = e->u.info; break;
  891. default: return 0; /* not a constant */
  892. }
  893. if (info <= MAXINDEXRK) { /* does constant fit in 'argC'? */
  894. e->k = VK; /* make expression a 'K' expression */
  895. e->u.info = info;
  896. return 1;
  897. }
  898. }
  899. /* else, expression doesn't fit; leave it unchanged */
  900. return 0;
  901. }
  902. /*
  903. ** Ensures final expression result is in a valid R/K index
  904. ** (that is, it is either in a register or in 'k' with an index
  905. ** in the range of R/K indices).
  906. ** Returns 1 iff expression is K.
  907. */
  908. static int exp2RK (FuncState *fs, expdesc *e) {
  909. if (luaK_exp2K(fs, e))
  910. return 1;
  911. else { /* not a constant in the right range: put it in a register */
  912. luaK_exp2anyreg(fs, e);
  913. return 0;
  914. }
  915. }
  916. static void codeABRK (FuncState *fs, OpCode o, int A, int B,
  917. expdesc *ec) {
  918. int k = exp2RK(fs, ec);
  919. luaK_codeABCk(fs, o, A, B, ec->u.info, k);
  920. }
  921. /*
  922. ** Generate code to store result of expression 'ex' into variable 'var'.
  923. */
  924. void luaK_storevar (FuncState *fs, expdesc *var, expdesc *ex) {
  925. switch (var->k) {
  926. case VLOCAL: {
  927. freeexp(fs, ex);
  928. exp2reg(fs, ex, var->u.var.ridx); /* compute 'ex' into proper place */
  929. return;
  930. }
  931. case VUPVAL: {
  932. int e = luaK_exp2anyreg(fs, ex);
  933. luaK_codeABC(fs, OP_SETUPVAL, e, var->u.info, 0);
  934. break;
  935. }
  936. case VINDEXUP: {
  937. codeABRK(fs, OP_SETTABUP, var->u.ind.t, var->u.ind.idx, ex);
  938. break;
  939. }
  940. case VINDEXI: {
  941. codeABRK(fs, OP_SETI, var->u.ind.t, var->u.ind.idx, ex);
  942. break;
  943. }
  944. case VINDEXSTR: {
  945. codeABRK(fs, OP_SETFIELD, var->u.ind.t, var->u.ind.idx, ex);
  946. break;
  947. }
  948. case VINDEXED: {
  949. codeABRK(fs, OP_SETTABLE, var->u.ind.t, var->u.ind.idx, ex);
  950. break;
  951. }
  952. default: lua_assert(0); /* invalid var kind to store */
  953. }
  954. freeexp(fs, ex);
  955. }
  956. /*
  957. ** Negate condition 'e' (where 'e' is a comparison).
  958. */
  959. static void negatecondition (FuncState *fs, expdesc *e) {
  960. Instruction *pc = getjumpcontrol(fs, e->u.info);
  961. lua_assert(testTMode(GET_OPCODE(*pc)) && GET_OPCODE(*pc) != OP_TESTSET &&
  962. GET_OPCODE(*pc) != OP_TEST);
  963. SETARG_k(*pc, (GETARG_k(*pc) ^ 1));
  964. }
  965. /*
  966. ** Emit instruction to jump if 'e' is 'cond' (that is, if 'cond'
  967. ** is true, code will jump if 'e' is true.) Return jump position.
  968. ** Optimize when 'e' is 'not' something, inverting the condition
  969. ** and removing the 'not'.
  970. */
  971. static int jumponcond (FuncState *fs, expdesc *e, int cond) {
  972. if (e->k == VRELOC) {
  973. Instruction ie = getinstruction(fs, e);
  974. if (GET_OPCODE(ie) == OP_NOT) {
  975. removelastinstruction(fs); /* remove previous OP_NOT */
  976. return condjump(fs, OP_TEST, GETARG_B(ie), 0, 0, !cond);
  977. }
  978. /* else go through */
  979. }
  980. discharge2anyreg(fs, e);
  981. freeexp(fs, e);
  982. return condjump(fs, OP_TESTSET, NO_REG, e->u.info, 0, cond);
  983. }
  984. /*
  985. ** Emit code to go through if 'e' is true, jump otherwise.
  986. */
  987. void luaK_goiftrue (FuncState *fs, expdesc *e) {
  988. int pc; /* pc of new jump */
  989. luaK_dischargevars(fs, e);
  990. switch (e->k) {
  991. case VJMP: { /* condition? */
  992. negatecondition(fs, e); /* jump when it is false */
  993. pc = e->u.info; /* save jump position */
  994. break;
  995. }
  996. case VK: case VKFLT: case VKINT: case VKSTR: case VTRUE: {
  997. pc = NO_JUMP; /* always true; do nothing */
  998. break;
  999. }
  1000. default: {
  1001. pc = jumponcond(fs, e, 0); /* jump when false */
  1002. break;
  1003. }
  1004. }
  1005. luaK_concat(fs, &e->f, pc); /* insert new jump in false list */
  1006. luaK_patchtohere(fs, e->t); /* true list jumps to here (to go through) */
  1007. e->t = NO_JUMP;
  1008. }
  1009. /*
  1010. ** Emit code to go through if 'e' is false, jump otherwise.
  1011. */
  1012. void luaK_goiffalse (FuncState *fs, expdesc *e) {
  1013. int pc; /* pc of new jump */
  1014. luaK_dischargevars(fs, e);
  1015. switch (e->k) {
  1016. case VJMP: {
  1017. pc = e->u.info; /* already jump if true */
  1018. break;
  1019. }
  1020. case VNIL: case VFALSE: {
  1021. pc = NO_JUMP; /* always false; do nothing */
  1022. break;
  1023. }
  1024. default: {
  1025. pc = jumponcond(fs, e, 1); /* jump if true */
  1026. break;
  1027. }
  1028. }
  1029. luaK_concat(fs, &e->t, pc); /* insert new jump in 't' list */
  1030. luaK_patchtohere(fs, e->f); /* false list jumps to here (to go through) */
  1031. e->f = NO_JUMP;
  1032. }
  1033. /*
  1034. ** Code 'not e', doing constant folding.
  1035. */
  1036. static void codenot (FuncState *fs, expdesc *e) {
  1037. switch (e->k) {
  1038. case VNIL: case VFALSE: {
  1039. e->k = VTRUE; /* true == not nil == not false */
  1040. break;
  1041. }
  1042. case VK: case VKFLT: case VKINT: case VKSTR: case VTRUE: {
  1043. e->k = VFALSE; /* false == not "x" == not 0.5 == not 1 == not true */
  1044. break;
  1045. }
  1046. case VJMP: {
  1047. negatecondition(fs, e);
  1048. break;
  1049. }
  1050. case VRELOC:
  1051. case VNONRELOC: {
  1052. discharge2anyreg(fs, e);
  1053. freeexp(fs, e);
  1054. e->u.info = luaK_codeABC(fs, OP_NOT, 0, e->u.info, 0);
  1055. e->k = VRELOC;
  1056. break;
  1057. }
  1058. default: lua_assert(0); /* cannot happen */
  1059. }
  1060. /* interchange true and false lists */
  1061. { int temp = e->f; e->f = e->t; e->t = temp; }
  1062. removevalues(fs, e->f); /* values are useless when negated */
  1063. removevalues(fs, e->t);
  1064. }
  1065. /*
  1066. ** Check whether expression 'e' is a short literal string
  1067. */
  1068. static int isKstr (FuncState *fs, expdesc *e) {
  1069. return (e->k == VK && !hasjumps(e) && e->u.info <= MAXARG_B &&
  1070. ttisshrstring(&fs->f->k[e->u.info]));
  1071. }
  1072. /*
  1073. ** Check whether expression 'e' is a literal integer.
  1074. */
  1075. static int isKint (expdesc *e) {
  1076. return (e->k == VKINT && !hasjumps(e));
  1077. }
  1078. /*
  1079. ** Check whether expression 'e' is a literal integer in
  1080. ** proper range to fit in register C
  1081. */
  1082. static int isCint (expdesc *e) {
  1083. return isKint(e) && (l_castS2U(e->u.ival) <= l_castS2U(MAXARG_C));
  1084. }
  1085. /*
  1086. ** Check whether expression 'e' is a literal integer in
  1087. ** proper range to fit in register sC
  1088. */
  1089. static int isSCint (expdesc *e) {
  1090. return isKint(e) && fitsC(e->u.ival);
  1091. }
  1092. /*
  1093. ** Check whether expression 'e' is a literal integer or float in
  1094. ** proper range to fit in a register (sB or sC).
  1095. */
  1096. static int isSCnumber (expdesc *e, int *pi, int *isfloat) {
  1097. lua_Integer i;
  1098. if (e->k == VKINT)
  1099. i = e->u.ival;
  1100. else if (e->k == VKFLT && luaV_flttointeger(e->u.nval, &i, F2Ieq))
  1101. *isfloat = 1;
  1102. else
  1103. return 0; /* not a number */
  1104. if (!hasjumps(e) && fitsC(i)) {
  1105. *pi = int2sC(cast_int(i));
  1106. return 1;
  1107. }
  1108. else
  1109. return 0;
  1110. }
  1111. /*
  1112. ** Emit SELF instruction or equivalent: the code will convert
  1113. ** expression 'e' into 'e.key(e,'.
  1114. */
  1115. void luaK_self (FuncState *fs, expdesc *e, expdesc *key) {
  1116. int ereg, base;
  1117. luaK_exp2anyreg(fs, e);
  1118. ereg = e->u.info; /* register where 'e' (the receiver) was placed */
  1119. freeexp(fs, e);
  1120. base = e->u.info = fs->freereg; /* base register for op_self */
  1121. e->k = VNONRELOC; /* self expression has a fixed register */
  1122. luaK_reserveregs(fs, 2); /* method and 'self' produced by op_self */
  1123. lua_assert(key->k == VKSTR);
  1124. /* is method name a short string in a valid K index? */
  1125. if (strisshr(key->u.strval) && luaK_exp2K(fs, key)) {
  1126. /* can use 'self' opcode */
  1127. luaK_codeABCk(fs, OP_SELF, base, ereg, key->u.info, 0);
  1128. }
  1129. else { /* cannot use 'self' opcode; use move+gettable */
  1130. luaK_exp2anyreg(fs, key); /* put method name in a register */
  1131. luaK_codeABC(fs, OP_MOVE, base + 1, ereg, 0); /* copy self to base+1 */
  1132. luaK_codeABC(fs, OP_GETTABLE, base, ereg, key->u.info); /* get method */
  1133. }
  1134. freeexp(fs, key);
  1135. }
  1136. /*
  1137. ** Create expression 't[k]'. 't' must have its final result already in a
  1138. ** register or upvalue. Upvalues can only be indexed by literal strings.
  1139. ** Keys can be literal strings in the constant table or arbitrary
  1140. ** values in registers.
  1141. */
  1142. void luaK_indexed (FuncState *fs, expdesc *t, expdesc *k) {
  1143. if (k->k == VKSTR)
  1144. str2K(fs, k);
  1145. lua_assert(!hasjumps(t) &&
  1146. (t->k == VLOCAL || t->k == VNONRELOC || t->k == VUPVAL));
  1147. if (t->k == VUPVAL && !isKstr(fs, k)) /* upvalue indexed by non 'Kstr'? */
  1148. luaK_exp2anyreg(fs, t); /* put it in a register */
  1149. if (t->k == VUPVAL) {
  1150. lu_byte temp = cast_byte(t->u.info); /* upvalue index */
  1151. lua_assert(isKstr(fs, k));
  1152. t->u.ind.t = temp; /* (can't do a direct assignment; values overlap) */
  1153. t->u.ind.idx = cast(short, k->u.info); /* literal short string */
  1154. t->k = VINDEXUP;
  1155. }
  1156. else {
  1157. /* register index of the table */
  1158. t->u.ind.t = cast_byte((t->k == VLOCAL) ? t->u.var.ridx: t->u.info);
  1159. if (isKstr(fs, k)) {
  1160. t->u.ind.idx = cast(short, k->u.info); /* literal short string */
  1161. t->k = VINDEXSTR;
  1162. }
  1163. else if (isCint(k)) { /* int. constant in proper range? */
  1164. t->u.ind.idx = cast(short, k->u.ival);
  1165. t->k = VINDEXI;
  1166. }
  1167. else {
  1168. t->u.ind.idx = cast(short, luaK_exp2anyreg(fs, k)); /* register */
  1169. t->k = VINDEXED;
  1170. }
  1171. }
  1172. }
  1173. /*
  1174. ** Return false if folding can raise an error.
  1175. ** Bitwise operations need operands convertible to integers; division
  1176. ** operations cannot have 0 as divisor.
  1177. */
  1178. static int validop (int op, TValue *v1, TValue *v2) {
  1179. switch (op) {
  1180. case LUA_OPBAND: case LUA_OPBOR: case LUA_OPBXOR:
  1181. case LUA_OPSHL: case LUA_OPSHR: case LUA_OPBNOT: { /* conversion errors */
  1182. lua_Integer i;
  1183. return (luaV_tointegerns(v1, &i, LUA_FLOORN2I) &&
  1184. luaV_tointegerns(v2, &i, LUA_FLOORN2I));
  1185. }
  1186. case LUA_OPDIV: case LUA_OPIDIV: case LUA_OPMOD: /* division by 0 */
  1187. return (nvalue(v2) != 0);
  1188. default: return 1; /* everything else is valid */
  1189. }
  1190. }
  1191. /*
  1192. ** Try to "constant-fold" an operation; return 1 iff successful.
  1193. ** (In this case, 'e1' has the final result.)
  1194. */
  1195. static int constfolding (FuncState *fs, int op, expdesc *e1,
  1196. const expdesc *e2) {
  1197. TValue v1, v2, res;
  1198. if (!tonumeral(e1, &v1) || !tonumeral(e2, &v2) || !validop(op, &v1, &v2))
  1199. return 0; /* non-numeric operands or not safe to fold */
  1200. luaO_rawarith(fs->ls->L, op, &v1, &v2, &res); /* does operation */
  1201. if (ttisinteger(&res)) {
  1202. e1->k = VKINT;
  1203. e1->u.ival = ivalue(&res);
  1204. }
  1205. else { /* folds neither NaN nor 0.0 (to avoid problems with -0.0) */
  1206. lua_Number n = fltvalue(&res);
  1207. if (luai_numisnan(n) || n == 0)
  1208. return 0;
  1209. e1->k = VKFLT;
  1210. e1->u.nval = n;
  1211. }
  1212. return 1;
  1213. }
  1214. /*
  1215. ** Convert a BinOpr to an OpCode (ORDER OPR - ORDER OP)
  1216. */
  1217. l_sinline OpCode binopr2op (BinOpr opr, BinOpr baser, OpCode base) {
  1218. lua_assert(baser <= opr &&
  1219. ((baser == OPR_ADD && opr <= OPR_SHR) ||
  1220. (baser == OPR_LT && opr <= OPR_LE)));
  1221. return cast(OpCode, (cast_int(opr) - cast_int(baser)) + cast_int(base));
  1222. }
  1223. /*
  1224. ** Convert a UnOpr to an OpCode (ORDER OPR - ORDER OP)
  1225. */
  1226. l_sinline OpCode unopr2op (UnOpr opr) {
  1227. return cast(OpCode, (cast_int(opr) - cast_int(OPR_MINUS)) +
  1228. cast_int(OP_UNM));
  1229. }
  1230. /*
  1231. ** Convert a BinOpr to a tag method (ORDER OPR - ORDER TM)
  1232. */
  1233. l_sinline TMS binopr2TM (BinOpr opr) {
  1234. lua_assert(OPR_ADD <= opr && opr <= OPR_SHR);
  1235. return cast(TMS, (cast_int(opr) - cast_int(OPR_ADD)) + cast_int(TM_ADD));
  1236. }
  1237. /*
  1238. ** Emit code for unary expressions that "produce values"
  1239. ** (everything but 'not').
  1240. ** Expression to produce final result will be encoded in 'e'.
  1241. */
  1242. static void codeunexpval (FuncState *fs, OpCode op, expdesc *e, int line) {
  1243. int r = luaK_exp2anyreg(fs, e); /* opcodes operate only on registers */
  1244. freeexp(fs, e);
  1245. e->u.info = luaK_codeABC(fs, op, 0, r, 0); /* generate opcode */
  1246. e->k = VRELOC; /* all those operations are relocatable */
  1247. luaK_fixline(fs, line);
  1248. }
  1249. /*
  1250. ** Emit code for binary expressions that "produce values"
  1251. ** (everything but logical operators 'and'/'or' and comparison
  1252. ** operators).
  1253. ** Expression to produce final result will be encoded in 'e1'.
  1254. */
  1255. static void finishbinexpval (FuncState *fs, expdesc *e1, expdesc *e2,
  1256. OpCode op, int v2, int flip, int line,
  1257. OpCode mmop, TMS event) {
  1258. int v1 = luaK_exp2anyreg(fs, e1);
  1259. int pc = luaK_codeABCk(fs, op, 0, v1, v2, 0);
  1260. freeexps(fs, e1, e2);
  1261. e1->u.info = pc;
  1262. e1->k = VRELOC; /* all those operations are relocatable */
  1263. luaK_fixline(fs, line);
  1264. luaK_codeABCk(fs, mmop, v1, v2, cast_int(event), flip); /* metamethod */
  1265. luaK_fixline(fs, line);
  1266. }
  1267. /*
  1268. ** Emit code for binary expressions that "produce values" over
  1269. ** two registers.
  1270. */
  1271. static void codebinexpval (FuncState *fs, BinOpr opr,
  1272. expdesc *e1, expdesc *e2, int line) {
  1273. OpCode op = binopr2op(opr, OPR_ADD, OP_ADD);
  1274. int v2 = luaK_exp2anyreg(fs, e2); /* make sure 'e2' is in a register */
  1275. /* 'e1' must be already in a register or it is a constant */
  1276. lua_assert((VNIL <= e1->k && e1->k <= VKSTR) ||
  1277. e1->k == VNONRELOC || e1->k == VRELOC);
  1278. lua_assert(OP_ADD <= op && op <= OP_SHR);
  1279. finishbinexpval(fs, e1, e2, op, v2, 0, line, OP_MMBIN, binopr2TM(opr));
  1280. }
  1281. /*
  1282. ** Code binary operators with immediate operands.
  1283. */
  1284. static void codebini (FuncState *fs, OpCode op,
  1285. expdesc *e1, expdesc *e2, int flip, int line,
  1286. TMS event) {
  1287. int v2 = int2sC(cast_int(e2->u.ival)); /* immediate operand */
  1288. lua_assert(e2->k == VKINT);
  1289. finishbinexpval(fs, e1, e2, op, v2, flip, line, OP_MMBINI, event);
  1290. }
  1291. /*
  1292. ** Code binary operators with K operand.
  1293. */
  1294. static void codebinK (FuncState *fs, BinOpr opr,
  1295. expdesc *e1, expdesc *e2, int flip, int line) {
  1296. TMS event = binopr2TM(opr);
  1297. int v2 = e2->u.info; /* K index */
  1298. OpCode op = binopr2op(opr, OPR_ADD, OP_ADDK);
  1299. finishbinexpval(fs, e1, e2, op, v2, flip, line, OP_MMBINK, event);
  1300. }
  1301. /* Try to code a binary operator negating its second operand.
  1302. ** For the metamethod, 2nd operand must keep its original value.
  1303. */
  1304. static int finishbinexpneg (FuncState *fs, expdesc *e1, expdesc *e2,
  1305. OpCode op, int line, TMS event) {
  1306. if (!isKint(e2))
  1307. return 0; /* not an integer constant */
  1308. else {
  1309. lua_Integer i2 = e2->u.ival;
  1310. if (!(fitsC(i2) && fitsC(-i2)))
  1311. return 0; /* not in the proper range */
  1312. else { /* operating a small integer constant */
  1313. int v2 = cast_int(i2);
  1314. finishbinexpval(fs, e1, e2, op, int2sC(-v2), 0, line, OP_MMBINI, event);
  1315. /* correct metamethod argument */
  1316. SETARG_B(fs->f->code[fs->pc - 1], int2sC(v2));
  1317. return 1; /* successfully coded */
  1318. }
  1319. }
  1320. }
  1321. static void swapexps (expdesc *e1, expdesc *e2) {
  1322. expdesc temp = *e1; *e1 = *e2; *e2 = temp; /* swap 'e1' and 'e2' */
  1323. }
  1324. /*
  1325. ** Code binary operators with no constant operand.
  1326. */
  1327. static void codebinNoK (FuncState *fs, BinOpr opr,
  1328. expdesc *e1, expdesc *e2, int flip, int line) {
  1329. if (flip)
  1330. swapexps(e1, e2); /* back to original order */
  1331. codebinexpval(fs, opr, e1, e2, line); /* use standard operators */
  1332. }
  1333. /*
  1334. ** Code arithmetic operators ('+', '-', ...). If second operand is a
  1335. ** constant in the proper range, use variant opcodes with K operands.
  1336. */
  1337. static void codearith (FuncState *fs, BinOpr opr,
  1338. expdesc *e1, expdesc *e2, int flip, int line) {
  1339. if (tonumeral(e2, NULL) && luaK_exp2K(fs, e2)) /* K operand? */
  1340. codebinK(fs, opr, e1, e2, flip, line);
  1341. else /* 'e2' is neither an immediate nor a K operand */
  1342. codebinNoK(fs, opr, e1, e2, flip, line);
  1343. }
  1344. /*
  1345. ** Code commutative operators ('+', '*'). If first operand is a
  1346. ** numeric constant, change order of operands to try to use an
  1347. ** immediate or K operator.
  1348. */
  1349. static void codecommutative (FuncState *fs, BinOpr op,
  1350. expdesc *e1, expdesc *e2, int line) {
  1351. int flip = 0;
  1352. if (tonumeral(e1, NULL)) { /* is first operand a numeric constant? */
  1353. swapexps(e1, e2); /* change order */
  1354. flip = 1;
  1355. }
  1356. if (op == OPR_ADD && isSCint(e2)) /* immediate operand? */
  1357. codebini(fs, OP_ADDI, e1, e2, flip, line, TM_ADD);
  1358. else
  1359. codearith(fs, op, e1, e2, flip, line);
  1360. }
  1361. /*
  1362. ** Code bitwise operations; they are all commutative, so the function
  1363. ** tries to put an integer constant as the 2nd operand (a K operand).
  1364. */
  1365. static void codebitwise (FuncState *fs, BinOpr opr,
  1366. expdesc *e1, expdesc *e2, int line) {
  1367. int flip = 0;
  1368. if (e1->k == VKINT) {
  1369. swapexps(e1, e2); /* 'e2' will be the constant operand */
  1370. flip = 1;
  1371. }
  1372. if (e2->k == VKINT && luaK_exp2K(fs, e2)) /* K operand? */
  1373. codebinK(fs, opr, e1, e2, flip, line);
  1374. else /* no constants */
  1375. codebinNoK(fs, opr, e1, e2, flip, line);
  1376. }
  1377. /*
  1378. ** Emit code for order comparisons. When using an immediate operand,
  1379. ** 'isfloat' tells whether the original value was a float.
  1380. */
  1381. static void codeorder (FuncState *fs, BinOpr opr, expdesc *e1, expdesc *e2) {
  1382. int r1, r2;
  1383. int im;
  1384. int isfloat = 0;
  1385. OpCode op;
  1386. if (isSCnumber(e2, &im, &isfloat)) {
  1387. /* use immediate operand */
  1388. r1 = luaK_exp2anyreg(fs, e1);
  1389. r2 = im;
  1390. op = binopr2op(opr, OPR_LT, OP_LTI);
  1391. }
  1392. else if (isSCnumber(e1, &im, &isfloat)) {
  1393. /* transform (A < B) to (B > A) and (A <= B) to (B >= A) */
  1394. r1 = luaK_exp2anyreg(fs, e2);
  1395. r2 = im;
  1396. op = binopr2op(opr, OPR_LT, OP_GTI);
  1397. }
  1398. else { /* regular case, compare two registers */
  1399. r1 = luaK_exp2anyreg(fs, e1);
  1400. r2 = luaK_exp2anyreg(fs, e2);
  1401. op = binopr2op(opr, OPR_LT, OP_LT);
  1402. }
  1403. freeexps(fs, e1, e2);
  1404. e1->u.info = condjump(fs, op, r1, r2, isfloat, 1);
  1405. e1->k = VJMP;
  1406. }
  1407. /*
  1408. ** Emit code for equality comparisons ('==', '~=').
  1409. ** 'e1' was already put as RK by 'luaK_infix'.
  1410. */
  1411. static void codeeq (FuncState *fs, BinOpr opr, expdesc *e1, expdesc *e2) {
  1412. int r1, r2;
  1413. int im;
  1414. int isfloat = 0; /* not needed here, but kept for symmetry */
  1415. OpCode op;
  1416. if (e1->k != VNONRELOC) {
  1417. lua_assert(e1->k == VK || e1->k == VKINT || e1->k == VKFLT);
  1418. swapexps(e1, e2);
  1419. }
  1420. r1 = luaK_exp2anyreg(fs, e1); /* 1st expression must be in register */
  1421. if (isSCnumber(e2, &im, &isfloat)) {
  1422. op = OP_EQI;
  1423. r2 = im; /* immediate operand */
  1424. }
  1425. else if (exp2RK(fs, e2)) { /* 2nd expression is constant? */
  1426. op = OP_EQK;
  1427. r2 = e2->u.info; /* constant index */
  1428. }
  1429. else {
  1430. op = OP_EQ; /* will compare two registers */
  1431. r2 = luaK_exp2anyreg(fs, e2);
  1432. }
  1433. freeexps(fs, e1, e2);
  1434. e1->u.info = condjump(fs, op, r1, r2, isfloat, (opr == OPR_EQ));
  1435. e1->k = VJMP;
  1436. }
  1437. /*
  1438. ** Apply prefix operation 'op' to expression 'e'.
  1439. */
  1440. void luaK_prefix (FuncState *fs, UnOpr opr, expdesc *e, int line) {
  1441. static const expdesc ef = {VKINT, {0}, NO_JUMP, NO_JUMP};
  1442. luaK_dischargevars(fs, e);
  1443. switch (opr) {
  1444. case OPR_MINUS: case OPR_BNOT: /* use 'ef' as fake 2nd operand */
  1445. if (constfolding(fs, cast_int(opr + LUA_OPUNM), e, &ef))
  1446. break;
  1447. /* else */ /* FALLTHROUGH */
  1448. case OPR_LEN:
  1449. codeunexpval(fs, unopr2op(opr), e, line);
  1450. break;
  1451. case OPR_NOT: codenot(fs, e); break;
  1452. default: lua_assert(0);
  1453. }
  1454. }
  1455. /*
  1456. ** Process 1st operand 'v' of binary operation 'op' before reading
  1457. ** 2nd operand.
  1458. */
  1459. void luaK_infix (FuncState *fs, BinOpr op, expdesc *v) {
  1460. luaK_dischargevars(fs, v);
  1461. switch (op) {
  1462. case OPR_AND: {
  1463. luaK_goiftrue(fs, v); /* go ahead only if 'v' is true */
  1464. break;
  1465. }
  1466. case OPR_OR: {
  1467. luaK_goiffalse(fs, v); /* go ahead only if 'v' is false */
  1468. break;
  1469. }
  1470. case OPR_CONCAT: {
  1471. luaK_exp2nextreg(fs, v); /* operand must be on the stack */
  1472. break;
  1473. }
  1474. case OPR_ADD: case OPR_SUB:
  1475. case OPR_MUL: case OPR_DIV: case OPR_IDIV:
  1476. case OPR_MOD: case OPR_POW:
  1477. case OPR_BAND: case OPR_BOR: case OPR_BXOR:
  1478. case OPR_SHL: case OPR_SHR: {
  1479. if (!tonumeral(v, NULL))
  1480. luaK_exp2anyreg(fs, v);
  1481. /* else keep numeral, which may be folded or used as an immediate
  1482. operand */
  1483. break;
  1484. }
  1485. case OPR_EQ: case OPR_NE: {
  1486. if (!tonumeral(v, NULL))
  1487. exp2RK(fs, v);
  1488. /* else keep numeral, which may be an immediate operand */
  1489. break;
  1490. }
  1491. case OPR_LT: case OPR_LE:
  1492. case OPR_GT: case OPR_GE: {
  1493. int dummy, dummy2;
  1494. if (!isSCnumber(v, &dummy, &dummy2))
  1495. luaK_exp2anyreg(fs, v);
  1496. /* else keep numeral, which may be an immediate operand */
  1497. break;
  1498. }
  1499. default: lua_assert(0);
  1500. }
  1501. }
  1502. /*
  1503. ** Create code for '(e1 .. e2)'.
  1504. ** For '(e1 .. e2.1 .. e2.2)' (which is '(e1 .. (e2.1 .. e2.2))',
  1505. ** because concatenation is right associative), merge both CONCATs.
  1506. */
  1507. static void codeconcat (FuncState *fs, expdesc *e1, expdesc *e2, int line) {
  1508. Instruction *ie2 = previousinstruction(fs);
  1509. if (GET_OPCODE(*ie2) == OP_CONCAT) { /* is 'e2' a concatenation? */
  1510. int n = GETARG_B(*ie2); /* # of elements concatenated in 'e2' */
  1511. lua_assert(e1->u.info + 1 == GETARG_A(*ie2));
  1512. freeexp(fs, e2);
  1513. SETARG_A(*ie2, e1->u.info); /* correct first element ('e1') */
  1514. SETARG_B(*ie2, n + 1); /* will concatenate one more element */
  1515. }
  1516. else { /* 'e2' is not a concatenation */
  1517. luaK_codeABC(fs, OP_CONCAT, e1->u.info, 2, 0); /* new concat opcode */
  1518. freeexp(fs, e2);
  1519. luaK_fixline(fs, line);
  1520. }
  1521. }
  1522. /*
  1523. ** Finalize code for binary operation, after reading 2nd operand.
  1524. */
  1525. void luaK_posfix (FuncState *fs, BinOpr opr,
  1526. expdesc *e1, expdesc *e2, int line) {
  1527. luaK_dischargevars(fs, e2);
  1528. if (foldbinop(opr) && constfolding(fs, cast_int(opr + LUA_OPADD), e1, e2))
  1529. return; /* done by folding */
  1530. switch (opr) {
  1531. case OPR_AND: {
  1532. lua_assert(e1->t == NO_JUMP); /* list closed by 'luaK_infix' */
  1533. luaK_concat(fs, &e2->f, e1->f);
  1534. *e1 = *e2;
  1535. break;
  1536. }
  1537. case OPR_OR: {
  1538. lua_assert(e1->f == NO_JUMP); /* list closed by 'luaK_infix' */
  1539. luaK_concat(fs, &e2->t, e1->t);
  1540. *e1 = *e2;
  1541. break;
  1542. }
  1543. case OPR_CONCAT: { /* e1 .. e2 */
  1544. luaK_exp2nextreg(fs, e2);
  1545. codeconcat(fs, e1, e2, line);
  1546. break;
  1547. }
  1548. case OPR_ADD: case OPR_MUL: {
  1549. codecommutative(fs, opr, e1, e2, line);
  1550. break;
  1551. }
  1552. case OPR_SUB: {
  1553. if (finishbinexpneg(fs, e1, e2, OP_ADDI, line, TM_SUB))
  1554. break; /* coded as (r1 + -I) */
  1555. /* ELSE */
  1556. } /* FALLTHROUGH */
  1557. case OPR_DIV: case OPR_IDIV: case OPR_MOD: case OPR_POW: {
  1558. codearith(fs, opr, e1, e2, 0, line);
  1559. break;
  1560. }
  1561. case OPR_BAND: case OPR_BOR: case OPR_BXOR: {
  1562. codebitwise(fs, opr, e1, e2, line);
  1563. break;
  1564. }
  1565. case OPR_SHL: {
  1566. if (isSCint(e1)) {
  1567. swapexps(e1, e2);
  1568. codebini(fs, OP_SHLI, e1, e2, 1, line, TM_SHL); /* I << r2 */
  1569. }
  1570. else if (finishbinexpneg(fs, e1, e2, OP_SHRI, line, TM_SHL)) {
  1571. /* coded as (r1 >> -I) */;
  1572. }
  1573. else /* regular case (two registers) */
  1574. codebinexpval(fs, opr, e1, e2, line);
  1575. break;
  1576. }
  1577. case OPR_SHR: {
  1578. if (isSCint(e2))
  1579. codebini(fs, OP_SHRI, e1, e2, 0, line, TM_SHR); /* r1 >> I */
  1580. else /* regular case (two registers) */
  1581. codebinexpval(fs, opr, e1, e2, line);
  1582. break;
  1583. }
  1584. case OPR_EQ: case OPR_NE: {
  1585. codeeq(fs, opr, e1, e2);
  1586. break;
  1587. }
  1588. case OPR_GT: case OPR_GE: {
  1589. /* '(a > b)' <=> '(b < a)'; '(a >= b)' <=> '(b <= a)' */
  1590. swapexps(e1, e2);
  1591. opr = cast(BinOpr, (opr - OPR_GT) + OPR_LT);
  1592. } /* FALLTHROUGH */
  1593. case OPR_LT: case OPR_LE: {
  1594. codeorder(fs, opr, e1, e2);
  1595. break;
  1596. }
  1597. default: lua_assert(0);
  1598. }
  1599. }
  1600. /*
  1601. ** Change line information associated with current position, by removing
  1602. ** previous info and adding it again with new line.
  1603. */
  1604. void luaK_fixline (FuncState *fs, int line) {
  1605. removelastlineinfo(fs);
  1606. savelineinfo(fs, fs->f, line);
  1607. }
  1608. void luaK_settablesize (FuncState *fs, int pc, int ra, int asize, int hsize) {
  1609. Instruction *inst = &fs->f->code[pc];
  1610. int extra = asize / (MAXARG_vC + 1); /* higher bits of array size */
  1611. int rc = asize % (MAXARG_vC + 1); /* lower bits of array size */
  1612. int k = (extra > 0); /* true iff needs extra argument */
  1613. hsize = (hsize != 0) ? luaO_ceillog2(cast_uint(hsize)) + 1 : 0;
  1614. *inst = CREATE_vABCk(OP_NEWTABLE, ra, hsize, rc, k);
  1615. *(inst + 1) = CREATE_Ax(OP_EXTRAARG, extra);
  1616. }
  1617. /*
  1618. ** Emit a SETLIST instruction.
  1619. ** 'base' is register that keeps table;
  1620. ** 'nelems' is #table plus those to be stored now;
  1621. ** 'tostore' is number of values (in registers 'base + 1',...) to add to
  1622. ** table (or LUA_MULTRET to add up to stack top).
  1623. */
  1624. void luaK_setlist (FuncState *fs, int base, int nelems, int tostore) {
  1625. lua_assert(tostore != 0);
  1626. if (tostore == LUA_MULTRET)
  1627. tostore = 0;
  1628. if (nelems <= MAXARG_vC)
  1629. luaK_codevABCk(fs, OP_SETLIST, base, tostore, nelems, 0);
  1630. else {
  1631. int extra = nelems / (MAXARG_vC + 1);
  1632. nelems %= (MAXARG_vC + 1);
  1633. luaK_codevABCk(fs, OP_SETLIST, base, tostore, nelems, 1);
  1634. codeextraarg(fs, extra);
  1635. }
  1636. fs->freereg = cast_byte(base + 1); /* free registers with list values */
  1637. }
  1638. /*
  1639. ** return the final target of a jump (skipping jumps to jumps)
  1640. */
  1641. static int finaltarget (Instruction *code, int i) {
  1642. int count;
  1643. for (count = 0; count < 100; count++) { /* avoid infinite loops */
  1644. Instruction pc = code[i];
  1645. if (GET_OPCODE(pc) != OP_JMP)
  1646. break;
  1647. else
  1648. i += GETARG_sJ(pc) + 1;
  1649. }
  1650. return i;
  1651. }
  1652. /*
  1653. ** Do a final pass over the code of a function, doing small peephole
  1654. ** optimizations and adjustments.
  1655. */
  1656. #include "lopnames.h"
  1657. void luaK_finish (FuncState *fs) {
  1658. int i;
  1659. Proto *p = fs->f;
  1660. for (i = 0; i < fs->pc; i++) {
  1661. Instruction *pc = &p->code[i];
  1662. /* avoid "not used" warnings when assert is off (for 'onelua.c') */
  1663. (void)luaP_isOT; (void)luaP_isIT;
  1664. lua_assert(i == 0 || luaP_isOT(*(pc - 1)) == luaP_isIT(*pc));
  1665. switch (GET_OPCODE(*pc)) {
  1666. case OP_RETURN0: case OP_RETURN1: {
  1667. if (!(fs->needclose || (p->flag & PF_ISVARARG)))
  1668. break; /* no extra work */
  1669. /* else use OP_RETURN to do the extra work */
  1670. SET_OPCODE(*pc, OP_RETURN);
  1671. } /* FALLTHROUGH */
  1672. case OP_RETURN: case OP_TAILCALL: {
  1673. if (fs->needclose)
  1674. SETARG_k(*pc, 1); /* signal that it needs to close */
  1675. if (p->flag & PF_ISVARARG)
  1676. SETARG_C(*pc, p->numparams + 1); /* signal that it is vararg */
  1677. break;
  1678. }
  1679. case OP_JMP: {
  1680. int target = finaltarget(p->code, i);
  1681. fixjump(fs, i, target);
  1682. break;
  1683. }
  1684. default: break;
  1685. }
  1686. }
  1687. }