12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355 |
- /*
- ** $Id: ltable.c $
- ** Lua tables (hash)
- ** See Copyright Notice in lua.h
- */
- #define ltable_c
- #define LUA_CORE
- #include "lprefix.h"
- /*
- ** Implementation of tables (aka arrays, objects, or hash tables).
- ** Tables keep its elements in two parts: an array part and a hash part.
- ** Non-negative integer keys are all candidates to be kept in the array
- ** part. The actual size of the array is the largest 'n' such that
- ** more than half the slots between 1 and n are in use.
- ** Hash uses a mix of chained scatter table with Brent's variation.
- ** A main invariant of these tables is that, if an element is not
- ** in its main position (i.e. the 'original' position that its hash gives
- ** to it), then the colliding element is in its own main position.
- ** Hence even when the load factor reaches 100%, performance remains good.
- */
- #include <math.h>
- #include <limits.h>
- #include <string.h>
- #include "lua.h"
- #include "ldebug.h"
- #include "ldo.h"
- #include "lgc.h"
- #include "lmem.h"
- #include "lobject.h"
- #include "lstate.h"
- #include "lstring.h"
- #include "ltable.h"
- #include "lvm.h"
- /*
- ** Only hash parts with at least 2^LIMFORLAST have a 'lastfree' field
- ** that optimizes finding a free slot. That field is stored just before
- ** the array of nodes, in the same block. Smaller tables do a complete
- ** search when looking for a free slot.
- */
- #define LIMFORLAST 3 /* log2 of real limit (8) */
- /*
- ** The union 'Limbox' stores 'lastfree' and ensures that what follows it
- ** is properly aligned to store a Node.
- */
- typedef struct { Node *dummy; Node follows_pNode; } Limbox_aux;
- typedef union {
- Node *lastfree;
- char padding[offsetof(Limbox_aux, follows_pNode)];
- } Limbox;
- #define haslastfree(t) ((t)->lsizenode >= LIMFORLAST)
- #define getlastfree(t) ((cast(Limbox *, (t)->node) - 1)->lastfree)
- /*
- ** MAXABITS is the largest integer such that 2^MAXABITS fits in an
- ** unsigned int.
- */
- #define MAXABITS (l_numbits(int) - 1)
- /*
- ** MAXASIZEB is the maximum number of elements in the array part such
- ** that the size of the array fits in 'size_t'.
- */
- #define MAXASIZEB (MAX_SIZET/(sizeof(Value) + 1))
- /*
- ** MAXASIZE is the maximum size of the array part. It is the minimum
- ** between 2^MAXABITS and MAXASIZEB.
- */
- #define MAXASIZE \
- (((1u << MAXABITS) < MAXASIZEB) ? (1u << MAXABITS) : cast_uint(MAXASIZEB))
- /*
- ** MAXHBITS is the largest integer such that 2^MAXHBITS fits in a
- ** signed int.
- */
- #define MAXHBITS (MAXABITS - 1)
- /*
- ** MAXHSIZE is the maximum size of the hash part. It is the minimum
- ** between 2^MAXHBITS and the maximum size such that, measured in bytes,
- ** it fits in a 'size_t'.
- */
- #define MAXHSIZE luaM_limitN(1 << MAXHBITS, Node)
- /*
- ** When the original hash value is good, hashing by a power of 2
- ** avoids the cost of '%'.
- */
- #define hashpow2(t,n) (gnode(t, lmod((n), sizenode(t))))
- /*
- ** for other types, it is better to avoid modulo by power of 2, as
- ** they can have many 2 factors.
- */
- #define hashmod(t,n) (gnode(t, ((n) % ((sizenode(t)-1u)|1u))))
- #define hashstr(t,str) hashpow2(t, (str)->hash)
- #define hashboolean(t,p) hashpow2(t, p)
- #define hashpointer(t,p) hashmod(t, point2uint(p))
- #define dummynode (&dummynode_)
- /*
- ** Common hash part for tables with empty hash parts. That allows all
- ** tables to have a hash part, avoiding an extra check ("is there a hash
- ** part?") when indexing. Its sole node has an empty value and a key
- ** (DEADKEY, NULL) that is different from any valid TValue.
- */
- static const Node dummynode_ = {
- {{NULL}, LUA_VEMPTY, /* value's value and type */
- LUA_TDEADKEY, 0, {NULL}} /* key type, next, and key value */
- };
- static const TValue absentkey = {ABSTKEYCONSTANT};
- /*
- ** Hash for integers. To allow a good hash, use the remainder operator
- ** ('%'). If integer fits as a non-negative int, compute an int
- ** remainder, which is faster. Otherwise, use an unsigned-integer
- ** remainder, which uses all bits and ensures a non-negative result.
- */
- static Node *hashint (const Table *t, lua_Integer i) {
- lua_Unsigned ui = l_castS2U(i);
- if (ui <= cast_uint(INT_MAX))
- return gnode(t, cast_int(ui) % cast_int((sizenode(t)-1) | 1));
- else
- return hashmod(t, ui);
- }
- /*
- ** Hash for floating-point numbers.
- ** The main computation should be just
- ** n = frexp(n, &i); return (n * INT_MAX) + i
- ** but there are some numerical subtleties.
- ** In a two-complement representation, INT_MAX does not has an exact
- ** representation as a float, but INT_MIN does; because the absolute
- ** value of 'frexp' is smaller than 1 (unless 'n' is inf/NaN), the
- ** absolute value of the product 'frexp * -INT_MIN' is smaller or equal
- ** to INT_MAX. Next, the use of 'unsigned int' avoids overflows when
- ** adding 'i'; the use of '~u' (instead of '-u') avoids problems with
- ** INT_MIN.
- */
- #if !defined(l_hashfloat)
- static unsigned l_hashfloat (lua_Number n) {
- int i;
- lua_Integer ni;
- n = l_mathop(frexp)(n, &i) * -cast_num(INT_MIN);
- if (!lua_numbertointeger(n, &ni)) { /* is 'n' inf/-inf/NaN? */
- lua_assert(luai_numisnan(n) || l_mathop(fabs)(n) == cast_num(HUGE_VAL));
- return 0;
- }
- else { /* normal case */
- unsigned int u = cast_uint(i) + cast_uint(ni);
- return (u <= cast_uint(INT_MAX) ? u : ~u);
- }
- }
- #endif
- /*
- ** returns the 'main' position of an element in a table (that is,
- ** the index of its hash value).
- */
- static Node *mainpositionTV (const Table *t, const TValue *key) {
- switch (ttypetag(key)) {
- case LUA_VNUMINT: {
- lua_Integer i = ivalue(key);
- return hashint(t, i);
- }
- case LUA_VNUMFLT: {
- lua_Number n = fltvalue(key);
- return hashmod(t, l_hashfloat(n));
- }
- case LUA_VSHRSTR: {
- TString *ts = tsvalue(key);
- return hashstr(t, ts);
- }
- case LUA_VLNGSTR: {
- TString *ts = tsvalue(key);
- return hashpow2(t, luaS_hashlongstr(ts));
- }
- case LUA_VFALSE:
- return hashboolean(t, 0);
- case LUA_VTRUE:
- return hashboolean(t, 1);
- case LUA_VLIGHTUSERDATA: {
- void *p = pvalue(key);
- return hashpointer(t, p);
- }
- case LUA_VLCF: {
- lua_CFunction f = fvalue(key);
- return hashpointer(t, f);
- }
- default: {
- GCObject *o = gcvalue(key);
- return hashpointer(t, o);
- }
- }
- }
- l_sinline Node *mainpositionfromnode (const Table *t, Node *nd) {
- TValue key;
- getnodekey(cast(lua_State *, NULL), &key, nd);
- return mainpositionTV(t, &key);
- }
- /*
- ** Check whether key 'k1' is equal to the key in node 'n2'. This
- ** equality is raw, so there are no metamethods. Floats with integer
- ** values have been normalized, so integers cannot be equal to
- ** floats. It is assumed that 'eqshrstr' is simply pointer equality,
- ** so that short strings are handled in the default case. The flag
- ** 'deadok' means to accept dead keys as equal to their original values.
- ** (Only collectable objects can produce dead keys.) Note that dead
- ** long strings are also compared by identity. Once a key is dead,
- ** its corresponding value may be collected, and then another value
- ** can be created with the same address. If this other value is given
- ** to 'next', 'equalkey' will signal a false positive. In a regular
- ** traversal, this situation should never happen, as all keys given to
- ** 'next' came from the table itself, and therefore could not have been
- ** collected. Outside a regular traversal, we have garbage in, garbage
- ** out. What is relevant is that this false positive does not break
- ** anything. (In particular, 'next' will return some other valid item
- ** on the table or nil.)
- */
- static int equalkey (const TValue *k1, const Node *n2, int deadok) {
- if (rawtt(k1) != keytt(n2)) { /* not the same variants? */
- if (keyisshrstr(n2) && ttislngstring(k1)) {
- /* an external string can be equal to a short-string key */
- return luaS_eqstr(tsvalue(k1), keystrval(n2));
- }
- else if (deadok && keyisdead(n2) && iscollectable(k1)) {
- /* a collectable value can be equal to a dead key */
- return gcvalue(k1) == gcvalueraw(keyval(n2));
- }
- else
- return 0; /* otherwise, different variants cannot be equal */
- }
- else { /* equal variants */
- switch (keytt(n2)) {
- case LUA_VNIL: case LUA_VFALSE: case LUA_VTRUE:
- return 1;
- case LUA_VNUMINT:
- return (ivalue(k1) == keyival(n2));
- case LUA_VNUMFLT:
- return luai_numeq(fltvalue(k1), fltvalueraw(keyval(n2)));
- case LUA_VLIGHTUSERDATA:
- return pvalue(k1) == pvalueraw(keyval(n2));
- case LUA_VLCF:
- return fvalue(k1) == fvalueraw(keyval(n2));
- case ctb(LUA_VLNGSTR):
- return luaS_eqstr(tsvalue(k1), keystrval(n2));
- default:
- return gcvalue(k1) == gcvalueraw(keyval(n2));
- }
- }
- }
- /*
- ** "Generic" get version. (Not that generic: not valid for integers,
- ** which may be in array part, nor for floats with integral values.)
- ** See explanation about 'deadok' in function 'equalkey'.
- */
- static const TValue *getgeneric (Table *t, const TValue *key, int deadok) {
- Node *n = mainpositionTV(t, key);
- for (;;) { /* check whether 'key' is somewhere in the chain */
- if (equalkey(key, n, deadok))
- return gval(n); /* that's it */
- else {
- int nx = gnext(n);
- if (nx == 0)
- return &absentkey; /* not found */
- n += nx;
- }
- }
- }
- /*
- ** Return the index 'k' (converted to an unsigned) if it is inside
- ** the range [1, limit].
- */
- static unsigned checkrange (lua_Integer k, unsigned limit) {
- return (l_castS2U(k) - 1u < limit) ? cast_uint(k) : 0;
- }
- /*
- ** Return the index 'k' if 'k' is an appropriate key to live in the
- ** array part of a table, 0 otherwise.
- */
- #define arrayindex(k) checkrange(k, MAXASIZE)
- /*
- ** Check whether an integer key is in the array part of a table and
- ** return its index there, or zero.
- */
- #define ikeyinarray(t,k) checkrange(k, t->asize)
- /*
- ** Check whether a key is in the array part of a table and return its
- ** index there, or zero.
- */
- static unsigned keyinarray (Table *t, const TValue *key) {
- return (ttisinteger(key)) ? ikeyinarray(t, ivalue(key)) : 0;
- }
- /*
- ** returns the index of a 'key' for table traversals. First goes all
- ** elements in the array part, then elements in the hash part. The
- ** beginning of a traversal is signaled by 0.
- */
- static unsigned findindex (lua_State *L, Table *t, TValue *key,
- unsigned asize) {
- unsigned int i;
- if (ttisnil(key)) return 0; /* first iteration */
- i = keyinarray(t, key);
- if (i != 0) /* is 'key' inside array part? */
- return i; /* yes; that's the index */
- else {
- const TValue *n = getgeneric(t, key, 1);
- if (l_unlikely(isabstkey(n)))
- luaG_runerror(L, "invalid key to 'next'"); /* key not found */
- i = cast_uint(nodefromval(n) - gnode(t, 0)); /* key index in hash table */
- /* hash elements are numbered after array ones */
- return (i + 1) + asize;
- }
- }
- int luaH_next (lua_State *L, Table *t, StkId key) {
- unsigned int asize = t->asize;
- unsigned int i = findindex(L, t, s2v(key), asize); /* find original key */
- for (; i < asize; i++) { /* try first array part */
- lu_byte tag = *getArrTag(t, i);
- if (!tagisempty(tag)) { /* a non-empty entry? */
- setivalue(s2v(key), cast_int(i) + 1);
- farr2val(t, i, tag, s2v(key + 1));
- return 1;
- }
- }
- for (i -= asize; i < sizenode(t); i++) { /* hash part */
- if (!isempty(gval(gnode(t, i)))) { /* a non-empty entry? */
- Node *n = gnode(t, i);
- getnodekey(L, s2v(key), n);
- setobj2s(L, key + 1, gval(n));
- return 1;
- }
- }
- return 0; /* no more elements */
- }
- /* Extra space in Node array if it has a lastfree entry */
- #define extraLastfree(t) (haslastfree(t) ? sizeof(Limbox) : 0)
- /* 'node' size in bytes */
- static size_t sizehash (Table *t) {
- return cast_sizet(sizenode(t)) * sizeof(Node) + extraLastfree(t);
- }
- static void freehash (lua_State *L, Table *t) {
- if (!isdummy(t)) {
- /* get pointer to the beginning of Node array */
- char *arr = cast_charp(t->node) - extraLastfree(t);
- luaM_freearray(L, arr, sizehash(t));
- }
- }
- /*
- ** {=============================================================
- ** Rehash
- ** ==============================================================
- */
- static int insertkey (Table *t, const TValue *key, TValue *value);
- static void newcheckedkey (Table *t, const TValue *key, TValue *value);
- /*
- ** Structure to count the keys in a table.
- ** 'total' is the total number of keys in the table.
- ** 'na' is the number of *array indices* in the table (see 'arrayindex').
- ** 'deleted' is true if there are deleted nodes in the hash part.
- ** 'nums' is a "count array" where 'nums[i]' is the number of integer
- ** keys between 2^(i - 1) + 1 and 2^i. Note that 'na' is the summation
- ** of 'nums'.
- */
- typedef struct {
- unsigned total;
- unsigned na;
- int deleted;
- unsigned nums[MAXABITS + 1];
- } Counters;
- /*
- ** Check whether it is worth to use 'na' array entries instead of 'nh'
- ** hash nodes. (A hash node uses ~3 times more memory than an array
- ** entry: Two values plus 'next' versus one value.) Evaluate with size_t
- ** to avoid overflows.
- */
- #define arrayXhash(na,nh) (cast_sizet(na) <= cast_sizet(nh) * 3)
- /*
- ** Compute the optimal size for the array part of table 't'.
- ** This size maximizes the number of elements going to the array part
- ** while satisfying the condition 'arrayXhash' with the use of memory if
- ** all those elements went to the hash part.
- ** 'ct->na' enters with the total number of array indices in the table
- ** and leaves with the number of keys that will go to the array part;
- ** return the optimal size for the array part.
- */
- static unsigned computesizes (Counters *ct) {
- int i;
- unsigned int twotoi; /* 2^i (candidate for optimal size) */
- unsigned int a = 0; /* number of elements smaller than 2^i */
- unsigned int na = 0; /* number of elements to go to array part */
- unsigned int optimal = 0; /* optimal size for array part */
- /* traverse slices while 'twotoi' does not overflow and total of array
- indices still can satisfy 'arrayXhash' against the array size */
- for (i = 0, twotoi = 1;
- twotoi > 0 && arrayXhash(twotoi, ct->na);
- i++, twotoi *= 2) {
- unsigned nums = ct->nums[i];
- a += nums;
- if (nums > 0 && /* grows array only if it gets more elements... */
- arrayXhash(twotoi, a)) { /* ...while using "less memory" */
- optimal = twotoi; /* optimal size (till now) */
- na = a; /* all elements up to 'optimal' will go to array part */
- }
- }
- ct->na = na;
- return optimal;
- }
- static void countint (lua_Integer key, Counters *ct) {
- unsigned int k = arrayindex(key);
- if (k != 0) { /* is 'key' an array index? */
- ct->nums[luaO_ceillog2(k)]++; /* count as such */
- ct->na++;
- }
- }
- l_sinline int arraykeyisempty (const Table *t, unsigned key) {
- int tag = *getArrTag(t, key - 1);
- return tagisempty(tag);
- }
- /*
- ** Count keys in array part of table 't'.
- */
- static void numusearray (const Table *t, Counters *ct) {
- int lg;
- unsigned int ttlg; /* 2^lg */
- unsigned int ause = 0; /* summation of 'nums' */
- unsigned int i = 1; /* index to traverse all array keys */
- unsigned int asize = t->asize;
- /* traverse each slice */
- for (lg = 0, ttlg = 1; lg <= MAXABITS; lg++, ttlg *= 2) {
- unsigned int lc = 0; /* counter */
- unsigned int lim = ttlg;
- if (lim > asize) {
- lim = asize; /* adjust upper limit */
- if (i > lim)
- break; /* no more elements to count */
- }
- /* count elements in range (2^(lg - 1), 2^lg] */
- for (; i <= lim; i++) {
- if (!arraykeyisempty(t, i))
- lc++;
- }
- ct->nums[lg] += lc;
- ause += lc;
- }
- ct->total += ause;
- ct->na += ause;
- }
- /*
- ** Count keys in hash part of table 't'. As this only happens during
- ** a rehash, all nodes have been used. A node can have a nil value only
- ** if it was deleted after being created.
- */
- static void numusehash (const Table *t, Counters *ct) {
- unsigned i = sizenode(t);
- unsigned total = 0;
- while (i--) {
- Node *n = &t->node[i];
- if (isempty(gval(n))) {
- lua_assert(!keyisnil(n)); /* entry was deleted; key cannot be nil */
- ct->deleted = 1;
- }
- else {
- total++;
- if (keyisinteger(n))
- countint(keyival(n), ct);
- }
- }
- ct->total += total;
- }
- /*
- ** Convert an "abstract size" (number of slots in an array) to
- ** "concrete size" (number of bytes in the array).
- */
- static size_t concretesize (unsigned int size) {
- if (size == 0)
- return 0;
- else /* space for the two arrays plus an unsigned in between */
- return size * (sizeof(Value) + 1) + sizeof(unsigned);
- }
- /*
- ** Resize the array part of a table. If new size is equal to the old,
- ** do nothing. Else, if new size is zero, free the old array. (It must
- ** be present, as the sizes are different.) Otherwise, allocate a new
- ** array, move the common elements to new proper position, and then
- ** frees the old array.
- ** We could reallocate the array, but we still would need to move the
- ** elements to their new position, so the copy implicit in realloc is a
- ** waste. Moreover, most allocators will move the array anyway when the
- ** new size is double the old one (the most common case).
- */
- static Value *resizearray (lua_State *L , Table *t,
- unsigned oldasize,
- unsigned newasize) {
- if (oldasize == newasize)
- return t->array; /* nothing to be done */
- else if (newasize == 0) { /* erasing array? */
- Value *op = t->array - oldasize; /* original array's real address */
- luaM_freemem(L, op, concretesize(oldasize)); /* free it */
- return NULL;
- }
- else {
- size_t newasizeb = concretesize(newasize);
- Value *np = cast(Value *,
- luaM_reallocvector(L, NULL, 0, newasizeb, lu_byte));
- if (np == NULL) /* allocation error? */
- return NULL;
- np += newasize; /* shift pointer to the end of value segment */
- if (oldasize > 0) {
- /* move common elements to new position */
- size_t oldasizeb = concretesize(oldasize);
- Value *op = t->array; /* original array */
- unsigned tomove = (oldasize < newasize) ? oldasize : newasize;
- size_t tomoveb = (oldasize < newasize) ? oldasizeb : newasizeb;
- lua_assert(tomoveb > 0);
- memcpy(np - tomove, op - tomove, tomoveb);
- luaM_freemem(L, op - oldasize, oldasizeb); /* free old block */
- }
- return np;
- }
- }
- /*
- ** Creates an array for the hash part of a table with the given
- ** size, or reuses the dummy node if size is zero.
- ** The computation for size overflow is in two steps: the first
- ** comparison ensures that the shift in the second one does not
- ** overflow.
- */
- static void setnodevector (lua_State *L, Table *t, unsigned size) {
- if (size == 0) { /* no elements to hash part? */
- t->node = cast(Node *, dummynode); /* use common 'dummynode' */
- t->lsizenode = 0;
- setdummy(t); /* signal that it is using dummy node */
- }
- else {
- int i;
- int lsize = luaO_ceillog2(size);
- if (lsize > MAXHBITS || (1 << lsize) > MAXHSIZE)
- luaG_runerror(L, "table overflow");
- size = twoto(lsize);
- if (lsize < LIMFORLAST) /* no 'lastfree' field? */
- t->node = luaM_newvector(L, size, Node);
- else {
- size_t bsize = size * sizeof(Node) + sizeof(Limbox);
- char *node = luaM_newblock(L, bsize);
- t->node = cast(Node *, node + sizeof(Limbox));
- getlastfree(t) = gnode(t, size); /* all positions are free */
- }
- t->lsizenode = cast_byte(lsize);
- setnodummy(t);
- for (i = 0; i < cast_int(size); i++) {
- Node *n = gnode(t, i);
- gnext(n) = 0;
- setnilkey(n);
- setempty(gval(n));
- }
- }
- }
- /*
- ** (Re)insert all elements from the hash part of 'ot' into table 't'.
- */
- static void reinserthash (lua_State *L, Table *ot, Table *t) {
- unsigned j;
- unsigned size = sizenode(ot);
- for (j = 0; j < size; j++) {
- Node *old = gnode(ot, j);
- if (!isempty(gval(old))) {
- /* doesn't need barrier/invalidate cache, as entry was
- already present in the table */
- TValue k;
- getnodekey(L, &k, old);
- newcheckedkey(t, &k, gval(old));
- }
- }
- }
- /*
- ** Exchange the hash part of 't1' and 't2'. (In 'flags', only the
- ** dummy bit must be exchanged: The 'isrealasize' is not related
- ** to the hash part, and the metamethod bits do not change during
- ** a resize, so the "real" table can keep their values.)
- */
- static void exchangehashpart (Table *t1, Table *t2) {
- lu_byte lsizenode = t1->lsizenode;
- Node *node = t1->node;
- int bitdummy1 = t1->flags & BITDUMMY;
- t1->lsizenode = t2->lsizenode;
- t1->node = t2->node;
- t1->flags = cast_byte((t1->flags & NOTBITDUMMY) | (t2->flags & BITDUMMY));
- t2->lsizenode = lsizenode;
- t2->node = node;
- t2->flags = cast_byte((t2->flags & NOTBITDUMMY) | bitdummy1);
- }
- /*
- ** Re-insert into the new hash part of a table the elements from the
- ** vanishing slice of the array part.
- */
- static void reinsertOldSlice (Table *t, unsigned oldasize,
- unsigned newasize) {
- unsigned i;
- for (i = newasize; i < oldasize; i++) { /* traverse vanishing slice */
- lu_byte tag = *getArrTag(t, i);
- if (!tagisempty(tag)) { /* a non-empty entry? */
- TValue key, aux;
- setivalue(&key, l_castU2S(i) + 1); /* make the key */
- farr2val(t, i, tag, &aux); /* copy value into 'aux' */
- insertkey(t, &key, &aux); /* insert entry into the hash part */
- }
- }
- }
- /*
- ** Clear new slice of the array.
- */
- static void clearNewSlice (Table *t, unsigned oldasize, unsigned newasize) {
- for (; oldasize < newasize; oldasize++)
- *getArrTag(t, oldasize) = LUA_VEMPTY;
- }
- /*
- ** Resize table 't' for the new given sizes. Both allocations (for
- ** the hash part and for the array part) can fail, which creates some
- ** subtleties. If the first allocation, for the hash part, fails, an
- ** error is raised and that is it. Otherwise, it copies the elements from
- ** the shrinking part of the array (if it is shrinking) into the new
- ** hash. Then it reallocates the array part. If that fails, the table
- ** is in its original state; the function frees the new hash part and then
- ** raises the allocation error. Otherwise, it sets the new hash part
- ** into the table, initializes the new part of the array (if any) with
- ** nils and reinserts the elements of the old hash back into the new
- ** parts of the table.
- ** Note that if the new size for the array part ('newasize') is equal to
- ** the old one ('oldasize'), this function will do nothing with that
- ** part.
- */
- void luaH_resize (lua_State *L, Table *t, unsigned newasize,
- unsigned nhsize) {
- Table newt; /* to keep the new hash part */
- unsigned oldasize = t->asize;
- Value *newarray;
- if (newasize > MAXASIZE)
- luaG_runerror(L, "table overflow");
- /* create new hash part with appropriate size into 'newt' */
- newt.flags = 0;
- setnodevector(L, &newt, nhsize);
- if (newasize < oldasize) { /* will array shrink? */
- /* re-insert into the new hash the elements from vanishing slice */
- exchangehashpart(t, &newt); /* pretend table has new hash */
- reinsertOldSlice(t, oldasize, newasize);
- exchangehashpart(t, &newt); /* restore old hash (in case of errors) */
- }
- /* allocate new array */
- newarray = resizearray(L, t, oldasize, newasize);
- if (l_unlikely(newarray == NULL && newasize > 0)) { /* allocation failed? */
- freehash(L, &newt); /* release new hash part */
- luaM_error(L); /* raise error (with array unchanged) */
- }
- /* allocation ok; initialize new part of the array */
- exchangehashpart(t, &newt); /* 't' has the new hash ('newt' has the old) */
- t->array = newarray; /* set new array part */
- t->asize = newasize;
- if (newarray != NULL)
- *lenhint(t) = newasize / 2u; /* set an initial hint */
- clearNewSlice(t, oldasize, newasize);
- /* re-insert elements from old hash part into new parts */
- reinserthash(L, &newt, t); /* 'newt' now has the old hash */
- freehash(L, &newt); /* free old hash part */
- }
- void luaH_resizearray (lua_State *L, Table *t, unsigned int nasize) {
- unsigned nsize = allocsizenode(t);
- luaH_resize(L, t, nasize, nsize);
- }
- /*
- ** Rehash a table. First, count its keys. If there are array indices
- ** outside the array part, compute the new best size for that part.
- ** Then, resize the table.
- */
- static void rehash (lua_State *L, Table *t, const TValue *ek) {
- unsigned asize; /* optimal size for array part */
- Counters ct;
- unsigned i;
- unsigned nsize; /* size for the hash part */
- /* reset counts */
- for (i = 0; i <= MAXABITS; i++) ct.nums[i] = 0;
- ct.na = 0;
- ct.deleted = 0;
- ct.total = 1; /* count extra key */
- if (ttisinteger(ek))
- countint(ivalue(ek), &ct); /* extra key may go to array */
- numusehash(t, &ct); /* count keys in hash part */
- if (ct.na == 0) {
- /* no new keys to enter array part; keep it with the same size */
- asize = t->asize;
- }
- else { /* compute best size for array part */
- numusearray(t, &ct); /* count keys in array part */
- asize = computesizes(&ct); /* compute new size for array part */
- }
- /* all keys not in the array part go to the hash part */
- nsize = ct.total - ct.na;
- if (ct.deleted) { /* table has deleted entries? */
- /* insertion-deletion-insertion: give hash some extra size to
- avoid repeated resizings */
- nsize += nsize >> 2;
- }
- /* resize the table to new computed sizes */
- luaH_resize(L, t, asize, nsize);
- }
- /*
- ** }=============================================================
- */
- Table *luaH_new (lua_State *L) {
- GCObject *o = luaC_newobj(L, LUA_VTABLE, sizeof(Table));
- Table *t = gco2t(o);
- t->metatable = NULL;
- t->flags = maskflags; /* table has no metamethod fields */
- t->array = NULL;
- t->asize = 0;
- setnodevector(L, t, 0);
- return t;
- }
- lu_mem luaH_size (Table *t) {
- lu_mem sz = cast(lu_mem, sizeof(Table)) + concretesize(t->asize);
- if (!isdummy(t))
- sz += sizehash(t);
- return sz;
- }
- /*
- ** Frees a table.
- */
- void luaH_free (lua_State *L, Table *t) {
- freehash(L, t);
- resizearray(L, t, t->asize, 0);
- luaM_free(L, t);
- }
- static Node *getfreepos (Table *t) {
- if (haslastfree(t)) { /* does it have 'lastfree' information? */
- /* look for a spot before 'lastfree', updating 'lastfree' */
- while (getlastfree(t) > t->node) {
- Node *free = --getlastfree(t);
- if (keyisnil(free))
- return free;
- }
- }
- else { /* no 'lastfree' information */
- unsigned i = sizenode(t);
- while (i--) { /* do a linear search */
- Node *free = gnode(t, i);
- if (keyisnil(free))
- return free;
- }
- }
- return NULL; /* could not find a free place */
- }
- /*
- ** Inserts a new key into a hash table; first, check whether key's main
- ** position is free. If not, check whether colliding node is in its main
- ** position or not: if it is not, move colliding node to an empty place
- ** and put new key in its main position; otherwise (colliding node is in
- ** its main position), new key goes to an empty position. Return 0 if
- ** could not insert key (could not find a free space).
- */
- static int insertkey (Table *t, const TValue *key, TValue *value) {
- Node *mp = mainpositionTV(t, key);
- /* table cannot already contain the key */
- lua_assert(isabstkey(getgeneric(t, key, 0)));
- if (!isempty(gval(mp)) || isdummy(t)) { /* main position is taken? */
- Node *othern;
- Node *f = getfreepos(t); /* get a free place */
- if (f == NULL) /* cannot find a free place? */
- return 0;
- lua_assert(!isdummy(t));
- othern = mainpositionfromnode(t, mp);
- if (othern != mp) { /* is colliding node out of its main position? */
- /* yes; move colliding node into free position */
- while (othern + gnext(othern) != mp) /* find previous */
- othern += gnext(othern);
- gnext(othern) = cast_int(f - othern); /* rechain to point to 'f' */
- *f = *mp; /* copy colliding node into free pos. (mp->next also goes) */
- if (gnext(mp) != 0) {
- gnext(f) += cast_int(mp - f); /* correct 'next' */
- gnext(mp) = 0; /* now 'mp' is free */
- }
- setempty(gval(mp));
- }
- else { /* colliding node is in its own main position */
- /* new node will go into free position */
- if (gnext(mp) != 0)
- gnext(f) = cast_int((mp + gnext(mp)) - f); /* chain new position */
- else lua_assert(gnext(f) == 0);
- gnext(mp) = cast_int(f - mp);
- mp = f;
- }
- }
- setnodekey(mp, key);
- lua_assert(isempty(gval(mp)));
- setobj2t(cast(lua_State *, 0), gval(mp), value);
- return 1;
- }
- /*
- ** Insert a key in a table where there is space for that key, the
- ** key is valid, and the value is not nil.
- */
- static void newcheckedkey (Table *t, const TValue *key, TValue *value) {
- unsigned i = keyinarray(t, key);
- if (i > 0) /* is key in the array part? */
- obj2arr(t, i - 1, value); /* set value in the array */
- else {
- int done = insertkey(t, key, value); /* insert key in the hash part */
- lua_assert(done); /* it cannot fail */
- cast(void, done); /* to avoid warnings */
- }
- }
- static void luaH_newkey (lua_State *L, Table *t, const TValue *key,
- TValue *value) {
- if (!ttisnil(value)) { /* do not insert nil values */
- int done = insertkey(t, key, value);
- if (!done) { /* could not find a free place? */
- rehash(L, t, key); /* grow table */
- newcheckedkey(t, key, value); /* insert key in grown table */
- }
- luaC_barrierback(L, obj2gco(t), key);
- /* for debugging only: any new key may force an emergency collection */
- condchangemem(L, (void)0, (void)0, 1);
- }
- }
- static const TValue *getintfromhash (Table *t, lua_Integer key) {
- Node *n = hashint(t, key);
- lua_assert(!ikeyinarray(t, key));
- for (;;) { /* check whether 'key' is somewhere in the chain */
- if (keyisinteger(n) && keyival(n) == key)
- return gval(n); /* that's it */
- else {
- int nx = gnext(n);
- if (nx == 0) break;
- n += nx;
- }
- }
- return &absentkey;
- }
- static int hashkeyisempty (Table *t, lua_Unsigned key) {
- const TValue *val = getintfromhash(t, l_castU2S(key));
- return isempty(val);
- }
- static lu_byte finishnodeget (const TValue *val, TValue *res) {
- if (!ttisnil(val)) {
- setobj(((lua_State*)NULL), res, val);
- }
- return ttypetag(val);
- }
- lu_byte luaH_getint (Table *t, lua_Integer key, TValue *res) {
- unsigned k = ikeyinarray(t, key);
- if (k > 0) {
- lu_byte tag = *getArrTag(t, k - 1);
- if (!tagisempty(tag))
- farr2val(t, k - 1, tag, res);
- return tag;
- }
- else
- return finishnodeget(getintfromhash(t, key), res);
- }
- /*
- ** search function for short strings
- */
- const TValue *luaH_Hgetshortstr (Table *t, TString *key) {
- Node *n = hashstr(t, key);
- lua_assert(strisshr(key));
- for (;;) { /* check whether 'key' is somewhere in the chain */
- if (keyisshrstr(n) && eqshrstr(keystrval(n), key))
- return gval(n); /* that's it */
- else {
- int nx = gnext(n);
- if (nx == 0)
- return &absentkey; /* not found */
- n += nx;
- }
- }
- }
- lu_byte luaH_getshortstr (Table *t, TString *key, TValue *res) {
- return finishnodeget(luaH_Hgetshortstr(t, key), res);
- }
- static const TValue *Hgetlongstr (Table *t, TString *key) {
- TValue ko;
- lua_assert(!strisshr(key));
- setsvalue(cast(lua_State *, NULL), &ko, key);
- return getgeneric(t, &ko, 0); /* for long strings, use generic case */
- }
- static const TValue *Hgetstr (Table *t, TString *key) {
- if (strisshr(key))
- return luaH_Hgetshortstr(t, key);
- else
- return Hgetlongstr(t, key);
- }
- lu_byte luaH_getstr (Table *t, TString *key, TValue *res) {
- return finishnodeget(Hgetstr(t, key), res);
- }
- /*
- ** main search function
- */
- lu_byte luaH_get (Table *t, const TValue *key, TValue *res) {
- const TValue *slot;
- switch (ttypetag(key)) {
- case LUA_VSHRSTR:
- slot = luaH_Hgetshortstr(t, tsvalue(key));
- break;
- case LUA_VNUMINT:
- return luaH_getint(t, ivalue(key), res);
- case LUA_VNIL:
- slot = &absentkey;
- break;
- case LUA_VNUMFLT: {
- lua_Integer k;
- if (luaV_flttointeger(fltvalue(key), &k, F2Ieq)) /* integral index? */
- return luaH_getint(t, k, res); /* use specialized version */
- /* else... */
- } /* FALLTHROUGH */
- default:
- slot = getgeneric(t, key, 0);
- break;
- }
- return finishnodeget(slot, res);
- }
- /*
- ** When a 'pset' cannot be completed, this function returns an encoding
- ** of its result, to be used by 'luaH_finishset'.
- */
- static int retpsetcode (Table *t, const TValue *slot) {
- if (isabstkey(slot))
- return HNOTFOUND; /* no slot with that key */
- else /* return node encoded */
- return cast_int((cast(Node*, slot) - t->node)) + HFIRSTNODE;
- }
- static int finishnodeset (Table *t, const TValue *slot, TValue *val) {
- if (!ttisnil(slot)) {
- setobj(((lua_State*)NULL), cast(TValue*, slot), val);
- return HOK; /* success */
- }
- else
- return retpsetcode(t, slot);
- }
- static int rawfinishnodeset (const TValue *slot, TValue *val) {
- if (isabstkey(slot))
- return 0; /* no slot with that key */
- else {
- setobj(((lua_State*)NULL), cast(TValue*, slot), val);
- return 1; /* success */
- }
- }
- int luaH_psetint (Table *t, lua_Integer key, TValue *val) {
- lua_assert(!ikeyinarray(t, key));
- return finishnodeset(t, getintfromhash(t, key), val);
- }
- static int psetint (Table *t, lua_Integer key, TValue *val) {
- int hres;
- luaH_fastseti(t, key, val, hres);
- return hres;
- }
- /*
- ** This function could be just this:
- ** return finishnodeset(t, luaH_Hgetshortstr(t, key), val);
- ** However, it optimizes the common case created by constructors (e.g.,
- ** {x=1, y=2}), which creates a key in a table that has no metatable,
- ** it is not old/black, and it already has space for the key.
- */
- int luaH_psetshortstr (Table *t, TString *key, TValue *val) {
- const TValue *slot = luaH_Hgetshortstr(t, key);
- if (!ttisnil(slot)) { /* key already has a value? (all too common) */
- setobj(((lua_State*)NULL), cast(TValue*, slot), val); /* update it */
- return HOK; /* done */
- }
- else if (checknoTM(t->metatable, TM_NEWINDEX)) { /* no metamethod? */
- if (ttisnil(val)) /* new value is nil? */
- return HOK; /* done (value is already nil/absent) */
- if (isabstkey(slot) && /* key is absent? */
- !(isblack(t) && iswhite(key))) { /* and don't need barrier? */
- TValue tk; /* key as a TValue */
- setsvalue(cast(lua_State *, NULL), &tk, key);
- if (insertkey(t, &tk, val)) { /* insert key, if there is space */
- invalidateTMcache(t);
- return HOK;
- }
- }
- }
- /* Else, either table has new-index metamethod, or it needs barrier,
- or it needs to rehash for the new key. In any of these cases, the
- operation cannot be completed here. Return a code for the caller. */
- return retpsetcode(t, slot);
- }
- int luaH_psetstr (Table *t, TString *key, TValue *val) {
- if (strisshr(key))
- return luaH_psetshortstr(t, key, val);
- else
- return finishnodeset(t, Hgetlongstr(t, key), val);
- }
- int luaH_pset (Table *t, const TValue *key, TValue *val) {
- switch (ttypetag(key)) {
- case LUA_VSHRSTR: return luaH_psetshortstr(t, tsvalue(key), val);
- case LUA_VNUMINT: return psetint(t, ivalue(key), val);
- case LUA_VNIL: return HNOTFOUND;
- case LUA_VNUMFLT: {
- lua_Integer k;
- if (luaV_flttointeger(fltvalue(key), &k, F2Ieq)) /* integral index? */
- return psetint(t, k, val); /* use specialized version */
- /* else... */
- } /* FALLTHROUGH */
- default:
- return finishnodeset(t, getgeneric(t, key, 0), val);
- }
- }
- /*
- ** Finish a raw "set table" operation, where 'hres' encodes where the
- ** value should have been (the result of a previous 'pset' operation).
- ** Beware: when using this function the caller probably need to check a
- ** GC barrier and invalidate the TM cache.
- */
- void luaH_finishset (lua_State *L, Table *t, const TValue *key,
- TValue *value, int hres) {
- lua_assert(hres != HOK);
- if (hres == HNOTFOUND) {
- TValue aux;
- if (l_unlikely(ttisnil(key)))
- luaG_runerror(L, "table index is nil");
- else if (ttisfloat(key)) {
- lua_Number f = fltvalue(key);
- lua_Integer k;
- if (luaV_flttointeger(f, &k, F2Ieq)) {
- setivalue(&aux, k); /* key is equal to an integer */
- key = &aux; /* insert it as an integer */
- }
- else if (l_unlikely(luai_numisnan(f)))
- luaG_runerror(L, "table index is NaN");
- }
- else if (isextstr(key)) { /* external string? */
- /* If string is short, must internalize it to be used as table key */
- TString *ts = luaS_normstr(L, tsvalue(key));
- setsvalue2s(L, L->top.p++, ts); /* anchor 'ts' (EXTRA_STACK) */
- luaH_newkey(L, t, s2v(L->top.p - 1), value);
- L->top.p--;
- return;
- }
- luaH_newkey(L, t, key, value);
- }
- else if (hres > 0) { /* regular Node? */
- setobj2t(L, gval(gnode(t, hres - HFIRSTNODE)), value);
- }
- else { /* array entry */
- hres = ~hres; /* real index */
- obj2arr(t, cast_uint(hres), value);
- }
- }
- /*
- ** beware: when using this function you probably need to check a GC
- ** barrier and invalidate the TM cache.
- */
- void luaH_set (lua_State *L, Table *t, const TValue *key, TValue *value) {
- int hres = luaH_pset(t, key, value);
- if (hres != HOK)
- luaH_finishset(L, t, key, value, hres);
- }
- /*
- ** Ditto for a GC barrier. (No need to invalidate the TM cache, as
- ** integers cannot be keys to metamethods.)
- */
- void luaH_setint (lua_State *L, Table *t, lua_Integer key, TValue *value) {
- unsigned ik = ikeyinarray(t, key);
- if (ik > 0)
- obj2arr(t, ik - 1, value);
- else {
- int ok = rawfinishnodeset(getintfromhash(t, key), value);
- if (!ok) {
- TValue k;
- setivalue(&k, key);
- luaH_newkey(L, t, &k, value);
- }
- }
- }
- /*
- ** Try to find a boundary in the hash part of table 't'. From the
- ** caller, we know that 'asize + 1' is present. We want to find a larger
- ** key that is absent from the table, so that we can do a binary search
- ** between the two keys to find a boundary. We keep doubling 'j' until
- ** we get an absent index. If the doubling would overflow, we try
- ** LUA_MAXINTEGER. If it is absent, we are ready for the binary search.
- ** ('j', being max integer, is larger or equal to 'i', but it cannot be
- ** equal because it is absent while 'i' is present.) Otherwise, 'j' is a
- ** boundary. ('j + 1' cannot be a present integer key because it is not
- ** a valid integer in Lua.)
- ** About 'rnd': If we used a fixed algorithm, a bad actor could fill
- ** a table with only the keys that would be probed, in such a way that
- ** a small table could result in a huge length. To avoid that, we use
- ** the state's seed as a source of randomness. For the first probe,
- ** we "randomly double" 'i' by adding to it a random number roughly its
- ** width.
- */
- static lua_Unsigned hash_search (lua_State *L, Table *t, unsigned asize) {
- lua_Unsigned i = asize + 1; /* caller ensures t[i] is present */
- unsigned rnd = G(L)->seed;
- int n = (asize > 0) ? luaO_ceillog2(asize) : 0; /* width of 'asize' */
- unsigned mask = (1u << n) - 1; /* 11...111 with the width of 'asize' */
- unsigned incr = (rnd & mask) + 1; /* first increment (at least 1) */
- lua_Unsigned j = (incr <= l_castS2U(LUA_MAXINTEGER) - i) ? i + incr : i + 1;
- rnd >>= n; /* used 'n' bits from 'rnd' */
- while (!hashkeyisempty(t, j)) { /* repeat until an absent t[j] */
- i = j; /* 'i' is a present index */
- if (j <= l_castS2U(LUA_MAXINTEGER)/2 - 1) {
- j = j*2 + (rnd & 1); /* try again with 2j or 2j+1 */
- rnd >>= 1;
- }
- else {
- j = LUA_MAXINTEGER;
- if (hashkeyisempty(t, j)) /* t[j] not present? */
- break; /* 'j' now is an absent index */
- else /* weird case */
- return j; /* well, max integer is a boundary... */
- }
- }
- /* i < j && t[i] present && t[j] absent */
- while (j - i > 1u) { /* do a binary search between them */
- lua_Unsigned m = (i + j) / 2;
- if (hashkeyisempty(t, m)) j = m;
- else i = m;
- }
- return i;
- }
- static unsigned int binsearch (Table *array, unsigned int i, unsigned int j) {
- lua_assert(i <= j);
- while (j - i > 1u) { /* binary search */
- unsigned int m = (i + j) / 2;
- if (arraykeyisempty(array, m)) j = m;
- else i = m;
- }
- return i;
- }
- /* return a border, saving it as a hint for next call */
- static lua_Unsigned newhint (Table *t, unsigned hint) {
- lua_assert(hint <= t->asize);
- *lenhint(t) = hint;
- return hint;
- }
- /*
- ** Try to find a border in table 't'. (A 'border' is an integer index
- ** such that t[i] is present and t[i+1] is absent, or 0 if t[1] is absent,
- ** or 'maxinteger' if t[maxinteger] is present.)
- ** If there is an array part, try to find a border there. First try
- ** to find it in the vicinity of the previous result (hint), to handle
- ** cases like 't[#t + 1] = val' or 't[#t] = nil', that move the border
- ** by one entry. Otherwise, do a binary search to find the border.
- ** If there is no array part, or its last element is non empty, the
- ** border may be in the hash part.
- */
- lua_Unsigned luaH_getn (lua_State *L, Table *t) {
- unsigned asize = t->asize;
- if (asize > 0) { /* is there an array part? */
- const unsigned maxvicinity = 4;
- unsigned limit = *lenhint(t); /* start with the hint */
- if (limit == 0)
- limit = 1; /* make limit a valid index in the array */
- if (arraykeyisempty(t, limit)) { /* t[limit] empty? */
- /* there must be a border before 'limit' */
- unsigned i;
- /* look for a border in the vicinity of the hint */
- for (i = 0; i < maxvicinity && limit > 1; i++) {
- limit--;
- if (!arraykeyisempty(t, limit))
- return newhint(t, limit); /* 'limit' is a border */
- }
- /* t[limit] still empty; search for a border in [0, limit) */
- return newhint(t, binsearch(t, 0, limit));
- }
- else { /* 'limit' is present in table; look for a border after it */
- unsigned i;
- /* look for a border in the vicinity of the hint */
- for (i = 0; i < maxvicinity && limit < asize; i++) {
- limit++;
- if (arraykeyisempty(t, limit))
- return newhint(t, limit - 1); /* 'limit - 1' is a border */
- }
- if (arraykeyisempty(t, asize)) { /* last element empty? */
- /* t[limit] not empty; search for a border in [limit, asize) */
- return newhint(t, binsearch(t, limit, asize));
- }
- }
- /* last element non empty; set a hint to speed up finding that again */
- /* (keys in the hash part cannot be hints) */
- *lenhint(t) = asize;
- }
- /* no array part or t[asize] is not empty; check the hash part */
- lua_assert(asize == 0 || !arraykeyisempty(t, asize));
- if (isdummy(t) || hashkeyisempty(t, asize + 1))
- return asize; /* 'asize + 1' is empty */
- else /* 'asize + 1' is also non empty */
- return hash_search(L, t, asize);
- }
- #if defined(LUA_DEBUG)
- /* export this function for the test library */
- Node *luaH_mainposition (const Table *t, const TValue *key) {
- return mainpositionTV(t, key);
- }
- #endif
|