lmathlib.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752
  1. /*
  2. ** $Id: lmathlib.c $
  3. ** Standard mathematical library
  4. ** See Copyright Notice in lua.h
  5. */
  6. #define lmathlib_c
  7. #define LUA_LIB
  8. #include "lprefix.h"
  9. #include <float.h>
  10. #include <limits.h>
  11. #include <math.h>
  12. #include <stdlib.h>
  13. #include <time.h>
  14. #include "lua.h"
  15. #include "lauxlib.h"
  16. #include "lualib.h"
  17. #include "llimits.h"
  18. #undef PI
  19. #define PI (l_mathop(3.141592653589793238462643383279502884))
  20. static int math_abs (lua_State *L) {
  21. if (lua_isinteger(L, 1)) {
  22. lua_Integer n = lua_tointeger(L, 1);
  23. if (n < 0) n = (lua_Integer)(0u - (lua_Unsigned)n);
  24. lua_pushinteger(L, n);
  25. }
  26. else
  27. lua_pushnumber(L, l_mathop(fabs)(luaL_checknumber(L, 1)));
  28. return 1;
  29. }
  30. static int math_sin (lua_State *L) {
  31. lua_pushnumber(L, l_mathop(sin)(luaL_checknumber(L, 1)));
  32. return 1;
  33. }
  34. static int math_cos (lua_State *L) {
  35. lua_pushnumber(L, l_mathop(cos)(luaL_checknumber(L, 1)));
  36. return 1;
  37. }
  38. static int math_tan (lua_State *L) {
  39. lua_pushnumber(L, l_mathop(tan)(luaL_checknumber(L, 1)));
  40. return 1;
  41. }
  42. static int math_asin (lua_State *L) {
  43. lua_pushnumber(L, l_mathop(asin)(luaL_checknumber(L, 1)));
  44. return 1;
  45. }
  46. static int math_acos (lua_State *L) {
  47. lua_pushnumber(L, l_mathop(acos)(luaL_checknumber(L, 1)));
  48. return 1;
  49. }
  50. static int math_atan (lua_State *L) {
  51. lua_Number y = luaL_checknumber(L, 1);
  52. lua_Number x = luaL_optnumber(L, 2, 1);
  53. lua_pushnumber(L, l_mathop(atan2)(y, x));
  54. return 1;
  55. }
  56. static int math_toint (lua_State *L) {
  57. int valid;
  58. lua_Integer n = lua_tointegerx(L, 1, &valid);
  59. if (l_likely(valid))
  60. lua_pushinteger(L, n);
  61. else {
  62. luaL_checkany(L, 1);
  63. luaL_pushfail(L); /* value is not convertible to integer */
  64. }
  65. return 1;
  66. }
  67. static void pushnumint (lua_State *L, lua_Number d) {
  68. lua_Integer n;
  69. if (lua_numbertointeger(d, &n)) /* does 'd' fit in an integer? */
  70. lua_pushinteger(L, n); /* result is integer */
  71. else
  72. lua_pushnumber(L, d); /* result is float */
  73. }
  74. static int math_floor (lua_State *L) {
  75. if (lua_isinteger(L, 1))
  76. lua_settop(L, 1); /* integer is its own floor */
  77. else {
  78. lua_Number d = l_mathop(floor)(luaL_checknumber(L, 1));
  79. pushnumint(L, d);
  80. }
  81. return 1;
  82. }
  83. static int math_ceil (lua_State *L) {
  84. if (lua_isinteger(L, 1))
  85. lua_settop(L, 1); /* integer is its own ceiling */
  86. else {
  87. lua_Number d = l_mathop(ceil)(luaL_checknumber(L, 1));
  88. pushnumint(L, d);
  89. }
  90. return 1;
  91. }
  92. static int math_fmod (lua_State *L) {
  93. if (lua_isinteger(L, 1) && lua_isinteger(L, 2)) {
  94. lua_Integer d = lua_tointeger(L, 2);
  95. if ((lua_Unsigned)d + 1u <= 1u) { /* special cases: -1 or 0 */
  96. luaL_argcheck(L, d != 0, 2, "zero");
  97. lua_pushinteger(L, 0); /* avoid overflow with 0x80000... / -1 */
  98. }
  99. else
  100. lua_pushinteger(L, lua_tointeger(L, 1) % d);
  101. }
  102. else
  103. lua_pushnumber(L, l_mathop(fmod)(luaL_checknumber(L, 1),
  104. luaL_checknumber(L, 2)));
  105. return 1;
  106. }
  107. /*
  108. ** next function does not use 'modf', avoiding problems with 'double*'
  109. ** (which is not compatible with 'float*') when lua_Number is not
  110. ** 'double'.
  111. */
  112. static int math_modf (lua_State *L) {
  113. if (lua_isinteger(L ,1)) {
  114. lua_settop(L, 1); /* number is its own integer part */
  115. lua_pushnumber(L, 0); /* no fractional part */
  116. }
  117. else {
  118. lua_Number n = luaL_checknumber(L, 1);
  119. /* integer part (rounds toward zero) */
  120. lua_Number ip = (n < 0) ? l_mathop(ceil)(n) : l_mathop(floor)(n);
  121. pushnumint(L, ip);
  122. /* fractional part (test needed for inf/-inf) */
  123. lua_pushnumber(L, (n == ip) ? l_mathop(0.0) : (n - ip));
  124. }
  125. return 2;
  126. }
  127. static int math_sqrt (lua_State *L) {
  128. lua_pushnumber(L, l_mathop(sqrt)(luaL_checknumber(L, 1)));
  129. return 1;
  130. }
  131. static int math_ult (lua_State *L) {
  132. lua_Integer a = luaL_checkinteger(L, 1);
  133. lua_Integer b = luaL_checkinteger(L, 2);
  134. lua_pushboolean(L, (lua_Unsigned)a < (lua_Unsigned)b);
  135. return 1;
  136. }
  137. static int math_log (lua_State *L) {
  138. lua_Number x = luaL_checknumber(L, 1);
  139. lua_Number res;
  140. if (lua_isnoneornil(L, 2))
  141. res = l_mathop(log)(x);
  142. else {
  143. lua_Number base = luaL_checknumber(L, 2);
  144. #if !defined(LUA_USE_C89)
  145. if (base == l_mathop(2.0))
  146. res = l_mathop(log2)(x);
  147. else
  148. #endif
  149. if (base == l_mathop(10.0))
  150. res = l_mathop(log10)(x);
  151. else
  152. res = l_mathop(log)(x)/l_mathop(log)(base);
  153. }
  154. lua_pushnumber(L, res);
  155. return 1;
  156. }
  157. static int math_exp (lua_State *L) {
  158. lua_pushnumber(L, l_mathop(exp)(luaL_checknumber(L, 1)));
  159. return 1;
  160. }
  161. static int math_deg (lua_State *L) {
  162. lua_pushnumber(L, luaL_checknumber(L, 1) * (l_mathop(180.0) / PI));
  163. return 1;
  164. }
  165. static int math_rad (lua_State *L) {
  166. lua_pushnumber(L, luaL_checknumber(L, 1) * (PI / l_mathop(180.0)));
  167. return 1;
  168. }
  169. static int math_min (lua_State *L) {
  170. int n = lua_gettop(L); /* number of arguments */
  171. int imin = 1; /* index of current minimum value */
  172. int i;
  173. luaL_argcheck(L, n >= 1, 1, "value expected");
  174. for (i = 2; i <= n; i++) {
  175. if (lua_compare(L, i, imin, LUA_OPLT))
  176. imin = i;
  177. }
  178. lua_pushvalue(L, imin);
  179. return 1;
  180. }
  181. static int math_max (lua_State *L) {
  182. int n = lua_gettop(L); /* number of arguments */
  183. int imax = 1; /* index of current maximum value */
  184. int i;
  185. luaL_argcheck(L, n >= 1, 1, "value expected");
  186. for (i = 2; i <= n; i++) {
  187. if (lua_compare(L, imax, i, LUA_OPLT))
  188. imax = i;
  189. }
  190. lua_pushvalue(L, imax);
  191. return 1;
  192. }
  193. static int math_type (lua_State *L) {
  194. if (lua_type(L, 1) == LUA_TNUMBER)
  195. lua_pushstring(L, (lua_isinteger(L, 1)) ? "integer" : "float");
  196. else {
  197. luaL_checkany(L, 1);
  198. luaL_pushfail(L);
  199. }
  200. return 1;
  201. }
  202. /*
  203. ** {==================================================================
  204. ** Pseudo-Random Number Generator based on 'xoshiro256**'.
  205. ** ===================================================================
  206. */
  207. /*
  208. ** This code uses lots of shifts. ANSI C does not allow shifts greater
  209. ** than or equal to the width of the type being shifted, so some shifts
  210. ** are written in convoluted ways to match that restriction. For
  211. ** preprocessor tests, it assumes a width of 32 bits, so the maximum
  212. ** shift there is 31 bits.
  213. */
  214. /* number of binary digits in the mantissa of a float */
  215. #define FIGS l_floatatt(MANT_DIG)
  216. #if FIGS > 64
  217. /* there are only 64 random bits; use them all */
  218. #undef FIGS
  219. #define FIGS 64
  220. #endif
  221. /*
  222. ** LUA_RAND32 forces the use of 32-bit integers in the implementation
  223. ** of the PRN generator (mainly for testing).
  224. */
  225. #if !defined(LUA_RAND32) && !defined(Rand64)
  226. /* try to find an integer type with at least 64 bits */
  227. #if ((ULONG_MAX >> 31) >> 31) >= 3
  228. /* 'long' has at least 64 bits */
  229. #define Rand64 unsigned long
  230. #define SRand64 long
  231. #elif !defined(LUA_USE_C89) && defined(LLONG_MAX)
  232. /* there is a 'long long' type (which must have at least 64 bits) */
  233. #define Rand64 unsigned long long
  234. #define SRand64 long long
  235. #elif ((LUA_MAXUNSIGNED >> 31) >> 31) >= 3
  236. /* 'lua_Unsigned' has at least 64 bits */
  237. #define Rand64 lua_Unsigned
  238. #define SRand64 lua_Integer
  239. #endif
  240. #endif
  241. #if defined(Rand64) /* { */
  242. /*
  243. ** Standard implementation, using 64-bit integers.
  244. ** If 'Rand64' has more than 64 bits, the extra bits do not interfere
  245. ** with the 64 initial bits, except in a right shift. Moreover, the
  246. ** final result has to discard the extra bits.
  247. */
  248. /* avoid using extra bits when needed */
  249. #define trim64(x) ((x) & 0xffffffffffffffffu)
  250. /* rotate left 'x' by 'n' bits */
  251. static Rand64 rotl (Rand64 x, int n) {
  252. return (x << n) | (trim64(x) >> (64 - n));
  253. }
  254. static Rand64 nextrand (Rand64 *state) {
  255. Rand64 state0 = state[0];
  256. Rand64 state1 = state[1];
  257. Rand64 state2 = state[2] ^ state0;
  258. Rand64 state3 = state[3] ^ state1;
  259. Rand64 res = rotl(state1 * 5, 7) * 9;
  260. state[0] = state0 ^ state3;
  261. state[1] = state1 ^ state2;
  262. state[2] = state2 ^ (state1 << 17);
  263. state[3] = rotl(state3, 45);
  264. return res;
  265. }
  266. /*
  267. ** Convert bits from a random integer into a float in the
  268. ** interval [0,1), getting the higher FIG bits from the
  269. ** random unsigned integer and converting that to a float.
  270. ** Some old Microsoft compilers cannot cast an unsigned long
  271. ** to a floating-point number, so we use a signed long as an
  272. ** intermediary. When lua_Number is float or double, the shift ensures
  273. ** that 'sx' is non negative; in that case, a good compiler will remove
  274. ** the correction.
  275. */
  276. /* must throw out the extra (64 - FIGS) bits */
  277. #define shift64_FIG (64 - FIGS)
  278. /* 2^(-FIGS) == 2^-1 / 2^(FIGS-1) */
  279. #define scaleFIG (l_mathop(0.5) / ((Rand64)1 << (FIGS - 1)))
  280. static lua_Number I2d (Rand64 x) {
  281. SRand64 sx = (SRand64)(trim64(x) >> shift64_FIG);
  282. lua_Number res = (lua_Number)(sx) * scaleFIG;
  283. if (sx < 0)
  284. res += l_mathop(1.0); /* correct the two's complement if negative */
  285. lua_assert(0 <= res && res < 1);
  286. return res;
  287. }
  288. /* convert a 'Rand64' to a 'lua_Unsigned' */
  289. #define I2UInt(x) ((lua_Unsigned)trim64(x))
  290. /* convert a 'lua_Unsigned' to a 'Rand64' */
  291. #define Int2I(x) ((Rand64)(x))
  292. #else /* no 'Rand64' }{ */
  293. /*
  294. ** Use two 32-bit integers to represent a 64-bit quantity.
  295. */
  296. typedef struct Rand64 {
  297. l_uint32 h; /* higher half */
  298. l_uint32 l; /* lower half */
  299. } Rand64;
  300. /*
  301. ** If 'l_uint32' has more than 32 bits, the extra bits do not interfere
  302. ** with the 32 initial bits, except in a right shift and comparisons.
  303. ** Moreover, the final result has to discard the extra bits.
  304. */
  305. /* avoid using extra bits when needed */
  306. #define trim32(x) ((x) & 0xffffffffu)
  307. /*
  308. ** basic operations on 'Rand64' values
  309. */
  310. /* build a new Rand64 value */
  311. static Rand64 packI (l_uint32 h, l_uint32 l) {
  312. Rand64 result;
  313. result.h = h;
  314. result.l = l;
  315. return result;
  316. }
  317. /* return i << n */
  318. static Rand64 Ishl (Rand64 i, int n) {
  319. lua_assert(n > 0 && n < 32);
  320. return packI((i.h << n) | (trim32(i.l) >> (32 - n)), i.l << n);
  321. }
  322. /* i1 ^= i2 */
  323. static void Ixor (Rand64 *i1, Rand64 i2) {
  324. i1->h ^= i2.h;
  325. i1->l ^= i2.l;
  326. }
  327. /* return i1 + i2 */
  328. static Rand64 Iadd (Rand64 i1, Rand64 i2) {
  329. Rand64 result = packI(i1.h + i2.h, i1.l + i2.l);
  330. if (trim32(result.l) < trim32(i1.l)) /* carry? */
  331. result.h++;
  332. return result;
  333. }
  334. /* return i * 5 */
  335. static Rand64 times5 (Rand64 i) {
  336. return Iadd(Ishl(i, 2), i); /* i * 5 == (i << 2) + i */
  337. }
  338. /* return i * 9 */
  339. static Rand64 times9 (Rand64 i) {
  340. return Iadd(Ishl(i, 3), i); /* i * 9 == (i << 3) + i */
  341. }
  342. /* return 'i' rotated left 'n' bits */
  343. static Rand64 rotl (Rand64 i, int n) {
  344. lua_assert(n > 0 && n < 32);
  345. return packI((i.h << n) | (trim32(i.l) >> (32 - n)),
  346. (trim32(i.h) >> (32 - n)) | (i.l << n));
  347. }
  348. /* for offsets larger than 32, rotate right by 64 - offset */
  349. static Rand64 rotl1 (Rand64 i, int n) {
  350. lua_assert(n > 32 && n < 64);
  351. n = 64 - n;
  352. return packI((trim32(i.h) >> n) | (i.l << (32 - n)),
  353. (i.h << (32 - n)) | (trim32(i.l) >> n));
  354. }
  355. /*
  356. ** implementation of 'xoshiro256**' algorithm on 'Rand64' values
  357. */
  358. static Rand64 nextrand (Rand64 *state) {
  359. Rand64 res = times9(rotl(times5(state[1]), 7));
  360. Rand64 t = Ishl(state[1], 17);
  361. Ixor(&state[2], state[0]);
  362. Ixor(&state[3], state[1]);
  363. Ixor(&state[1], state[2]);
  364. Ixor(&state[0], state[3]);
  365. Ixor(&state[2], t);
  366. state[3] = rotl1(state[3], 45);
  367. return res;
  368. }
  369. /*
  370. ** Converts a 'Rand64' into a float.
  371. */
  372. /* an unsigned 1 with proper type */
  373. #define UONE ((l_uint32)1)
  374. #if FIGS <= 32
  375. /* 2^(-FIGS) */
  376. #define scaleFIG (l_mathop(0.5) / (UONE << (FIGS - 1)))
  377. /*
  378. ** get up to 32 bits from higher half, shifting right to
  379. ** throw out the extra bits.
  380. */
  381. static lua_Number I2d (Rand64 x) {
  382. lua_Number h = (lua_Number)(trim32(x.h) >> (32 - FIGS));
  383. return h * scaleFIG;
  384. }
  385. #else /* 32 < FIGS <= 64 */
  386. /* 2^(-FIGS) = 1.0 / 2^30 / 2^3 / 2^(FIGS-33) */
  387. #define scaleFIG \
  388. (l_mathop(1.0) / (UONE << 30) / l_mathop(8.0) / (UONE << (FIGS - 33)))
  389. /*
  390. ** use FIGS - 32 bits from lower half, throwing out the other
  391. ** (32 - (FIGS - 32)) = (64 - FIGS) bits
  392. */
  393. #define shiftLOW (64 - FIGS)
  394. /*
  395. ** higher 32 bits go after those (FIGS - 32) bits: shiftHI = 2^(FIGS - 32)
  396. */
  397. #define shiftHI ((lua_Number)(UONE << (FIGS - 33)) * l_mathop(2.0))
  398. static lua_Number I2d (Rand64 x) {
  399. lua_Number h = (lua_Number)trim32(x.h) * shiftHI;
  400. lua_Number l = (lua_Number)(trim32(x.l) >> shiftLOW);
  401. return (h + l) * scaleFIG;
  402. }
  403. #endif
  404. /* convert a 'Rand64' to a 'lua_Unsigned' */
  405. static lua_Unsigned I2UInt (Rand64 x) {
  406. return (((lua_Unsigned)trim32(x.h) << 31) << 1) | (lua_Unsigned)trim32(x.l);
  407. }
  408. /* convert a 'lua_Unsigned' to a 'Rand64' */
  409. static Rand64 Int2I (lua_Unsigned n) {
  410. return packI((l_uint32)((n >> 31) >> 1), (l_uint32)n);
  411. }
  412. #endif /* } */
  413. /*
  414. ** A state uses four 'Rand64' values.
  415. */
  416. typedef struct {
  417. Rand64 s[4];
  418. } RanState;
  419. /*
  420. ** Project the random integer 'ran' into the interval [0, n].
  421. ** Because 'ran' has 2^B possible values, the projection can only be
  422. ** uniform when the size of the interval is a power of 2 (exact
  423. ** division). So, to get a uniform projection into [0, n], we
  424. ** first compute 'lim', the smallest Mersenne number not smaller than
  425. ** 'n'. We then project 'ran' into the interval [0, lim]. If the result
  426. ** is inside [0, n], we are done. Otherwise, we try with another 'ran',
  427. ** until we have a result inside the interval.
  428. */
  429. static lua_Unsigned project (lua_Unsigned ran, lua_Unsigned n,
  430. RanState *state) {
  431. lua_Unsigned lim = n; /* to compute the Mersenne number */
  432. int sh; /* how much to spread bits to the right in 'lim' */
  433. /* spread '1' bits in 'lim' until it becomes a Mersenne number */
  434. for (sh = 1; (lim & (lim + 1)) != 0; sh *= 2)
  435. lim |= (lim >> sh); /* spread '1's to the right */
  436. while ((ran &= lim) > n) /* project 'ran' into [0..lim] and test */
  437. ran = I2UInt(nextrand(state->s)); /* not inside [0..n]? try again */
  438. return ran;
  439. }
  440. static int math_random (lua_State *L) {
  441. lua_Integer low, up;
  442. lua_Unsigned p;
  443. RanState *state = (RanState *)lua_touserdata(L, lua_upvalueindex(1));
  444. Rand64 rv = nextrand(state->s); /* next pseudo-random value */
  445. switch (lua_gettop(L)) { /* check number of arguments */
  446. case 0: { /* no arguments */
  447. lua_pushnumber(L, I2d(rv)); /* float between 0 and 1 */
  448. return 1;
  449. }
  450. case 1: { /* only upper limit */
  451. low = 1;
  452. up = luaL_checkinteger(L, 1);
  453. if (up == 0) { /* single 0 as argument? */
  454. lua_pushinteger(L, l_castU2S(I2UInt(rv))); /* full random integer */
  455. return 1;
  456. }
  457. break;
  458. }
  459. case 2: { /* lower and upper limits */
  460. low = luaL_checkinteger(L, 1);
  461. up = luaL_checkinteger(L, 2);
  462. break;
  463. }
  464. default: return luaL_error(L, "wrong number of arguments");
  465. }
  466. /* random integer in the interval [low, up] */
  467. luaL_argcheck(L, low <= up, 1, "interval is empty");
  468. /* project random integer into the interval [0, up - low] */
  469. p = project(I2UInt(rv), l_castS2U(up) - l_castS2U(low), state);
  470. lua_pushinteger(L, l_castU2S(p + l_castS2U(low)));
  471. return 1;
  472. }
  473. static void setseed (lua_State *L, Rand64 *state,
  474. lua_Unsigned n1, lua_Unsigned n2) {
  475. int i;
  476. state[0] = Int2I(n1);
  477. state[1] = Int2I(0xff); /* avoid a zero state */
  478. state[2] = Int2I(n2);
  479. state[3] = Int2I(0);
  480. for (i = 0; i < 16; i++)
  481. nextrand(state); /* discard initial values to "spread" seed */
  482. lua_pushinteger(L, l_castU2S(n1));
  483. lua_pushinteger(L, l_castU2S(n2));
  484. }
  485. static int math_randomseed (lua_State *L) {
  486. RanState *state = (RanState *)lua_touserdata(L, lua_upvalueindex(1));
  487. lua_Unsigned n1, n2;
  488. if (lua_isnone(L, 1)) {
  489. n1 = luaL_makeseed(L); /* "random" seed */
  490. n2 = I2UInt(nextrand(state->s)); /* in case seed is not that random... */
  491. }
  492. else {
  493. n1 = l_castS2U(luaL_checkinteger(L, 1));
  494. n2 = l_castS2U(luaL_optinteger(L, 2, 0));
  495. }
  496. setseed(L, state->s, n1, n2);
  497. return 2; /* return seeds */
  498. }
  499. static const luaL_Reg randfuncs[] = {
  500. {"random", math_random},
  501. {"randomseed", math_randomseed},
  502. {NULL, NULL}
  503. };
  504. /*
  505. ** Register the random functions and initialize their state.
  506. */
  507. static void setrandfunc (lua_State *L) {
  508. RanState *state = (RanState *)lua_newuserdatauv(L, sizeof(RanState), 0);
  509. setseed(L, state->s, luaL_makeseed(L), 0); /* initialize with random seed */
  510. lua_pop(L, 2); /* remove pushed seeds */
  511. luaL_setfuncs(L, randfuncs, 1);
  512. }
  513. /* }================================================================== */
  514. /*
  515. ** {==================================================================
  516. ** Deprecated functions (for compatibility only)
  517. ** ===================================================================
  518. */
  519. #if defined(LUA_COMPAT_MATHLIB)
  520. static int math_cosh (lua_State *L) {
  521. lua_pushnumber(L, l_mathop(cosh)(luaL_checknumber(L, 1)));
  522. return 1;
  523. }
  524. static int math_sinh (lua_State *L) {
  525. lua_pushnumber(L, l_mathop(sinh)(luaL_checknumber(L, 1)));
  526. return 1;
  527. }
  528. static int math_tanh (lua_State *L) {
  529. lua_pushnumber(L, l_mathop(tanh)(luaL_checknumber(L, 1)));
  530. return 1;
  531. }
  532. static int math_pow (lua_State *L) {
  533. lua_Number x = luaL_checknumber(L, 1);
  534. lua_Number y = luaL_checknumber(L, 2);
  535. lua_pushnumber(L, l_mathop(pow)(x, y));
  536. return 1;
  537. }
  538. static int math_frexp (lua_State *L) {
  539. int e;
  540. lua_pushnumber(L, l_mathop(frexp)(luaL_checknumber(L, 1), &e));
  541. lua_pushinteger(L, e);
  542. return 2;
  543. }
  544. static int math_ldexp (lua_State *L) {
  545. lua_Number x = luaL_checknumber(L, 1);
  546. int ep = (int)luaL_checkinteger(L, 2);
  547. lua_pushnumber(L, l_mathop(ldexp)(x, ep));
  548. return 1;
  549. }
  550. static int math_log10 (lua_State *L) {
  551. lua_pushnumber(L, l_mathop(log10)(luaL_checknumber(L, 1)));
  552. return 1;
  553. }
  554. #endif
  555. /* }================================================================== */
  556. static const luaL_Reg mathlib[] = {
  557. {"abs", math_abs},
  558. {"acos", math_acos},
  559. {"asin", math_asin},
  560. {"atan", math_atan},
  561. {"ceil", math_ceil},
  562. {"cos", math_cos},
  563. {"deg", math_deg},
  564. {"exp", math_exp},
  565. {"tointeger", math_toint},
  566. {"floor", math_floor},
  567. {"fmod", math_fmod},
  568. {"ult", math_ult},
  569. {"log", math_log},
  570. {"max", math_max},
  571. {"min", math_min},
  572. {"modf", math_modf},
  573. {"rad", math_rad},
  574. {"sin", math_sin},
  575. {"sqrt", math_sqrt},
  576. {"tan", math_tan},
  577. {"type", math_type},
  578. #if defined(LUA_COMPAT_MATHLIB)
  579. {"atan2", math_atan},
  580. {"cosh", math_cosh},
  581. {"sinh", math_sinh},
  582. {"tanh", math_tanh},
  583. {"pow", math_pow},
  584. {"frexp", math_frexp},
  585. {"ldexp", math_ldexp},
  586. {"log10", math_log10},
  587. #endif
  588. /* placeholders */
  589. {"random", NULL},
  590. {"randomseed", NULL},
  591. {"pi", NULL},
  592. {"huge", NULL},
  593. {"maxinteger", NULL},
  594. {"mininteger", NULL},
  595. {NULL, NULL}
  596. };
  597. /*
  598. ** Open math library
  599. */
  600. LUAMOD_API int luaopen_math (lua_State *L) {
  601. luaL_newlib(L, mathlib);
  602. lua_pushnumber(L, PI);
  603. lua_setfield(L, -2, "pi");
  604. lua_pushnumber(L, (lua_Number)HUGE_VAL);
  605. lua_setfield(L, -2, "huge");
  606. lua_pushinteger(L, LUA_MAXINTEGER);
  607. lua_setfield(L, -2, "maxinteger");
  608. lua_pushinteger(L, LUA_MININTEGER);
  609. lua_setfield(L, -2, "mininteger");
  610. setrandfunc(L);
  611. return 1;
  612. }