lcode.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886
  1. /*
  2. ** $Id: lcode.c,v 2.43 2010/01/11 17:38:30 roberto Exp roberto $
  3. ** Code generator for Lua
  4. ** See Copyright Notice in lua.h
  5. */
  6. #include <stdlib.h>
  7. #define lcode_c
  8. #define LUA_CORE
  9. #include "lua.h"
  10. #include "lcode.h"
  11. #include "ldebug.h"
  12. #include "ldo.h"
  13. #include "lgc.h"
  14. #include "llex.h"
  15. #include "lmem.h"
  16. #include "lobject.h"
  17. #include "lopcodes.h"
  18. #include "lparser.h"
  19. #include "lstring.h"
  20. #include "ltable.h"
  21. #define hasjumps(e) ((e)->t != (e)->f)
  22. static int isnumeral(expdesc *e) {
  23. return (e->k == VKNUM && e->t == NO_JUMP && e->f == NO_JUMP);
  24. }
  25. void luaK_nil (FuncState *fs, int from, int n) {
  26. Instruction *previous;
  27. if (fs->pc > fs->lasttarget) { /* no jumps to current position? */
  28. previous = &fs->f->code[fs->pc-1];
  29. if (GET_OPCODE(*previous) == OP_LOADNIL) {
  30. int pfrom = GETARG_A(*previous);
  31. int pto = GETARG_B(*previous);
  32. if (pfrom <= from && from <= pto+1) { /* can connect both? */
  33. if (from+n-1 > pto)
  34. SETARG_B(*previous, from+n-1);
  35. return;
  36. }
  37. }
  38. }
  39. luaK_codeABC(fs, OP_LOADNIL, from, from+n-1, 0); /* else no optimization */
  40. }
  41. int luaK_jump (FuncState *fs) {
  42. int jpc = fs->jpc; /* save list of jumps to here */
  43. int j;
  44. fs->jpc = NO_JUMP;
  45. j = luaK_codeAsBx(fs, OP_JMP, 0, NO_JUMP);
  46. luaK_concat(fs, &j, jpc); /* keep them on hold */
  47. return j;
  48. }
  49. void luaK_ret (FuncState *fs, int first, int nret) {
  50. luaK_codeABC(fs, OP_RETURN, first, nret+1, 0);
  51. }
  52. static int condjump (FuncState *fs, OpCode op, int A, int B, int C) {
  53. luaK_codeABC(fs, op, A, B, C);
  54. return luaK_jump(fs);
  55. }
  56. static void fixjump (FuncState *fs, int pc, int dest) {
  57. Instruction *jmp = &fs->f->code[pc];
  58. int offset = dest-(pc+1);
  59. lua_assert(dest != NO_JUMP);
  60. if (abs(offset) > MAXARG_sBx)
  61. luaX_syntaxerror(fs->ls, "control structure too long");
  62. SETARG_sBx(*jmp, offset);
  63. }
  64. /*
  65. ** returns current `pc' and marks it as a jump target (to avoid wrong
  66. ** optimizations with consecutive instructions not in the same basic block).
  67. */
  68. int luaK_getlabel (FuncState *fs) {
  69. fs->lasttarget = fs->pc;
  70. return fs->pc;
  71. }
  72. static int getjump (FuncState *fs, int pc) {
  73. int offset = GETARG_sBx(fs->f->code[pc]);
  74. if (offset == NO_JUMP) /* point to itself represents end of list */
  75. return NO_JUMP; /* end of list */
  76. else
  77. return (pc+1)+offset; /* turn offset into absolute position */
  78. }
  79. static Instruction *getjumpcontrol (FuncState *fs, int pc) {
  80. Instruction *pi = &fs->f->code[pc];
  81. if (pc >= 1 && testTMode(GET_OPCODE(*(pi-1))))
  82. return pi-1;
  83. else
  84. return pi;
  85. }
  86. /*
  87. ** check whether list has any jump that do not produce a value
  88. ** (or produce an inverted value)
  89. */
  90. static int need_value (FuncState *fs, int list) {
  91. for (; list != NO_JUMP; list = getjump(fs, list)) {
  92. Instruction i = *getjumpcontrol(fs, list);
  93. if (GET_OPCODE(i) != OP_TESTSET) return 1;
  94. }
  95. return 0; /* not found */
  96. }
  97. static int patchtestreg (FuncState *fs, int node, int reg) {
  98. Instruction *i = getjumpcontrol(fs, node);
  99. if (GET_OPCODE(*i) != OP_TESTSET)
  100. return 0; /* cannot patch other instructions */
  101. if (reg != NO_REG && reg != GETARG_B(*i))
  102. SETARG_A(*i, reg);
  103. else /* no register to put value or register already has the value */
  104. *i = CREATE_ABC(OP_TEST, GETARG_B(*i), 0, GETARG_C(*i));
  105. return 1;
  106. }
  107. static void removevalues (FuncState *fs, int list) {
  108. for (; list != NO_JUMP; list = getjump(fs, list))
  109. patchtestreg(fs, list, NO_REG);
  110. }
  111. static void patchlistaux (FuncState *fs, int list, int vtarget, int reg,
  112. int dtarget) {
  113. while (list != NO_JUMP) {
  114. int next = getjump(fs, list);
  115. if (patchtestreg(fs, list, reg))
  116. fixjump(fs, list, vtarget);
  117. else
  118. fixjump(fs, list, dtarget); /* jump to default target */
  119. list = next;
  120. }
  121. }
  122. static void dischargejpc (FuncState *fs) {
  123. patchlistaux(fs, fs->jpc, fs->pc, NO_REG, fs->pc);
  124. fs->jpc = NO_JUMP;
  125. }
  126. void luaK_patchlist (FuncState *fs, int list, int target) {
  127. if (target == fs->pc)
  128. luaK_patchtohere(fs, list);
  129. else {
  130. lua_assert(target < fs->pc);
  131. patchlistaux(fs, list, target, NO_REG, target);
  132. }
  133. }
  134. void luaK_patchtohere (FuncState *fs, int list) {
  135. luaK_getlabel(fs);
  136. luaK_concat(fs, &fs->jpc, list);
  137. }
  138. void luaK_concat (FuncState *fs, int *l1, int l2) {
  139. if (l2 == NO_JUMP) return;
  140. else if (*l1 == NO_JUMP)
  141. *l1 = l2;
  142. else {
  143. int list = *l1;
  144. int next;
  145. while ((next = getjump(fs, list)) != NO_JUMP) /* find last element */
  146. list = next;
  147. fixjump(fs, list, l2);
  148. }
  149. }
  150. static int luaK_code (FuncState *fs, Instruction i) {
  151. Proto *f = fs->f;
  152. dischargejpc(fs); /* `pc' will change */
  153. /* put new instruction in code array */
  154. luaM_growvector(fs->L, f->code, fs->pc, f->sizecode, Instruction,
  155. MAX_INT, "opcodes");
  156. f->code[fs->pc] = i;
  157. /* save corresponding line information */
  158. luaM_growvector(fs->L, f->lineinfo, fs->pc, f->sizelineinfo, int,
  159. MAX_INT, "opcodes");
  160. f->lineinfo[fs->pc] = fs->ls->lastline;
  161. return fs->pc++;
  162. }
  163. int luaK_codeABC (FuncState *fs, OpCode o, int a, int b, int c) {
  164. lua_assert(getOpMode(o) == iABC);
  165. lua_assert(getBMode(o) != OpArgN || b == 0);
  166. lua_assert(getCMode(o) != OpArgN || c == 0);
  167. lua_assert(a <= MAXARG_A && b <= MAXARG_B && c <= MAXARG_C);
  168. return luaK_code(fs, CREATE_ABC(o, a, b, c));
  169. }
  170. int luaK_codeABx (FuncState *fs, OpCode o, int a, unsigned int bc) {
  171. lua_assert(getOpMode(o) == iABx || getOpMode(o) == iAsBx);
  172. lua_assert(getCMode(o) == OpArgN);
  173. lua_assert(a <= MAXARG_A && bc <= MAXARG_Bx);
  174. return luaK_code(fs, CREATE_ABx(o, a, bc));
  175. }
  176. static int codeextraarg (FuncState *fs, int a) {
  177. lua_assert(a <= MAXARG_Ax);
  178. return luaK_code(fs, CREATE_Ax(OP_EXTRAARG, a));
  179. }
  180. int luaK_codeABxX (FuncState *fs, OpCode o, int reg, int k) {
  181. if (k < MAXARG_Bx)
  182. return luaK_codeABx(fs, o, reg, k + 1);
  183. else {
  184. int p = luaK_codeABx(fs, o, reg, 0);
  185. codeextraarg(fs, k);
  186. return p;
  187. }
  188. }
  189. void luaK_checkstack (FuncState *fs, int n) {
  190. int newstack = fs->freereg + n;
  191. if (newstack > fs->f->maxstacksize) {
  192. if (newstack >= MAXSTACK)
  193. luaX_syntaxerror(fs->ls, "function or expression too complex");
  194. fs->f->maxstacksize = cast_byte(newstack);
  195. }
  196. }
  197. void luaK_reserveregs (FuncState *fs, int n) {
  198. luaK_checkstack(fs, n);
  199. fs->freereg += n;
  200. }
  201. static void freereg (FuncState *fs, int reg) {
  202. if (!ISK(reg) && reg >= fs->nactvar) {
  203. fs->freereg--;
  204. lua_assert(reg == fs->freereg);
  205. }
  206. }
  207. static void freeexp (FuncState *fs, expdesc *e) {
  208. if (e->k == VNONRELOC)
  209. freereg(fs, e->u.s.info);
  210. }
  211. static int addk (FuncState *fs, TValue *key, TValue *v) {
  212. lua_State *L = fs->L;
  213. TValue *idx = luaH_set(L, fs->h, key);
  214. Proto *f = fs->f;
  215. int k, oldsize;
  216. if (ttisnumber(idx)) {
  217. lua_Number n = nvalue(idx);
  218. lua_number2int(k, n);
  219. if (luaO_rawequalObj(&f->k[k], v))
  220. return k;
  221. /* else may be a collision (e.g., between 0.0 and "\0\0\0\0\0\0\0\0");
  222. go through and create a new entry for this value */
  223. }
  224. /* constant not found; create a new entry */
  225. oldsize = f->sizek;
  226. k = fs->nk;
  227. setnvalue(idx, cast_num(k));
  228. luaM_growvector(L, f->k, k, f->sizek, TValue, MAXARG_Ax, "constants");
  229. while (oldsize < f->sizek) setnilvalue(&f->k[oldsize++]);
  230. setobj(L, &f->k[k], v);
  231. fs->nk++;
  232. luaC_barrier(L, f, v);
  233. return k;
  234. }
  235. int luaK_stringK (FuncState *fs, TString *s) {
  236. TValue o;
  237. setsvalue(fs->L, &o, s);
  238. return addk(fs, &o, &o);
  239. }
  240. int luaK_numberK (FuncState *fs, lua_Number r) {
  241. int n;
  242. lua_State *L = fs->L;
  243. TValue o;
  244. setnvalue(&o, r);
  245. if (r == 0 || luai_numisnan(NULL, r)) { /* handle -0 and NaN */
  246. /* use raw representation as key to avoid numeric problems */
  247. setsvalue(L, L->top, luaS_newlstr(L, (char *)&r, sizeof(r)));
  248. incr_top(L);
  249. n = addk(fs, L->top - 1, &o);
  250. L->top--;
  251. }
  252. else
  253. n = addk(fs, &o, &o); /* regular case */
  254. return n;
  255. }
  256. static int boolK (FuncState *fs, int b) {
  257. TValue o;
  258. setbvalue(&o, b);
  259. return addk(fs, &o, &o);
  260. }
  261. static int nilK (FuncState *fs) {
  262. TValue k, v;
  263. setnilvalue(&v);
  264. /* cannot use nil as key; instead use table itself to represent nil */
  265. sethvalue(fs->L, &k, fs->h);
  266. return addk(fs, &k, &v);
  267. }
  268. void luaK_setreturns (FuncState *fs, expdesc *e, int nresults) {
  269. if (e->k == VCALL) { /* expression is an open function call? */
  270. SETARG_C(getcode(fs, e), nresults+1);
  271. }
  272. else if (e->k == VVARARG) {
  273. SETARG_B(getcode(fs, e), nresults+1);
  274. SETARG_A(getcode(fs, e), fs->freereg);
  275. luaK_reserveregs(fs, 1);
  276. }
  277. }
  278. void luaK_setoneret (FuncState *fs, expdesc *e) {
  279. if (e->k == VCALL) { /* expression is an open function call? */
  280. e->k = VNONRELOC;
  281. e->u.s.info = GETARG_A(getcode(fs, e));
  282. }
  283. else if (e->k == VVARARG) {
  284. SETARG_B(getcode(fs, e), 2);
  285. e->k = VRELOCABLE; /* can relocate its simple result */
  286. }
  287. }
  288. void luaK_dischargevars (FuncState *fs, expdesc *e) {
  289. switch (e->k) {
  290. case VLOCAL: {
  291. e->k = VNONRELOC;
  292. break;
  293. }
  294. case VUPVAL: {
  295. e->u.s.info = luaK_codeABC(fs, OP_GETUPVAL, 0, e->u.s.info, 0);
  296. e->k = VRELOCABLE;
  297. break;
  298. }
  299. case VGLOBAL: {
  300. e->u.s.info = luaK_codeABxX(fs, OP_GETGLOBAL, 0, e->u.s.info);
  301. e->k = VRELOCABLE;
  302. break;
  303. }
  304. case VINDEXED: {
  305. freereg(fs, e->u.s.aux);
  306. freereg(fs, e->u.s.info);
  307. e->u.s.info = luaK_codeABC(fs, OP_GETTABLE, 0, e->u.s.info, e->u.s.aux);
  308. e->k = VRELOCABLE;
  309. break;
  310. }
  311. case VINDEXEDUP: {
  312. freereg(fs, e->u.s.aux);
  313. e->u.s.info = luaK_codeABC(fs, OP_GETTABUP, 0, e->u.s.info, e->u.s.aux);
  314. e->k = VRELOCABLE;
  315. break;
  316. }
  317. case VVARARG:
  318. case VCALL: {
  319. luaK_setoneret(fs, e);
  320. break;
  321. }
  322. default: break; /* there is one value available (somewhere) */
  323. }
  324. }
  325. static int code_label (FuncState *fs, int A, int b, int jump) {
  326. luaK_getlabel(fs); /* those instructions may be jump targets */
  327. return luaK_codeABC(fs, OP_LOADBOOL, A, b, jump);
  328. }
  329. static void discharge2reg (FuncState *fs, expdesc *e, int reg) {
  330. luaK_dischargevars(fs, e);
  331. switch (e->k) {
  332. case VNIL: {
  333. luaK_nil(fs, reg, 1);
  334. break;
  335. }
  336. case VFALSE: case VTRUE: {
  337. luaK_codeABC(fs, OP_LOADBOOL, reg, e->k == VTRUE, 0);
  338. break;
  339. }
  340. case VK: {
  341. luaK_codek(fs, reg, e->u.s.info);
  342. break;
  343. }
  344. case VKNUM: {
  345. luaK_codek(fs, reg, luaK_numberK(fs, e->u.nval));
  346. break;
  347. }
  348. case VRELOCABLE: {
  349. Instruction *pc = &getcode(fs, e);
  350. SETARG_A(*pc, reg);
  351. break;
  352. }
  353. case VNONRELOC: {
  354. if (reg != e->u.s.info)
  355. luaK_codeABC(fs, OP_MOVE, reg, e->u.s.info, 0);
  356. break;
  357. }
  358. default: {
  359. lua_assert(e->k == VVOID || e->k == VJMP);
  360. return; /* nothing to do... */
  361. }
  362. }
  363. e->u.s.info = reg;
  364. e->k = VNONRELOC;
  365. }
  366. static void discharge2anyreg (FuncState *fs, expdesc *e) {
  367. if (e->k != VNONRELOC) {
  368. luaK_reserveregs(fs, 1);
  369. discharge2reg(fs, e, fs->freereg-1);
  370. }
  371. }
  372. static void exp2reg (FuncState *fs, expdesc *e, int reg) {
  373. discharge2reg(fs, e, reg);
  374. if (e->k == VJMP)
  375. luaK_concat(fs, &e->t, e->u.s.info); /* put this jump in `t' list */
  376. if (hasjumps(e)) {
  377. int final; /* position after whole expression */
  378. int p_f = NO_JUMP; /* position of an eventual LOAD false */
  379. int p_t = NO_JUMP; /* position of an eventual LOAD true */
  380. if (need_value(fs, e->t) || need_value(fs, e->f)) {
  381. int fj = (e->k == VJMP) ? NO_JUMP : luaK_jump(fs);
  382. p_f = code_label(fs, reg, 0, 1);
  383. p_t = code_label(fs, reg, 1, 0);
  384. luaK_patchtohere(fs, fj);
  385. }
  386. final = luaK_getlabel(fs);
  387. patchlistaux(fs, e->f, final, reg, p_f);
  388. patchlistaux(fs, e->t, final, reg, p_t);
  389. }
  390. e->f = e->t = NO_JUMP;
  391. e->u.s.info = reg;
  392. e->k = VNONRELOC;
  393. }
  394. void luaK_exp2nextreg (FuncState *fs, expdesc *e) {
  395. luaK_dischargevars(fs, e);
  396. freeexp(fs, e);
  397. luaK_reserveregs(fs, 1);
  398. exp2reg(fs, e, fs->freereg - 1);
  399. }
  400. int luaK_exp2anyreg (FuncState *fs, expdesc *e) {
  401. luaK_dischargevars(fs, e);
  402. if (e->k == VNONRELOC) {
  403. if (!hasjumps(e)) return e->u.s.info; /* exp is already in a register */
  404. if (e->u.s.info >= fs->nactvar) { /* reg. is not a local? */
  405. exp2reg(fs, e, e->u.s.info); /* put value on it */
  406. return e->u.s.info;
  407. }
  408. }
  409. luaK_exp2nextreg(fs, e); /* default */
  410. return e->u.s.info;
  411. }
  412. void luaK_exp2anyregup (FuncState *fs, expdesc *e) {
  413. if (e->k != VUPVAL || hasjumps(e))
  414. luaK_exp2anyreg(fs, e);
  415. }
  416. void luaK_exp2val (FuncState *fs, expdesc *e) {
  417. if (hasjumps(e))
  418. luaK_exp2anyreg(fs, e);
  419. else
  420. luaK_dischargevars(fs, e);
  421. }
  422. int luaK_exp2RK (FuncState *fs, expdesc *e) {
  423. luaK_exp2val(fs, e);
  424. switch (e->k) {
  425. case VTRUE:
  426. case VFALSE:
  427. case VNIL: {
  428. if (fs->nk <= MAXINDEXRK) { /* constant fit in RK operand? */
  429. e->u.s.info = (e->k == VNIL) ? nilK(fs) : boolK(fs, (e->k == VTRUE));
  430. e->k = VK;
  431. return RKASK(e->u.s.info);
  432. }
  433. else break;
  434. }
  435. case VKNUM: {
  436. e->u.s.info = luaK_numberK(fs, e->u.nval);
  437. e->k = VK;
  438. /* go through */
  439. }
  440. case VK: {
  441. if (e->u.s.info <= MAXINDEXRK) /* constant fit in argC? */
  442. return RKASK(e->u.s.info);
  443. else break;
  444. }
  445. default: break;
  446. }
  447. /* not a constant in the right range: put it in a register */
  448. return luaK_exp2anyreg(fs, e);
  449. }
  450. void luaK_storevar (FuncState *fs, expdesc *var, expdesc *ex) {
  451. switch (var->k) {
  452. case VLOCAL: {
  453. freeexp(fs, ex);
  454. exp2reg(fs, ex, var->u.s.info);
  455. return;
  456. }
  457. case VUPVAL: {
  458. int e = luaK_exp2anyreg(fs, ex);
  459. luaK_codeABC(fs, OP_SETUPVAL, e, var->u.s.info, 0);
  460. break;
  461. }
  462. case VGLOBAL: {
  463. int e = luaK_exp2anyreg(fs, ex);
  464. luaK_codeABxX(fs, OP_SETGLOBAL, e, var->u.s.info);
  465. break;
  466. }
  467. case VINDEXED: {
  468. int e = luaK_exp2RK(fs, ex);
  469. luaK_codeABC(fs, OP_SETTABLE, var->u.s.info, var->u.s.aux, e);
  470. break;
  471. }
  472. case VINDEXEDUP: {
  473. int e = luaK_exp2RK(fs, ex);
  474. luaK_codeABC(fs, OP_SETTABUP, var->u.s.info, var->u.s.aux, e);
  475. break;
  476. }
  477. default: {
  478. lua_assert(0); /* invalid var kind to store */
  479. break;
  480. }
  481. }
  482. freeexp(fs, ex);
  483. }
  484. void luaK_self (FuncState *fs, expdesc *e, expdesc *key) {
  485. int func;
  486. luaK_exp2anyreg(fs, e);
  487. freeexp(fs, e);
  488. func = fs->freereg;
  489. luaK_reserveregs(fs, 2);
  490. luaK_codeABC(fs, OP_SELF, func, e->u.s.info, luaK_exp2RK(fs, key));
  491. freeexp(fs, key);
  492. e->u.s.info = func;
  493. e->k = VNONRELOC;
  494. }
  495. static void invertjump (FuncState *fs, expdesc *e) {
  496. Instruction *pc = getjumpcontrol(fs, e->u.s.info);
  497. lua_assert(testTMode(GET_OPCODE(*pc)) && GET_OPCODE(*pc) != OP_TESTSET &&
  498. GET_OPCODE(*pc) != OP_TEST);
  499. SETARG_A(*pc, !(GETARG_A(*pc)));
  500. }
  501. static int jumponcond (FuncState *fs, expdesc *e, int cond) {
  502. if (e->k == VRELOCABLE) {
  503. Instruction ie = getcode(fs, e);
  504. if (GET_OPCODE(ie) == OP_NOT) {
  505. fs->pc--; /* remove previous OP_NOT */
  506. return condjump(fs, OP_TEST, GETARG_B(ie), 0, !cond);
  507. }
  508. /* else go through */
  509. }
  510. discharge2anyreg(fs, e);
  511. freeexp(fs, e);
  512. return condjump(fs, OP_TESTSET, NO_REG, e->u.s.info, cond);
  513. }
  514. void luaK_goiftrue (FuncState *fs, expdesc *e) {
  515. int pc; /* pc of last jump */
  516. luaK_dischargevars(fs, e);
  517. switch (e->k) {
  518. case VK: case VKNUM: case VTRUE: {
  519. pc = NO_JUMP; /* always true; do nothing */
  520. break;
  521. }
  522. case VJMP: {
  523. invertjump(fs, e);
  524. pc = e->u.s.info;
  525. break;
  526. }
  527. case VFALSE: {
  528. if (!hasjumps(e)) {
  529. pc = luaK_jump(fs); /* always jump */
  530. break;
  531. }
  532. /* else go through */
  533. }
  534. default: {
  535. pc = jumponcond(fs, e, 0);
  536. break;
  537. }
  538. }
  539. luaK_concat(fs, &e->f, pc); /* insert last jump in `f' list */
  540. luaK_patchtohere(fs, e->t);
  541. e->t = NO_JUMP;
  542. }
  543. static void luaK_goiffalse (FuncState *fs, expdesc *e) {
  544. int pc; /* pc of last jump */
  545. luaK_dischargevars(fs, e);
  546. switch (e->k) {
  547. case VNIL: case VFALSE: {
  548. pc = NO_JUMP; /* always false; do nothing */
  549. break;
  550. }
  551. case VJMP: {
  552. pc = e->u.s.info;
  553. break;
  554. }
  555. case VTRUE: {
  556. if (!hasjumps(e)) {
  557. pc = luaK_jump(fs); /* always jump */
  558. break;
  559. }
  560. /* else go through */
  561. }
  562. default: {
  563. pc = jumponcond(fs, e, 1);
  564. break;
  565. }
  566. }
  567. luaK_concat(fs, &e->t, pc); /* insert last jump in `t' list */
  568. luaK_patchtohere(fs, e->f);
  569. e->f = NO_JUMP;
  570. }
  571. static void codenot (FuncState *fs, expdesc *e) {
  572. luaK_dischargevars(fs, e);
  573. switch (e->k) {
  574. case VNIL: case VFALSE: {
  575. e->k = VTRUE;
  576. break;
  577. }
  578. case VK: case VKNUM: case VTRUE: {
  579. e->k = VFALSE;
  580. break;
  581. }
  582. case VJMP: {
  583. invertjump(fs, e);
  584. break;
  585. }
  586. case VRELOCABLE:
  587. case VNONRELOC: {
  588. discharge2anyreg(fs, e);
  589. freeexp(fs, e);
  590. e->u.s.info = luaK_codeABC(fs, OP_NOT, 0, e->u.s.info, 0);
  591. e->k = VRELOCABLE;
  592. break;
  593. }
  594. default: {
  595. lua_assert(0); /* cannot happen */
  596. break;
  597. }
  598. }
  599. /* interchange true and false lists */
  600. { int temp = e->f; e->f = e->t; e->t = temp; }
  601. removevalues(fs, e->f);
  602. removevalues(fs, e->t);
  603. }
  604. void luaK_indexed (FuncState *fs, expdesc *t, expdesc *k) {
  605. lua_assert(!hasjumps(t));
  606. t->u.s.aux = luaK_exp2RK(fs, k);
  607. t->k = (t->k == VUPVAL) ? VINDEXEDUP : VINDEXED;
  608. }
  609. static int constfolding (OpCode op, expdesc *e1, expdesc *e2) {
  610. lua_Number r;
  611. if (!isnumeral(e1) || !isnumeral(e2)) return 0;
  612. if ((op == OP_DIV || op == OP_MOD) && e2->u.nval == 0)
  613. return 0; /* do not attempt to divide by 0 */
  614. r = luaO_arith(op - OP_ADD + LUA_OPADD, e1->u.nval, e2->u.nval);
  615. e1->u.nval = r;
  616. return 1;
  617. }
  618. static void codearith (FuncState *fs, OpCode op, expdesc *e1, expdesc *e2) {
  619. if (constfolding(op, e1, e2))
  620. return;
  621. else {
  622. int o2 = (op != OP_UNM && op != OP_LEN) ? luaK_exp2RK(fs, e2) : 0;
  623. int o1 = luaK_exp2RK(fs, e1);
  624. if (o1 > o2) {
  625. freeexp(fs, e1);
  626. freeexp(fs, e2);
  627. }
  628. else {
  629. freeexp(fs, e2);
  630. freeexp(fs, e1);
  631. }
  632. e1->u.s.info = luaK_codeABC(fs, op, 0, o1, o2);
  633. e1->k = VRELOCABLE;
  634. }
  635. }
  636. static void codecomp (FuncState *fs, OpCode op, int cond, expdesc *e1,
  637. expdesc *e2) {
  638. int o1 = luaK_exp2RK(fs, e1);
  639. int o2 = luaK_exp2RK(fs, e2);
  640. freeexp(fs, e2);
  641. freeexp(fs, e1);
  642. if (cond == 0 && op != OP_EQ) {
  643. int temp; /* exchange args to replace by `<' or `<=' */
  644. temp = o1; o1 = o2; o2 = temp; /* o1 <==> o2 */
  645. cond = 1;
  646. }
  647. e1->u.s.info = condjump(fs, op, cond, o1, o2);
  648. e1->k = VJMP;
  649. }
  650. void luaK_prefix (FuncState *fs, UnOpr op, expdesc *e) {
  651. expdesc e2;
  652. e2.t = e2.f = NO_JUMP; e2.k = VKNUM; e2.u.nval = 0;
  653. switch (op) {
  654. case OPR_MINUS: {
  655. if (isnumeral(e)) /* minus constant? */
  656. e->u.nval = luai_numunm(NULL, e->u.nval); /* fold it */
  657. else {
  658. luaK_exp2anyreg(fs, e);
  659. codearith(fs, OP_UNM, e, &e2);
  660. }
  661. break;
  662. }
  663. case OPR_NOT: codenot(fs, e); break;
  664. case OPR_LEN: {
  665. luaK_exp2anyreg(fs, e); /* cannot operate on constants */
  666. codearith(fs, OP_LEN, e, &e2);
  667. break;
  668. }
  669. default: lua_assert(0);
  670. }
  671. }
  672. void luaK_infix (FuncState *fs, BinOpr op, expdesc *v) {
  673. switch (op) {
  674. case OPR_AND: {
  675. luaK_goiftrue(fs, v);
  676. break;
  677. }
  678. case OPR_OR: {
  679. luaK_goiffalse(fs, v);
  680. break;
  681. }
  682. case OPR_CONCAT: {
  683. luaK_exp2nextreg(fs, v); /* operand must be on the `stack' */
  684. break;
  685. }
  686. case OPR_ADD: case OPR_SUB: case OPR_MUL: case OPR_DIV:
  687. case OPR_MOD: case OPR_POW: {
  688. if (!isnumeral(v)) luaK_exp2RK(fs, v);
  689. break;
  690. }
  691. default: {
  692. luaK_exp2RK(fs, v);
  693. break;
  694. }
  695. }
  696. }
  697. void luaK_posfix (FuncState *fs, BinOpr op, expdesc *e1, expdesc *e2) {
  698. switch (op) {
  699. case OPR_AND: {
  700. lua_assert(e1->t == NO_JUMP); /* list must be closed */
  701. luaK_dischargevars(fs, e2);
  702. luaK_concat(fs, &e2->f, e1->f);
  703. *e1 = *e2;
  704. break;
  705. }
  706. case OPR_OR: {
  707. lua_assert(e1->f == NO_JUMP); /* list must be closed */
  708. luaK_dischargevars(fs, e2);
  709. luaK_concat(fs, &e2->t, e1->t);
  710. *e1 = *e2;
  711. break;
  712. }
  713. case OPR_CONCAT: {
  714. luaK_exp2val(fs, e2);
  715. if (e2->k == VRELOCABLE && GET_OPCODE(getcode(fs, e2)) == OP_CONCAT) {
  716. lua_assert(e1->u.s.info == GETARG_B(getcode(fs, e2))-1);
  717. freeexp(fs, e1);
  718. SETARG_B(getcode(fs, e2), e1->u.s.info);
  719. e1->k = VRELOCABLE; e1->u.s.info = e2->u.s.info;
  720. }
  721. else {
  722. luaK_exp2nextreg(fs, e2); /* operand must be on the 'stack' */
  723. codearith(fs, OP_CONCAT, e1, e2);
  724. }
  725. break;
  726. }
  727. case OPR_ADD: case OPR_SUB: case OPR_MUL: case OPR_DIV:
  728. case OPR_MOD: case OPR_POW: {
  729. codearith(fs, cast(OpCode, op - OPR_ADD + OP_ADD), e1, e2);
  730. break;
  731. }
  732. case OPR_EQ: case OPR_LT: case OPR_LE: {
  733. codecomp(fs, cast(OpCode, op - OPR_EQ + OP_EQ), 1, e1, e2);
  734. break;
  735. }
  736. case OPR_NE: case OPR_GT: case OPR_GE: {
  737. codecomp(fs, cast(OpCode, op - OPR_NE + OP_EQ), 0, e1, e2);
  738. break;
  739. }
  740. default: lua_assert(0);
  741. }
  742. }
  743. void luaK_fixline (FuncState *fs, int line) {
  744. fs->f->lineinfo[fs->pc - 1] = line;
  745. }
  746. void luaK_setlist (FuncState *fs, int base, int nelems, int tostore) {
  747. int c = (nelems - 1)/LFIELDS_PER_FLUSH + 1;
  748. int b = (tostore == LUA_MULTRET) ? 0 : tostore;
  749. lua_assert(tostore != 0);
  750. if (c <= MAXARG_C)
  751. luaK_codeABC(fs, OP_SETLIST, base, b, c);
  752. else if (c <= MAXARG_Ax) {
  753. luaK_codeABC(fs, OP_SETLIST, base, b, 0);
  754. codeextraarg(fs, c);
  755. }
  756. else
  757. luaX_syntaxerror(fs->ls, "constructor too long");
  758. fs->freereg = base + 1; /* free registers with list values */
  759. }