lcode.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827
  1. /*
  2. ** $Id: lcode.c,v 2.25 2006/03/21 19:28:49 roberto Exp roberto $
  3. ** Code generator for Lua
  4. ** See Copyright Notice in lua.h
  5. */
  6. #include <stdlib.h>
  7. #define lcode_c
  8. #define LUA_CORE
  9. #include "lua.h"
  10. #include "lcode.h"
  11. #include "ldebug.h"
  12. #include "ldo.h"
  13. #include "lgc.h"
  14. #include "llex.h"
  15. #include "lmem.h"
  16. #include "lobject.h"
  17. #include "lopcodes.h"
  18. #include "lparser.h"
  19. #include "ltable.h"
  20. #define hasjumps(e) ((e)->t != (e)->f)
  21. static int isnumeral(expdesc *e) {
  22. return (e->k == VKNUM && e->t == NO_JUMP && e->f == NO_JUMP);
  23. }
  24. void luaK_nil (FuncState *fs, int from, int n) {
  25. Instruction *previous;
  26. if (fs->pc > fs->lasttarget) { /* no jumps to current position? */
  27. if (fs->pc == 0) /* function start? */
  28. return; /* positions are already clean */
  29. if (GET_OPCODE(*(previous = &fs->f->code[fs->pc-1])) == OP_LOADNIL) {
  30. int pfrom = GETARG_A(*previous);
  31. int pto = GETARG_B(*previous);
  32. if (pfrom <= from && from <= pto+1) { /* can connect both? */
  33. if (from+n-1 > pto)
  34. SETARG_B(*previous, from+n-1);
  35. return;
  36. }
  37. }
  38. }
  39. luaK_codeABC(fs, OP_LOADNIL, from, from+n-1, 0); /* else no optimization */
  40. }
  41. int luaK_jump (FuncState *fs) {
  42. int jpc = fs->jpc; /* save list of jumps to here */
  43. int j;
  44. fs->jpc = NO_JUMP;
  45. j = luaK_codeAsBx(fs, OP_JMP, 0, NO_JUMP);
  46. luaK_concat(fs, &j, jpc); /* keep them on hold */
  47. return j;
  48. }
  49. void luaK_ret (FuncState *fs, int first, int nret) {
  50. luaK_codeABC(fs, OP_RETURN, first, nret+1, 0);
  51. }
  52. static int condjump (FuncState *fs, OpCode op, int A, int B, int C) {
  53. luaK_codeABC(fs, op, A, B, C);
  54. return luaK_jump(fs);
  55. }
  56. static void fixjump (FuncState *fs, int pc, int dest) {
  57. Instruction *jmp = &fs->f->code[pc];
  58. int offset = dest-(pc+1);
  59. lua_assert(dest != NO_JUMP);
  60. if (abs(offset) > MAXARG_sBx)
  61. luaX_syntaxerror(fs->ls, "control structure too long");
  62. SETARG_sBx(*jmp, offset);
  63. }
  64. /*
  65. ** returns current `pc' and marks it as a jump target (to avoid wrong
  66. ** optimizations with consecutive instructions not in the same basic block).
  67. */
  68. int luaK_getlabel (FuncState *fs) {
  69. fs->lasttarget = fs->pc;
  70. return fs->pc;
  71. }
  72. static int getjump (FuncState *fs, int pc) {
  73. int offset = GETARG_sBx(fs->f->code[pc]);
  74. if (offset == NO_JUMP) /* point to itself represents end of list */
  75. return NO_JUMP; /* end of list */
  76. else
  77. return (pc+1)+offset; /* turn offset into absolute position */
  78. }
  79. static Instruction *getjumpcontrol (FuncState *fs, int pc) {
  80. Instruction *pi = &fs->f->code[pc];
  81. if (pc >= 1 && testTMode(GET_OPCODE(*(pi-1))))
  82. return pi-1;
  83. else
  84. return pi;
  85. }
  86. /*
  87. ** check whether list has any jump that do not produce a value
  88. ** (or produce an inverted value)
  89. */
  90. static int need_value (FuncState *fs, int list) {
  91. for (; list != NO_JUMP; list = getjump(fs, list)) {
  92. Instruction i = *getjumpcontrol(fs, list);
  93. if (GET_OPCODE(i) != OP_TESTSET) return 1;
  94. }
  95. return 0; /* not found */
  96. }
  97. static int patchtestreg (FuncState *fs, int node, int reg) {
  98. Instruction *i = getjumpcontrol(fs, node);
  99. if (GET_OPCODE(*i) != OP_TESTSET)
  100. return 0; /* cannot patch other instructions */
  101. if (reg != NO_REG && reg != GETARG_B(*i))
  102. SETARG_A(*i, reg);
  103. else /* no register to put value or register already has the value */
  104. *i = CREATE_ABC(OP_TEST, GETARG_B(*i), 0, GETARG_C(*i));
  105. return 1;
  106. }
  107. static void removevalues (FuncState *fs, int list) {
  108. for (; list != NO_JUMP; list = getjump(fs, list))
  109. patchtestreg(fs, list, NO_REG);
  110. }
  111. static void patchlistaux (FuncState *fs, int list, int vtarget, int reg,
  112. int dtarget) {
  113. while (list != NO_JUMP) {
  114. int next = getjump(fs, list);
  115. if (patchtestreg(fs, list, reg))
  116. fixjump(fs, list, vtarget);
  117. else
  118. fixjump(fs, list, dtarget); /* jump to default target */
  119. list = next;
  120. }
  121. }
  122. static void dischargejpc (FuncState *fs) {
  123. patchlistaux(fs, fs->jpc, fs->pc, NO_REG, fs->pc);
  124. fs->jpc = NO_JUMP;
  125. }
  126. void luaK_patchlist (FuncState *fs, int list, int target) {
  127. if (target == fs->pc)
  128. luaK_patchtohere(fs, list);
  129. else {
  130. lua_assert(target < fs->pc);
  131. patchlistaux(fs, list, target, NO_REG, target);
  132. }
  133. }
  134. void luaK_patchtohere (FuncState *fs, int list) {
  135. luaK_getlabel(fs);
  136. luaK_concat(fs, &fs->jpc, list);
  137. }
  138. void luaK_concat (FuncState *fs, int *l1, int l2) {
  139. if (l2 == NO_JUMP) return;
  140. else if (*l1 == NO_JUMP)
  141. *l1 = l2;
  142. else {
  143. int list = *l1;
  144. int next;
  145. while ((next = getjump(fs, list)) != NO_JUMP) /* find last element */
  146. list = next;
  147. fixjump(fs, list, l2);
  148. }
  149. }
  150. void luaK_checkstack (FuncState *fs, int n) {
  151. int newstack = fs->freereg + n;
  152. if (newstack > fs->f->maxstacksize) {
  153. if (newstack >= MAXSTACK)
  154. luaX_syntaxerror(fs->ls, "function or expression too complex");
  155. fs->f->maxstacksize = cast_byte(newstack);
  156. }
  157. }
  158. void luaK_reserveregs (FuncState *fs, int n) {
  159. luaK_checkstack(fs, n);
  160. fs->freereg += n;
  161. }
  162. static void freereg (FuncState *fs, int reg) {
  163. if (!ISK(reg) && reg >= fs->nactvar) {
  164. fs->freereg--;
  165. lua_assert(reg == fs->freereg);
  166. }
  167. }
  168. static void freeexp (FuncState *fs, expdesc *e) {
  169. if (e->k == VNONRELOC)
  170. freereg(fs, e->u.s.info);
  171. }
  172. static int addk (FuncState *fs, TValue *key, TValue *v) {
  173. lua_State *L = fs->L;
  174. TValue *idx = luaH_set(L, fs->h, key);
  175. Proto *f = fs->f;
  176. int k;
  177. if (ttisnumber(idx)) {
  178. lua_Number n = nvalue(idx);
  179. lua_number2int(k, n);
  180. lua_assert(luaO_rawequalObj(&f->k[k], v));
  181. }
  182. else { /* constant not found; create a new entry */
  183. int oldsize = f->sizek;
  184. k = fs->nk;
  185. setnvalue(idx, cast_num(k));
  186. luaM_growvector(L, f->k, k, f->sizek, TValue, MAXARG_Bx,
  187. "constant table overflow");
  188. while (oldsize < f->sizek) setnilvalue(&f->k[oldsize++]);
  189. setobj(L, &f->k[k], v);
  190. fs->nk++;
  191. luaC_barrier(L, f, v);
  192. }
  193. return k;
  194. }
  195. int luaK_stringK (FuncState *fs, TString *s) {
  196. TValue o;
  197. setsvalue(fs->L, &o, s);
  198. return addk(fs, &o, &o);
  199. }
  200. int luaK_numberK (FuncState *fs, lua_Number r) {
  201. TValue o;
  202. setnvalue(&o, r);
  203. return addk(fs, &o, &o);
  204. }
  205. static int boolK (FuncState *fs, int b) {
  206. TValue o;
  207. setbvalue(&o, b);
  208. return addk(fs, &o, &o);
  209. }
  210. static int nilK (FuncState *fs) {
  211. TValue k, v;
  212. setnilvalue(&v);
  213. /* cannot use nil as key; instead use table itself to represent nil */
  214. sethvalue(fs->L, &k, fs->h);
  215. return addk(fs, &k, &v);
  216. }
  217. void luaK_setreturns (FuncState *fs, expdesc *e, int nresults) {
  218. if (e->k == VCALL) { /* expression is an open function call? */
  219. SETARG_C(getcode(fs, e), nresults+1);
  220. }
  221. else if (e->k == VVARARG) {
  222. SETARG_B(getcode(fs, e), nresults+1);
  223. SETARG_A(getcode(fs, e), fs->freereg);
  224. luaK_reserveregs(fs, 1);
  225. }
  226. }
  227. void luaK_setoneret (FuncState *fs, expdesc *e) {
  228. if (e->k == VCALL) { /* expression is an open function call? */
  229. e->k = VNONRELOC;
  230. e->u.s.info = GETARG_A(getcode(fs, e));
  231. }
  232. else if (e->k == VVARARG) {
  233. SETARG_B(getcode(fs, e), 2);
  234. e->k = VRELOCABLE; /* can relocate its simple result */
  235. }
  236. }
  237. void luaK_dischargevars (FuncState *fs, expdesc *e) {
  238. switch (e->k) {
  239. case VLOCAL: {
  240. e->k = VNONRELOC;
  241. break;
  242. }
  243. case VUPVAL: {
  244. e->u.s.info = luaK_codeABC(fs, OP_GETUPVAL, 0, e->u.s.info, 0);
  245. e->k = VRELOCABLE;
  246. break;
  247. }
  248. case VGLOBAL: {
  249. e->u.s.info = luaK_codeABx(fs, OP_GETGLOBAL, 0, e->u.s.info);
  250. e->k = VRELOCABLE;
  251. break;
  252. }
  253. case VINDEXED: {
  254. freereg(fs, e->u.s.aux);
  255. freereg(fs, e->u.s.info);
  256. e->u.s.info = luaK_codeABC(fs, OP_GETTABLE, 0, e->u.s.info, e->u.s.aux);
  257. e->k = VRELOCABLE;
  258. break;
  259. }
  260. case VVARARG:
  261. case VCALL: {
  262. luaK_setoneret(fs, e);
  263. break;
  264. }
  265. default: break; /* there is one value available (somewhere) */
  266. }
  267. }
  268. static int code_label (FuncState *fs, int A, int b, int jump) {
  269. luaK_getlabel(fs); /* those instructions may be jump targets */
  270. return luaK_codeABC(fs, OP_LOADBOOL, A, b, jump);
  271. }
  272. static void discharge2reg (FuncState *fs, expdesc *e, int reg) {
  273. luaK_dischargevars(fs, e);
  274. switch (e->k) {
  275. case VNIL: {
  276. luaK_nil(fs, reg, 1);
  277. break;
  278. }
  279. case VFALSE: case VTRUE: {
  280. luaK_codeABC(fs, OP_LOADBOOL, reg, e->k == VTRUE, 0);
  281. break;
  282. }
  283. case VK: {
  284. luaK_codeABx(fs, OP_LOADK, reg, e->u.s.info);
  285. break;
  286. }
  287. case VKNUM: {
  288. luaK_codeABx(fs, OP_LOADK, reg, luaK_numberK(fs, e->u.nval));
  289. break;
  290. }
  291. case VRELOCABLE: {
  292. Instruction *pc = &getcode(fs, e);
  293. SETARG_A(*pc, reg);
  294. break;
  295. }
  296. case VNONRELOC: {
  297. if (reg != e->u.s.info)
  298. luaK_codeABC(fs, OP_MOVE, reg, e->u.s.info, 0);
  299. break;
  300. }
  301. default: {
  302. lua_assert(e->k == VVOID || e->k == VJMP);
  303. return; /* nothing to do... */
  304. }
  305. }
  306. e->u.s.info = reg;
  307. e->k = VNONRELOC;
  308. }
  309. static void discharge2anyreg (FuncState *fs, expdesc *e) {
  310. if (e->k != VNONRELOC) {
  311. luaK_reserveregs(fs, 1);
  312. discharge2reg(fs, e, fs->freereg-1);
  313. }
  314. }
  315. static void exp2reg (FuncState *fs, expdesc *e, int reg) {
  316. discharge2reg(fs, e, reg);
  317. if (e->k == VJMP)
  318. luaK_concat(fs, &e->t, e->u.s.info); /* put this jump in `t' list */
  319. if (hasjumps(e)) {
  320. int final; /* position after whole expression */
  321. int p_f = NO_JUMP; /* position of an eventual LOAD false */
  322. int p_t = NO_JUMP; /* position of an eventual LOAD true */
  323. if (need_value(fs, e->t) || need_value(fs, e->f)) {
  324. int fj = (e->k == VJMP) ? NO_JUMP : luaK_jump(fs);
  325. p_f = code_label(fs, reg, 0, 1);
  326. p_t = code_label(fs, reg, 1, 0);
  327. luaK_patchtohere(fs, fj);
  328. }
  329. final = luaK_getlabel(fs);
  330. patchlistaux(fs, e->f, final, reg, p_f);
  331. patchlistaux(fs, e->t, final, reg, p_t);
  332. }
  333. e->f = e->t = NO_JUMP;
  334. e->u.s.info = reg;
  335. e->k = VNONRELOC;
  336. }
  337. void luaK_exp2nextreg (FuncState *fs, expdesc *e) {
  338. luaK_dischargevars(fs, e);
  339. freeexp(fs, e);
  340. luaK_reserveregs(fs, 1);
  341. exp2reg(fs, e, fs->freereg - 1);
  342. }
  343. int luaK_exp2anyreg (FuncState *fs, expdesc *e) {
  344. luaK_dischargevars(fs, e);
  345. if (e->k == VNONRELOC) {
  346. if (!hasjumps(e)) return e->u.s.info; /* exp is already in a register */
  347. if (e->u.s.info >= fs->nactvar) { /* reg. is not a local? */
  348. exp2reg(fs, e, e->u.s.info); /* put value on it */
  349. return e->u.s.info;
  350. }
  351. }
  352. luaK_exp2nextreg(fs, e); /* default */
  353. return e->u.s.info;
  354. }
  355. void luaK_exp2val (FuncState *fs, expdesc *e) {
  356. if (hasjumps(e))
  357. luaK_exp2anyreg(fs, e);
  358. else
  359. luaK_dischargevars(fs, e);
  360. }
  361. int luaK_exp2RK (FuncState *fs, expdesc *e) {
  362. luaK_exp2val(fs, e);
  363. switch (e->k) {
  364. case VKNUM:
  365. case VTRUE:
  366. case VFALSE:
  367. case VNIL: {
  368. if (fs->nk <= MAXINDEXRK) { /* constant fit in RK operand? */
  369. e->u.s.info = (e->k == VNIL) ? nilK(fs) :
  370. (e->k == VKNUM) ? luaK_numberK(fs, e->u.nval) :
  371. boolK(fs, (e->k == VTRUE));
  372. e->k = VK;
  373. return RKASK(e->u.s.info);
  374. }
  375. else break;
  376. }
  377. case VK: {
  378. if (e->u.s.info <= MAXINDEXRK) /* constant fit in argC? */
  379. return RKASK(e->u.s.info);
  380. else break;
  381. }
  382. default: break;
  383. }
  384. /* not a constant in the right range: put it in a register */
  385. return luaK_exp2anyreg(fs, e);
  386. }
  387. void luaK_storevar (FuncState *fs, expdesc *var, expdesc *ex) {
  388. switch (var->k) {
  389. case VLOCAL: {
  390. freeexp(fs, ex);
  391. exp2reg(fs, ex, var->u.s.info);
  392. return;
  393. }
  394. case VUPVAL: {
  395. int e = luaK_exp2anyreg(fs, ex);
  396. luaK_codeABC(fs, OP_SETUPVAL, e, var->u.s.info, 0);
  397. break;
  398. }
  399. case VGLOBAL: {
  400. int e = luaK_exp2anyreg(fs, ex);
  401. luaK_codeABx(fs, OP_SETGLOBAL, e, var->u.s.info);
  402. break;
  403. }
  404. case VINDEXED: {
  405. int e = luaK_exp2RK(fs, ex);
  406. luaK_codeABC(fs, OP_SETTABLE, var->u.s.info, var->u.s.aux, e);
  407. break;
  408. }
  409. default: {
  410. lua_assert(0); /* invalid var kind to store */
  411. break;
  412. }
  413. }
  414. freeexp(fs, ex);
  415. }
  416. void luaK_self (FuncState *fs, expdesc *e, expdesc *key) {
  417. int func;
  418. luaK_exp2anyreg(fs, e);
  419. freeexp(fs, e);
  420. func = fs->freereg;
  421. luaK_reserveregs(fs, 2);
  422. luaK_codeABC(fs, OP_SELF, func, e->u.s.info, luaK_exp2RK(fs, key));
  423. freeexp(fs, key);
  424. e->u.s.info = func;
  425. e->k = VNONRELOC;
  426. }
  427. static void invertjump (FuncState *fs, expdesc *e) {
  428. Instruction *pc = getjumpcontrol(fs, e->u.s.info);
  429. lua_assert(testTMode(GET_OPCODE(*pc)) && GET_OPCODE(*pc) != OP_TESTSET &&
  430. GET_OPCODE(*pc) != OP_TEST);
  431. SETARG_A(*pc, !(GETARG_A(*pc)));
  432. }
  433. static int jumponcond (FuncState *fs, expdesc *e, int cond) {
  434. if (e->k == VRELOCABLE) {
  435. Instruction ie = getcode(fs, e);
  436. if (GET_OPCODE(ie) == OP_NOT) {
  437. fs->pc--; /* remove previous OP_NOT */
  438. return condjump(fs, OP_TEST, GETARG_B(ie), 0, !cond);
  439. }
  440. /* else go through */
  441. }
  442. discharge2anyreg(fs, e);
  443. freeexp(fs, e);
  444. return condjump(fs, OP_TESTSET, NO_REG, e->u.s.info, cond);
  445. }
  446. void luaK_goiftrue (FuncState *fs, expdesc *e) {
  447. int pc; /* pc of last jump */
  448. luaK_dischargevars(fs, e);
  449. switch (e->k) {
  450. case VK: case VKNUM: case VTRUE: {
  451. pc = NO_JUMP; /* always true; do nothing */
  452. break;
  453. }
  454. case VFALSE: {
  455. pc = luaK_jump(fs); /* always jump */
  456. break;
  457. }
  458. case VJMP: {
  459. invertjump(fs, e);
  460. pc = e->u.s.info;
  461. break;
  462. }
  463. default: {
  464. pc = jumponcond(fs, e, 0);
  465. break;
  466. }
  467. }
  468. luaK_concat(fs, &e->f, pc); /* insert last jump in `f' list */
  469. luaK_patchtohere(fs, e->t);
  470. e->t = NO_JUMP;
  471. }
  472. static void luaK_goiffalse (FuncState *fs, expdesc *e) {
  473. int pc; /* pc of last jump */
  474. luaK_dischargevars(fs, e);
  475. switch (e->k) {
  476. case VNIL: case VFALSE: {
  477. pc = NO_JUMP; /* always false; do nothing */
  478. break;
  479. }
  480. case VTRUE: {
  481. pc = luaK_jump(fs); /* always jump */
  482. break;
  483. }
  484. case VJMP: {
  485. pc = e->u.s.info;
  486. break;
  487. }
  488. default: {
  489. pc = jumponcond(fs, e, 1);
  490. break;
  491. }
  492. }
  493. luaK_concat(fs, &e->t, pc); /* insert last jump in `t' list */
  494. luaK_patchtohere(fs, e->f);
  495. e->f = NO_JUMP;
  496. }
  497. static void codenot (FuncState *fs, expdesc *e) {
  498. luaK_dischargevars(fs, e);
  499. switch (e->k) {
  500. case VNIL: case VFALSE: {
  501. e->k = VTRUE;
  502. break;
  503. }
  504. case VK: case VKNUM: case VTRUE: {
  505. e->k = VFALSE;
  506. break;
  507. }
  508. case VJMP: {
  509. invertjump(fs, e);
  510. break;
  511. }
  512. case VRELOCABLE:
  513. case VNONRELOC: {
  514. discharge2anyreg(fs, e);
  515. freeexp(fs, e);
  516. e->u.s.info = luaK_codeABC(fs, OP_NOT, 0, e->u.s.info, 0);
  517. e->k = VRELOCABLE;
  518. break;
  519. }
  520. default: {
  521. lua_assert(0); /* cannot happen */
  522. break;
  523. }
  524. }
  525. /* interchange true and false lists */
  526. { int temp = e->f; e->f = e->t; e->t = temp; }
  527. removevalues(fs, e->f);
  528. removevalues(fs, e->t);
  529. }
  530. void luaK_indexed (FuncState *fs, expdesc *t, expdesc *k) {
  531. t->u.s.aux = luaK_exp2RK(fs, k);
  532. t->k = VINDEXED;
  533. }
  534. static int constfolding (OpCode op, expdesc *e1, expdesc *e2) {
  535. lua_Number v1, v2, r;
  536. if (!isnumeral(e1) || !isnumeral(e2)) return 0;
  537. v1 = e1->u.nval;
  538. v2 = e2->u.nval;
  539. switch (op) {
  540. case OP_ADD: r = luai_numadd(v1, v2); break;
  541. case OP_SUB: r = luai_numsub(v1, v2); break;
  542. case OP_MUL: r = luai_nummul(v1, v2); break;
  543. case OP_DIV:
  544. if (v2 == 0) return 0; /* do not attempt to divide by 0 */
  545. r = luai_numdiv(v1, v2); break;
  546. case OP_MOD:
  547. if (v2 == 0) return 0; /* do not attempt to divide by 0 */
  548. r = luai_nummod(v1, v2); break;
  549. case OP_POW: r = luai_numpow(v1, v2); break;
  550. case OP_UNM: r = luai_numunm(v1); break;
  551. case OP_LEN: return 0; /* no constant folding for 'len' */
  552. default: lua_assert(0); r = 0; break;
  553. }
  554. if (luai_numisnan(r)) return 0; /* do not attempt to produce NaN */
  555. e1->u.nval = r;
  556. return 1;
  557. }
  558. static void codearith (FuncState *fs, OpCode op, expdesc *e1, expdesc *e2) {
  559. if (constfolding(op, e1, e2))
  560. return;
  561. else {
  562. int o1 = luaK_exp2RK(fs, e1);
  563. int o2 = (op != OP_UNM && op != OP_LEN) ? luaK_exp2RK(fs, e2) : 0;
  564. freeexp(fs, e2);
  565. freeexp(fs, e1);
  566. e1->u.s.info = luaK_codeABC(fs, op, 0, o1, o2);
  567. e1->k = VRELOCABLE;
  568. }
  569. }
  570. static void codecomp (FuncState *fs, OpCode op, int cond, expdesc *e1,
  571. expdesc *e2) {
  572. int o1 = luaK_exp2RK(fs, e1);
  573. int o2 = luaK_exp2RK(fs, e2);
  574. freeexp(fs, e2);
  575. freeexp(fs, e1);
  576. if (cond == 0 && op != OP_EQ) {
  577. int temp; /* exchange args to replace by `<' or `<=' */
  578. temp = o1; o1 = o2; o2 = temp; /* o1 <==> o2 */
  579. cond = 1;
  580. }
  581. e1->u.s.info = condjump(fs, op, cond, o1, o2);
  582. e1->k = VJMP;
  583. }
  584. void luaK_prefix (FuncState *fs, UnOpr op, expdesc *e) {
  585. expdesc e2;
  586. e2.t = e2.f = NO_JUMP; e2.k = VKNUM; e2.u.nval = 0;
  587. switch (op) {
  588. case OPR_MINUS: {
  589. if (e->k == VK)
  590. luaK_exp2anyreg(fs, e); /* cannot operate on non-numeric constants */
  591. codearith(fs, OP_UNM, e, &e2);
  592. break;
  593. }
  594. case OPR_NOT: codenot(fs, e); break;
  595. case OPR_LEN: {
  596. luaK_exp2anyreg(fs, e); /* cannot operate on constants */
  597. codearith(fs, OP_LEN, e, &e2);
  598. break;
  599. }
  600. default: lua_assert(0);
  601. }
  602. }
  603. void luaK_infix (FuncState *fs, BinOpr op, expdesc *v) {
  604. switch (op) {
  605. case OPR_AND: {
  606. luaK_goiftrue(fs, v);
  607. break;
  608. }
  609. case OPR_OR: {
  610. luaK_goiffalse(fs, v);
  611. break;
  612. }
  613. case OPR_CONCAT: {
  614. luaK_exp2nextreg(fs, v); /* operand must be on the `stack' */
  615. break;
  616. }
  617. default: {
  618. if (!isnumeral(v)) luaK_exp2RK(fs, v);
  619. break;
  620. }
  621. }
  622. }
  623. void luaK_posfix (FuncState *fs, BinOpr op, expdesc *e1, expdesc *e2) {
  624. switch (op) {
  625. case OPR_AND: {
  626. lua_assert(e1->t == NO_JUMP); /* list must be closed */
  627. luaK_dischargevars(fs, e2);
  628. luaK_concat(fs, &e2->f, e1->f);
  629. *e1 = *e2;
  630. break;
  631. }
  632. case OPR_OR: {
  633. lua_assert(e1->f == NO_JUMP); /* list must be closed */
  634. luaK_dischargevars(fs, e2);
  635. luaK_concat(fs, &e2->t, e1->t);
  636. *e1 = *e2;
  637. break;
  638. }
  639. case OPR_CONCAT: {
  640. luaK_exp2val(fs, e2);
  641. if (e2->k == VRELOCABLE && GET_OPCODE(getcode(fs, e2)) == OP_CONCAT) {
  642. lua_assert(e1->u.s.info == GETARG_B(getcode(fs, e2))-1);
  643. freeexp(fs, e1);
  644. SETARG_B(getcode(fs, e2), e1->u.s.info);
  645. e1->k = VRELOCABLE; e1->u.s.info = e2->u.s.info;
  646. }
  647. else {
  648. luaK_exp2nextreg(fs, e2); /* operand must be on the 'stack' */
  649. codearith(fs, OP_CONCAT, e1, e2);
  650. }
  651. break;
  652. }
  653. case OPR_ADD: codearith(fs, OP_ADD, e1, e2); break;
  654. case OPR_SUB: codearith(fs, OP_SUB, e1, e2); break;
  655. case OPR_MUL: codearith(fs, OP_MUL, e1, e2); break;
  656. case OPR_DIV: codearith(fs, OP_DIV, e1, e2); break;
  657. case OPR_MOD: codearith(fs, OP_MOD, e1, e2); break;
  658. case OPR_POW: codearith(fs, OP_POW, e1, e2); break;
  659. case OPR_EQ: codecomp(fs, OP_EQ, 1, e1, e2); break;
  660. case OPR_NE: codecomp(fs, OP_EQ, 0, e1, e2); break;
  661. case OPR_LT: codecomp(fs, OP_LT, 1, e1, e2); break;
  662. case OPR_LE: codecomp(fs, OP_LE, 1, e1, e2); break;
  663. case OPR_GT: codecomp(fs, OP_LT, 0, e1, e2); break;
  664. case OPR_GE: codecomp(fs, OP_LE, 0, e1, e2); break;
  665. default: lua_assert(0);
  666. }
  667. }
  668. void luaK_fixline (FuncState *fs, int line) {
  669. fs->f->lineinfo[fs->pc - 1] = line;
  670. }
  671. static int luaK_code (FuncState *fs, Instruction i, int line) {
  672. Proto *f = fs->f;
  673. dischargejpc(fs); /* `pc' will change */
  674. /* put new instruction in code array */
  675. luaM_growvector(fs->L, f->code, fs->pc, f->sizecode, Instruction,
  676. MAX_INT, "code size overflow");
  677. f->code[fs->pc] = i;
  678. /* save corresponding line information */
  679. luaM_growvector(fs->L, f->lineinfo, fs->pc, f->sizelineinfo, int,
  680. MAX_INT, "code size overflow");
  681. f->lineinfo[fs->pc] = line;
  682. return fs->pc++;
  683. }
  684. int luaK_codeABC (FuncState *fs, OpCode o, int a, int b, int c) {
  685. lua_assert(getOpMode(o) == iABC);
  686. lua_assert(getBMode(o) != OpArgN || b == 0);
  687. lua_assert(getCMode(o) != OpArgN || c == 0);
  688. return luaK_code(fs, CREATE_ABC(o, a, b, c), fs->ls->lastline);
  689. }
  690. int luaK_codeABx (FuncState *fs, OpCode o, int a, unsigned int bc) {
  691. lua_assert(getOpMode(o) == iABx || getOpMode(o) == iAsBx);
  692. lua_assert(getCMode(o) == OpArgN);
  693. return luaK_code(fs, CREATE_ABx(o, a, bc), fs->ls->lastline);
  694. }
  695. void luaK_setlist (FuncState *fs, int base, int nelems, int tostore) {
  696. int c = (nelems - 1)/LFIELDS_PER_FLUSH + 1;
  697. int b = (tostore == LUA_MULTRET) ? 0 : tostore;
  698. lua_assert(tostore != 0);
  699. if (c <= MAXARG_C)
  700. luaK_codeABC(fs, OP_SETLIST, base, b, c);
  701. else {
  702. luaK_codeABC(fs, OP_SETLIST, base, b, 0);
  703. luaK_code(fs, cast(Instruction, c), fs->ls->lastline);
  704. }
  705. fs->freereg = base + 1; /* free registers with list values */
  706. }