123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268 |
- /*
- ** $Id: lgc.h $
- ** Garbage Collector
- ** See Copyright Notice in lua.h
- */
- #ifndef lgc_h
- #define lgc_h
- #include <stddef.h>
- #include "lobject.h"
- #include "lstate.h"
- /*
- ** Collectable objects may have one of three colors: white, which means
- ** the object is not marked; gray, which means the object is marked, but
- ** its references may be not marked; and black, which means that the
- ** object and all its references are marked. The main invariant of the
- ** garbage collector, while marking objects, is that a black object can
- ** never point to a white one. Moreover, any gray object must be in a
- ** "gray list" (gray, grayagain, weak, allweak, ephemeron) so that it
- ** can be visited again before finishing the collection cycle. (Open
- ** upvalues are an exception to this rule, as they are attached to
- ** a corresponding thread.) These lists have no meaning when the
- ** invariant is not being enforced (e.g., sweep phase).
- */
- /*
- ** Possible states of the Garbage Collector
- */
- #define GCSpropagate 0
- #define GCSenteratomic 1
- #define GCSatomic 2
- #define GCSswpallgc 3
- #define GCSswpfinobj 4
- #define GCSswptobefnz 5
- #define GCSswpend 6
- #define GCScallfin 7
- #define GCSpause 8
- #define issweepphase(g) \
- (GCSswpallgc <= (g)->gcstate && (g)->gcstate <= GCSswpend)
- /*
- ** macro to tell when main invariant (white objects cannot point to black
- ** ones) must be kept. During a collection, the sweep phase may break
- ** the invariant, as objects turned white may point to still-black
- ** objects. The invariant is restored when sweep ends and all objects
- ** are white again.
- */
- #define keepinvariant(g) ((g)->gcstate <= GCSatomic)
- /*
- ** some useful bit tricks
- */
- #define resetbits(x,m) ((x) &= cast_byte(~(m)))
- #define setbits(x,m) ((x) |= (m))
- #define testbits(x,m) ((x) & (m))
- #define bitmask(b) (1<<(b))
- #define bit2mask(b1,b2) (bitmask(b1) | bitmask(b2))
- #define l_setbit(x,b) setbits(x, bitmask(b))
- #define resetbit(x,b) resetbits(x, bitmask(b))
- #define testbit(x,b) testbits(x, bitmask(b))
- /*
- ** Layout for bit use in 'marked' field. First three bits are
- ** used for object "age" in generational mode. Last bit is used
- ** by tests.
- */
- #define WHITE0BIT 3 /* object is white (type 0) */
- #define WHITE1BIT 4 /* object is white (type 1) */
- #define BLACKBIT 5 /* object is black */
- #define FINALIZEDBIT 6 /* object has been marked for finalization */
- #define TESTBIT 7
- #define WHITEBITS bit2mask(WHITE0BIT, WHITE1BIT)
- #define iswhite(x) testbits((x)->marked, WHITEBITS)
- #define isblack(x) testbit((x)->marked, BLACKBIT)
- #define isgray(x) /* neither white nor black */ \
- (!testbits((x)->marked, WHITEBITS | bitmask(BLACKBIT)))
- #define tofinalize(x) testbit((x)->marked, FINALIZEDBIT)
- #define otherwhite(g) ((g)->currentwhite ^ WHITEBITS)
- #define isdeadm(ow,m) ((m) & (ow))
- #define isdead(g,v) isdeadm(otherwhite(g), (v)->marked)
- #define changewhite(x) ((x)->marked ^= WHITEBITS)
- #define nw2black(x) \
- check_exp(!iswhite(x), l_setbit((x)->marked, BLACKBIT))
- #define luaC_white(g) cast_byte((g)->currentwhite & WHITEBITS)
- /* object age in generational mode */
- #define G_NEW 0 /* created in current cycle */
- #define G_SURVIVAL 1 /* created in previous cycle */
- #define G_OLD0 2 /* marked old by frw. barrier in this cycle */
- #define G_OLD1 3 /* first full cycle as old */
- #define G_OLD 4 /* really old object (not to be visited) */
- #define G_TOUCHED1 5 /* old object touched this cycle */
- #define G_TOUCHED2 6 /* old object touched in previous cycle */
- #define AGEBITS 7 /* all age bits (111) */
- #define getage(o) ((o)->marked & AGEBITS)
- #define setage(o,a) ((o)->marked = cast_byte(((o)->marked & (~AGEBITS)) | a))
- #define isold(o) (getage(o) > G_SURVIVAL)
- /*
- ** In generational mode, objects are created 'new'. After surviving one
- ** cycle, they become 'survival'. Both 'new' and 'survival' can point
- ** to any other object, as they are traversed at the end of the cycle.
- ** We call them both 'young' objects.
- ** If a survival object survives another cycle, it becomes 'old1'.
- ** 'old1' objects can still point to survival objects (but not to
- ** new objects), so they still must be traversed. After another cycle
- ** (that, being old, 'old1' objects will "survive" no matter what)
- ** finally the 'old1' object becomes really 'old', and then they
- ** are no more traversed.
- **
- ** To keep its invariants, the generational mode uses the same barriers
- ** also used by the incremental mode. If a young object is caught in a
- ** forward barrier, it cannot become old immediately, because it can
- ** still point to other young objects. Instead, it becomes 'old0',
- ** which in the next cycle becomes 'old1'. So, 'old0' objects is
- ** old but can point to new and survival objects; 'old1' is old
- ** but cannot point to new objects; and 'old' cannot point to any
- ** young object.
- **
- ** If any old object ('old0', 'old1', 'old') is caught in a back
- ** barrier, it becomes 'touched1' and goes into a gray list, to be
- ** visited at the end of the cycle. There it evolves to 'touched2',
- ** which can point to survivals but not to new objects. In yet another
- ** cycle then it becomes 'old' again.
- **
- ** The generational mode must also control the colors of objects,
- ** because of the barriers. While the mutator is running, young objects
- ** are kept white. 'old', 'old1', and 'touched2' objects are kept black,
- ** as they cannot point to new objects; exceptions are threads and open
- ** upvalues, which age to 'old1' and 'old' but are kept gray. 'old0'
- ** objects may be gray or black, as in the incremental mode. 'touched1'
- ** objects are kept gray, as they must be visited again at the end of
- ** the cycle.
- */
- /*
- ** {======================================================
- ** Default Values for GC parameters
- ** =======================================================
- */
- /*
- ** Minor collections will shift to major ones after LUAI_MINORMAJOR%
- ** bytes become old.
- */
- #define LUAI_MINORMAJOR 70
- /*
- ** Major collections will shift to minor ones after a collection
- ** collects at least LUAI_MAJORMINOR% of the new bytes.
- */
- #define LUAI_MAJORMINOR 50
- /*
- ** A young (minor) collection will run after creating LUAI_GENMINORMUL%
- ** new bytes.
- */
- #define LUAI_GENMINORMUL 20
- /* incremental */
- /* Number of bytes must be LUAI_GCPAUSE% before starting new cycle */
- #define LUAI_GCPAUSE 250
- /*
- ** Step multiplier: The collector handles LUAI_GCMUL% work units for
- ** each new allocated word. (Each "work unit" corresponds roughly to
- ** sweeping one object or traversing one slot.)
- */
- #define LUAI_GCMUL 200
- /* How many bytes to allocate before next GC step */
- #define LUAI_GCSTEPSIZE (200 * sizeof(Table))
- #define setgcparam(g,p,v) (g->gcparams[LUA_GCP##p] = luaO_codeparam(v))
- #define applygcparam(g,p,x) luaO_applyparam(g->gcparams[LUA_GCP##p], x)
- /* }====================================================== */
- /*
- ** Control when GC is running:
- */
- #define GCSTPUSR 1 /* bit true when GC stopped by user */
- #define GCSTPGC 2 /* bit true when GC stopped by itself */
- #define GCSTPCLS 4 /* bit true when closing Lua state */
- #define gcrunning(g) ((g)->gcstp == 0)
- /*
- ** Does one step of collection when debt becomes zero. 'pre'/'pos'
- ** allows some adjustments to be done only when needed. macro
- ** 'condchangemem' is used only for heavy tests (forcing a full
- ** GC cycle on every opportunity)
- */
- #if !defined(HARDMEMTESTS)
- #define condchangemem(L,pre,pos,emg) ((void)0)
- #else
- #define condchangemem(L,pre,pos,emg) \
- { if (gcrunning(G(L))) { pre; luaC_fullgc(L, emg); pos; } }
- #endif
- #define luaC_condGC(L,pre,pos) \
- { if (G(L)->GCdebt <= 0) { pre; luaC_step(L); pos;}; \
- condchangemem(L,pre,pos,0); }
- /* more often than not, 'pre'/'pos' are empty */
- #define luaC_checkGC(L) luaC_condGC(L,(void)0,(void)0)
- #define luaC_objbarrier(L,p,o) ( \
- (isblack(p) && iswhite(o)) ? \
- luaC_barrier_(L,obj2gco(p),obj2gco(o)) : cast_void(0))
- #define luaC_barrier(L,p,v) ( \
- iscollectable(v) ? luaC_objbarrier(L,p,gcvalue(v)) : cast_void(0))
- #define luaC_objbarrierback(L,p,o) ( \
- (isblack(p) && iswhite(o)) ? luaC_barrierback_(L,p) : cast_void(0))
- #define luaC_barrierback(L,p,v) ( \
- iscollectable(v) ? luaC_objbarrierback(L, p, gcvalue(v)) : cast_void(0))
- LUAI_FUNC void luaC_fix (lua_State *L, GCObject *o);
- LUAI_FUNC void luaC_freeallobjects (lua_State *L);
- LUAI_FUNC void luaC_step (lua_State *L);
- LUAI_FUNC void luaC_runtilstate (lua_State *L, int state, int fast);
- LUAI_FUNC void luaC_fullgc (lua_State *L, int isemergency);
- LUAI_FUNC GCObject *luaC_newobj (lua_State *L, lu_byte tt, size_t sz);
- LUAI_FUNC GCObject *luaC_newobjdt (lua_State *L, lu_byte tt, size_t sz,
- size_t offset);
- LUAI_FUNC void luaC_barrier_ (lua_State *L, GCObject *o, GCObject *v);
- LUAI_FUNC void luaC_barrierback_ (lua_State *L, GCObject *o);
- LUAI_FUNC void luaC_checkfinalizer (lua_State *L, GCObject *o, Table *mt);
- LUAI_FUNC void luaC_changemode (lua_State *L, int newmode);
- #endif
|