12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133 |
- -- $Id: testes/math.lua $
- -- See Copyright Notice in file lua.h
- print("testing numbers and math lib")
- local math = require "math"
- local string = require "string"
- global none
- global<const> print, assert, pcall, type, pairs, load
- global<const> tonumber, tostring, select
- local<const> minint, maxint = math.mininteger, math.maxinteger
- local intbits <const> = math.floor(math.log(maxint, 2) + 0.5) + 1
- assert((1 << intbits) == 0)
- assert(minint == 1 << (intbits - 1))
- assert(maxint == minint - 1)
- -- number of bits in the mantissa of a floating-point number
- local floatbits = 24
- do
- local p = 2.0^floatbits
- while p < p + 1.0 do
- p = p * 2.0
- floatbits = floatbits + 1
- end
- end
- -- maximum exponent for a floating-point number
- local maxexp = 0
- do
- local p = 2.0
- while p < math.huge do
- maxexp = maxexp + 1
- p = p + p
- end
- end
- local function isNaN (x)
- return (x ~= x)
- end
- assert(isNaN(0/0))
- assert(not isNaN(1/0))
- do
- local x = 2.0^floatbits
- assert(x > x - 1.0 and x == x + 1.0)
- local msg = " %d-bit integers, %d-bit*2^%d floats"
- print(string.format(msg, intbits, floatbits, maxexp))
- end
- assert(math.type(0) == "integer" and math.type(0.0) == "float"
- and not math.type("10"))
- local function checkerror (msg, f, ...)
- local s, err = pcall(f, ...)
- assert(not s and string.find(err, msg))
- end
- local msgf2i = "number.* has no integer representation"
- -- float equality
- local function eq (a,b,limit)
- if not limit then
- if floatbits >= 50 then limit = 1E-11
- else limit = 1E-5
- end
- end
- -- a == b needed for +inf/-inf
- return a == b or math.abs(a-b) <= limit
- end
- -- equality with types
- local function eqT (a,b)
- return a == b and math.type(a) == math.type(b)
- end
- -- basic float notation
- assert(0e12 == 0 and .0 == 0 and 0. == 0 and .2e2 == 20 and 2.E-1 == 0.2)
- do
- local a,b,c = "2", " 3e0 ", " 10 "
- assert(a+b == 5 and -b == -3 and b+"2" == 5 and "10"-c == 0)
- assert(type(a) == 'string' and type(b) == 'string' and type(c) == 'string')
- assert(a == "2" and b == " 3e0 " and c == " 10 " and -c == -" 10 ")
- assert(c%a == 0 and a^b == 08)
- a = 0
- assert(a == -a and 0 == -0)
- end
- do
- local x = -1
- local mz = 0/x -- minus zero
- local t = {[0] = 10, 20, 30, 40, 50}
- assert(t[mz] == t[0] and t[-0] == t[0])
- end
- do -- tests for 'modf'
- local a,b = math.modf(3.5)
- assert(a == 3.0 and b == 0.5)
- a,b = math.modf(-2.5)
- assert(a == -2.0 and b == -0.5)
- a,b = math.modf(-3e23)
- assert(a == -3e23 and b == 0.0)
- a,b = math.modf(3e35)
- assert(a == 3e35 and b == 0.0)
- a,b = math.modf(-1/0) -- -inf
- assert(a == -1/0 and b == 0.0)
- a,b = math.modf(1/0) -- inf
- assert(a == 1/0 and b == 0.0)
- a,b = math.modf(0/0) -- NaN
- assert(isNaN(a) and isNaN(b))
- a,b = math.modf(3) -- integer argument
- assert(eqT(a, 3) and eqT(b, 0.0))
- a,b = math.modf(minint)
- assert(eqT(a, minint) and eqT(b, 0.0))
- end
- assert(math.huge > 10e30)
- assert(-math.huge < -10e30)
- -- integer arithmetic
- assert(minint < minint + 1)
- assert(maxint - 1 < maxint)
- assert(0 - minint == minint)
- assert(minint * minint == 0)
- assert(maxint * maxint * maxint == maxint)
- -- testing floor division and conversions
- for _, i in pairs{-16, -15, -3, -2, -1, 0, 1, 2, 3, 15} do
- for _, j in pairs{-16, -15, -3, -2, -1, 1, 2, 3, 15} do
- for _, ti in pairs{0, 0.0} do -- try 'i' as integer and as float
- for _, tj in pairs{0, 0.0} do -- try 'j' as integer and as float
- local x = i + ti
- local y = j + tj
- assert(i//j == math.floor(i/j))
- end
- end
- end
- end
- assert(1//0.0 == 1/0)
- assert(-1 // 0.0 == -1/0)
- assert(eqT(3.5 // 1.5, 2.0))
- assert(eqT(3.5 // -1.5, -3.0))
- do -- tests for different kinds of opcodes
- local x, y
- x = 1; assert(x // 0.0 == 1/0)
- x = 1.0; assert(x // 0 == 1/0)
- x = 3.5; assert(eqT(x // 1, 3.0))
- assert(eqT(x // -1, -4.0))
- x = 3.5; y = 1.5; assert(eqT(x // y, 2.0))
- x = 3.5; y = -1.5; assert(eqT(x // y, -3.0))
- end
- assert(maxint // maxint == 1)
- assert(maxint // 1 == maxint)
- assert((maxint - 1) // maxint == 0)
- assert(maxint // (maxint - 1) == 1)
- assert(minint // minint == 1)
- assert(minint // minint == 1)
- assert((minint + 1) // minint == 0)
- assert(minint // (minint + 1) == 1)
- assert(minint // 1 == minint)
- assert(minint // -1 == -minint)
- assert(minint // -2 == 2^(intbits - 2))
- assert(maxint // -1 == -maxint)
- -- negative exponents
- do
- assert(2^-3 == 1 / 2^3)
- assert(eq((-3)^-3, 1 / (-3)^3))
- for i = -3, 3 do -- variables avoid constant folding
- for j = -3, 3 do
- -- domain errors (0^(-n)) are not portable
- if not _ENV._port or i ~= 0 or j > 0 then
- assert(eq(i^j, 1 / i^(-j)))
- end
- end
- end
- end
- -- comparison between floats and integers (border cases)
- if floatbits < intbits then
- assert(2.0^floatbits == (1 << floatbits))
- assert(2.0^floatbits - 1.0 == (1 << floatbits) - 1.0)
- assert(2.0^floatbits - 1.0 ~= (1 << floatbits))
- -- float is rounded, int is not
- assert(2.0^floatbits + 1.0 ~= (1 << floatbits) + 1)
- else -- floats can express all integers with full accuracy
- assert(maxint == maxint + 0.0)
- assert(maxint - 1 == maxint - 1.0)
- assert(minint + 1 == minint + 1.0)
- assert(maxint ~= maxint - 1.0)
- end
- assert(maxint + 0.0 == 2.0^(intbits - 1) - 1.0)
- assert(minint + 0.0 == minint)
- assert(minint + 0.0 == -2.0^(intbits - 1))
- -- order between floats and integers
- assert(1 < 1.1); assert(not (1 < 0.9))
- assert(1 <= 1.1); assert(not (1 <= 0.9))
- assert(-1 < -0.9); assert(not (-1 < -1.1))
- assert(1 <= 1.1); assert(not (-1 <= -1.1))
- assert(-1 < -0.9); assert(not (-1 < -1.1))
- assert(-1 <= -0.9); assert(not (-1 <= -1.1))
- assert(minint <= minint + 0.0)
- assert(minint + 0.0 <= minint)
- assert(not (minint < minint + 0.0))
- assert(not (minint + 0.0 < minint))
- assert(maxint < minint * -1.0)
- assert(maxint <= minint * -1.0)
- do
- local fmaxi1 = 2^(intbits - 1)
- assert(maxint < fmaxi1)
- assert(maxint <= fmaxi1)
- assert(not (fmaxi1 <= maxint))
- assert(minint <= -2^(intbits - 1))
- assert(-2^(intbits - 1) <= minint)
- end
- if floatbits < intbits then
- print("testing order (floats cannot represent all integers)")
- local fmax = 2^floatbits
- local ifmax = fmax | 0
- assert(fmax < ifmax + 1)
- assert(fmax - 1 < ifmax)
- assert(-(fmax - 1) > -ifmax)
- assert(not (fmax <= ifmax - 1))
- assert(-fmax > -(ifmax + 1))
- assert(not (-fmax >= -(ifmax - 1)))
- assert(fmax/2 - 0.5 < ifmax//2)
- assert(-(fmax/2 - 0.5) > -ifmax//2)
- assert(maxint < 2^intbits)
- assert(minint > -2^intbits)
- assert(maxint <= 2^intbits)
- assert(minint >= -2^intbits)
- else
- print("testing order (floats can represent all integers)")
- assert(maxint < maxint + 1.0)
- assert(maxint < maxint + 0.5)
- assert(maxint - 1.0 < maxint)
- assert(maxint - 0.5 < maxint)
- assert(not (maxint + 0.0 < maxint))
- assert(maxint + 0.0 <= maxint)
- assert(not (maxint < maxint + 0.0))
- assert(maxint + 0.0 <= maxint)
- assert(maxint <= maxint + 0.0)
- assert(not (maxint + 1.0 <= maxint))
- assert(not (maxint + 0.5 <= maxint))
- assert(not (maxint <= maxint - 1.0))
- assert(not (maxint <= maxint - 0.5))
- assert(minint < minint + 1.0)
- assert(minint < minint + 0.5)
- assert(minint <= minint + 0.5)
- assert(minint - 1.0 < minint)
- assert(minint - 1.0 <= minint)
- assert(not (minint + 0.0 < minint))
- assert(not (minint + 0.5 < minint))
- assert(not (minint < minint + 0.0))
- assert(minint + 0.0 <= minint)
- assert(minint <= minint + 0.0)
- assert(not (minint + 1.0 <= minint))
- assert(not (minint + 0.5 <= minint))
- assert(not (minint <= minint - 1.0))
- end
- do
- local NaN <const> = 0/0
- assert(not (NaN < 0))
- assert(not (NaN > minint))
- assert(not (NaN <= -9))
- assert(not (NaN <= maxint))
- assert(not (NaN < maxint))
- assert(not (minint <= NaN))
- assert(not (minint < NaN))
- assert(not (4 <= NaN))
- assert(not (4 < NaN))
- end
- -- avoiding errors at compile time
- local function checkcompt (msg, code)
- checkerror(msg, assert(load(code)))
- end
- checkcompt("divide by zero", "return 2 // 0")
- checkcompt(msgf2i, "return 2.3 >> 0")
- checkcompt(msgf2i, ("return 2.0^%d & 1"):format(intbits - 1))
- checkcompt("field 'huge'", "return math.huge << 1")
- checkcompt(msgf2i, ("return 1 | 2.0^%d"):format(intbits - 1))
- checkcompt(msgf2i, "return 2.3 ~ 0.0")
- -- testing overflow errors when converting from float to integer (runtime)
- local function f2i (x) return x | x end
- checkerror(msgf2i, f2i, math.huge) -- +inf
- checkerror(msgf2i, f2i, -math.huge) -- -inf
- checkerror(msgf2i, f2i, 0/0) -- NaN
- if floatbits < intbits then
- -- conversion tests when float cannot represent all integers
- assert(maxint + 1.0 == maxint + 0.0)
- assert(minint - 1.0 == minint + 0.0)
- checkerror(msgf2i, f2i, maxint + 0.0)
- assert(f2i(2.0^(intbits - 2)) == 1 << (intbits - 2))
- assert(f2i(-2.0^(intbits - 2)) == -(1 << (intbits - 2)))
- assert((2.0^(floatbits - 1) + 1.0) // 1 == (1 << (floatbits - 1)) + 1)
- -- maximum integer representable as a float
- local mf = maxint - (1 << (floatbits - intbits)) + 1
- assert(f2i(mf + 0.0) == mf) -- OK up to here
- mf = mf + 1
- assert(f2i(mf + 0.0) ~= mf) -- no more representable
- else
- -- conversion tests when float can represent all integers
- assert(maxint + 1.0 > maxint)
- assert(minint - 1.0 < minint)
- assert(f2i(maxint + 0.0) == maxint)
- checkerror("no integer rep", f2i, maxint + 1.0)
- checkerror("no integer rep", f2i, minint - 1.0)
- end
- -- 'minint' should be representable as a float no matter the precision
- assert(f2i(minint + 0.0) == minint)
- -- testing numeric strings
- assert("2" + 1 == 3)
- assert("2 " + 1 == 3)
- assert(" -2 " + 1 == -1)
- assert(" -0xa " + 1 == -9)
- -- Literal integer Overflows (new behavior in 5.3.3)
- do
- -- no overflows
- assert(eqT(tonumber(tostring(maxint)), maxint))
- assert(eqT(tonumber(tostring(minint)), minint))
- -- add 1 to last digit as a string (it cannot be 9...)
- local function incd (n)
- local s = string.format("%d", n)
- s = string.gsub(s, "%d$", function (d)
- assert(d ~= '9')
- return string.char(string.byte(d) + 1)
- end)
- return s
- end
- -- 'tonumber' with overflow by 1
- assert(eqT(tonumber(incd(maxint)), maxint + 1.0))
- assert(eqT(tonumber(incd(minint)), minint - 1.0))
- -- large numbers
- assert(eqT(tonumber("1"..string.rep("0", 30)), 1e30))
- assert(eqT(tonumber("-1"..string.rep("0", 30)), -1e30))
- -- hexa format still wraps around
- assert(eqT(tonumber("0x1"..string.rep("0", 30)), 0))
- -- lexer in the limits
- assert(minint == load("return " .. minint)())
- assert(eqT(maxint, load("return " .. maxint)()))
- assert(eqT(10000000000000000000000.0, 10000000000000000000000))
- assert(eqT(-10000000000000000000000.0, -10000000000000000000000))
- end
- -- testing 'tonumber'
- -- 'tonumber' with numbers
- assert(tonumber(3.4) == 3.4)
- assert(eqT(tonumber(3), 3))
- assert(eqT(tonumber(maxint), maxint) and eqT(tonumber(minint), minint))
- assert(tonumber(1/0) == 1/0)
- -- 'tonumber' with strings
- assert(tonumber("0") == 0)
- assert(not tonumber(""))
- assert(not tonumber(" "))
- assert(not tonumber("-"))
- assert(not tonumber(" -0x "))
- assert(not tonumber{})
- assert(tonumber'+0.01' == 1/100 and tonumber'+.01' == 0.01 and
- tonumber'.01' == 0.01 and tonumber'-1.' == -1 and
- tonumber'+1.' == 1)
- assert(not tonumber'+ 0.01' and not tonumber'+.e1' and
- not tonumber'1e' and not tonumber'1.0e+' and
- not tonumber'.')
- assert(tonumber('-012') == -010-2)
- assert(tonumber('-1.2e2') == - - -120)
- assert(tonumber("0xffffffffffff") == (1 << (4*12)) - 1)
- assert(tonumber("0x"..string.rep("f", (intbits//4))) == -1)
- assert(tonumber("-0x"..string.rep("f", (intbits//4))) == 1)
- -- testing 'tonumber' with base
- assert(tonumber(' 001010 ', 2) == 10)
- assert(tonumber(' 001010 ', 10) == 001010)
- assert(tonumber(' -1010 ', 2) == -10)
- assert(tonumber('10', 36) == 36)
- assert(tonumber(' -10 ', 36) == -36)
- assert(tonumber(' +1Z ', 36) == 36 + 35)
- assert(tonumber(' -1z ', 36) == -36 + -35)
- assert(tonumber('-fFfa', 16) == -(10+(16*(15+(16*(15+(16*15)))))))
- assert(tonumber(string.rep('1', (intbits - 2)), 2) + 1 == 2^(intbits - 2))
- assert(tonumber('ffffFFFF', 16)+1 == (1 << 32))
- assert(tonumber('0ffffFFFF', 16)+1 == (1 << 32))
- assert(tonumber('-0ffffffFFFF', 16) - 1 == -(1 << 40))
- for i = 2,36 do
- local i2 = i * i
- local i10 = i2 * i2 * i2 * i2 * i2 -- i^10
- assert(tonumber('\t10000000000\t', i) == i10)
- end
- if not _ENV._soft then
- -- tests with very long numerals
- assert(tonumber("0x"..string.rep("f", 13)..".0") == 2.0^(4*13) - 1)
- assert(tonumber("0x"..string.rep("f", 150)..".0") == 2.0^(4*150) - 1)
- assert(tonumber("0x"..string.rep("f", 300)..".0") == 2.0^(4*300) - 1)
- assert(tonumber("0x"..string.rep("f", 500)..".0") == 2.0^(4*500) - 1)
- assert(tonumber('0x3.' .. string.rep('0', 1000)) == 3)
- assert(tonumber('0x' .. string.rep('0', 1000) .. 'a') == 10)
- assert(tonumber('0x0.' .. string.rep('0', 13).."1") == 2.0^(-4*14))
- assert(tonumber('0x0.' .. string.rep('0', 150).."1") == 2.0^(-4*151))
- assert(tonumber('0x0.' .. string.rep('0', 300).."1") == 2.0^(-4*301))
- assert(tonumber('0x0.' .. string.rep('0', 500).."1") == 2.0^(-4*501))
- assert(tonumber('0xe03' .. string.rep('0', 1000) .. 'p-4000') == 3587.0)
- assert(tonumber('0x.' .. string.rep('0', 1000) .. '74p4004') == 0x7.4)
- end
- -- testing 'tonumber' for invalid formats
- local function f (...)
- if select('#', ...) == 1 then
- return (...)
- else
- return "***"
- end
- end
- assert(not f(tonumber('fFfa', 15)))
- assert(not f(tonumber('099', 8)))
- assert(not f(tonumber('1\0', 2)))
- assert(not f(tonumber('', 8)))
- assert(not f(tonumber(' ', 9)))
- assert(not f(tonumber(' ', 9)))
- assert(not f(tonumber('0xf', 10)))
- assert(not f(tonumber('inf')))
- assert(not f(tonumber(' INF ')))
- assert(not f(tonumber('Nan')))
- assert(not f(tonumber('nan')))
- assert(not f(tonumber(' ')))
- assert(not f(tonumber('')))
- assert(not f(tonumber('1 a')))
- assert(not f(tonumber('1 a', 2)))
- assert(not f(tonumber('1\0')))
- assert(not f(tonumber('1 \0')))
- assert(not f(tonumber('1\0 ')))
- assert(not f(tonumber('e1')))
- assert(not f(tonumber('e 1')))
- assert(not f(tonumber(' 3.4.5 ')))
- -- testing 'tonumber' for invalid hexadecimal formats
- assert(not tonumber('0x'))
- assert(not tonumber('x'))
- assert(not tonumber('x3'))
- assert(not tonumber('0x3.3.3')) -- two decimal points
- assert(not tonumber('00x2'))
- assert(not tonumber('0x 2'))
- assert(not tonumber('0 x2'))
- assert(not tonumber('23x'))
- assert(not tonumber('- 0xaa'))
- assert(not tonumber('-0xaaP ')) -- no exponent
- assert(not tonumber('0x0.51p'))
- assert(not tonumber('0x5p+-2'))
- -- testing hexadecimal numerals
- assert(0x10 == 16 and 0xfff == 2^12 - 1 and 0XFB == 251)
- assert(0x0p12 == 0 and 0x.0p-3 == 0)
- assert(0xFFFFFFFF == (1 << 32) - 1)
- assert(tonumber('+0x2') == 2)
- assert(tonumber('-0xaA') == -170)
- assert(tonumber('-0xffFFFfff') == -(1 << 32) + 1)
- -- possible confusion with decimal exponent
- assert(0E+1 == 0 and 0xE+1 == 15 and 0xe-1 == 13)
- -- floating hexas
- assert(tonumber(' 0x2.5 ') == 0x25/16)
- assert(tonumber(' -0x2.5 ') == -0x25/16)
- assert(tonumber(' +0x0.51p+8 ') == 0x51)
- assert(0x.FfffFFFF == 1 - '0x.00000001')
- assert('0xA.a' + 0 == 10 + 10/16)
- assert(0xa.aP4 == 0XAA)
- assert(0x4P-2 == 1)
- assert(0x1.1 == '0x1.' + '+0x.1')
- assert(0Xabcdef.0 == 0x.ABCDEFp+24)
- assert(1.1 == 1.+.1)
- assert(100.0 == 1E2 and .01 == 1e-2)
- assert(1111111111 - 1111111110 == 1000.00e-03)
- assert(1.1 == '1.'+'.1')
- assert(tonumber'1111111111' - tonumber'1111111110' ==
- tonumber" +0.001e+3 \n\t")
- assert(0.1e-30 > 0.9E-31 and 0.9E30 < 0.1e31)
- assert(0.123456 > 0.123455)
- assert(tonumber('+1.23E18') == 1.23*10.0^18)
- -- testing order operators
- assert(not(1<1) and (1<2) and not(2<1))
- assert(not('a'<'a') and ('a'<'b') and not('b'<'a'))
- assert((1<=1) and (1<=2) and not(2<=1))
- assert(('a'<='a') and ('a'<='b') and not('b'<='a'))
- assert(not(1>1) and not(1>2) and (2>1))
- assert(not('a'>'a') and not('a'>'b') and ('b'>'a'))
- assert((1>=1) and not(1>=2) and (2>=1))
- assert(('a'>='a') and not('a'>='b') and ('b'>='a'))
- assert(1.3 < 1.4 and 1.3 <= 1.4 and not (1.3 < 1.3) and 1.3 <= 1.3)
- -- testing mod operator
- assert(eqT(-4 % 3, 2))
- assert(eqT(4 % -3, -2))
- assert(eqT(-4.0 % 3, 2.0))
- assert(eqT(4 % -3.0, -2.0))
- assert(eqT(4 % -5, -1))
- assert(eqT(4 % -5.0, -1.0))
- assert(eqT(4 % 5, 4))
- assert(eqT(4 % 5.0, 4.0))
- assert(eqT(-4 % -5, -4))
- assert(eqT(-4 % -5.0, -4.0))
- assert(eqT(-4 % 5, 1))
- assert(eqT(-4 % 5.0, 1.0))
- assert(eqT(4.25 % 4, 0.25))
- assert(eqT(10.0 % 2, 0.0))
- assert(eqT(-10.0 % 2, 0.0))
- assert(eqT(-10.0 % -2, 0.0))
- assert(math.pi - math.pi % 1 == 3)
- assert(math.pi - math.pi % 0.001 == 3.141)
- do -- very small numbers
- local i, j = 0, 20000
- while i < j do
- local m = (i + j) // 2
- if 10^-m > 0 then
- i = m + 1
- else
- j = m
- end
- end
- -- 'i' is the smallest possible ten-exponent
- local b = 10^-(i - (i // 10)) -- a very small number
- assert(b > 0 and b * b == 0)
- local delta = b / 1000
- assert(eq((2.1 * b) % (2 * b), (0.1 * b), delta))
- assert(eq((-2.1 * b) % (2 * b), (2 * b) - (0.1 * b), delta))
- assert(eq((2.1 * b) % (-2 * b), (0.1 * b) - (2 * b), delta))
- assert(eq((-2.1 * b) % (-2 * b), (-0.1 * b), delta))
- end
- -- basic consistency between integer modulo and float modulo
- for i = -10, 10 do
- for j = -10, 10 do
- if j ~= 0 then
- assert((i + 0.0) % j == i % j)
- end
- end
- end
- for i = 0, 10 do
- for j = -10, 10 do
- if j ~= 0 then
- assert((2^i) % j == (1 << i) % j)
- end
- end
- end
- do -- precision of module for large numbers
- local i = 10
- while (1 << i) > 0 do
- assert((1 << i) % 3 == i % 2 + 1)
- i = i + 1
- end
- i = 10
- while 2^i < math.huge do
- assert(2^i % 3 == i % 2 + 1)
- i = i + 1
- end
- end
- assert(eqT(minint % minint, 0))
- assert(eqT(maxint % maxint, 0))
- assert((minint + 1) % minint == minint + 1)
- assert((maxint - 1) % maxint == maxint - 1)
- assert(minint % maxint == maxint - 1)
- assert(minint % -1 == 0)
- assert(minint % -2 == 0)
- assert(maxint % -2 == -1)
- -- non-portable tests because Windows C library cannot compute
- -- fmod(1, huge) correctly
- if not _ENV._port then
- local function anan (x) assert(isNaN(x)) end -- assert Not a Number
- anan(0.0 % 0)
- anan(1.3 % 0)
- anan(math.huge % 1)
- anan(math.huge % 1e30)
- anan(-math.huge % 1e30)
- anan(-math.huge % -1e30)
- assert(1 % math.huge == 1)
- assert(1e30 % math.huge == 1e30)
- assert(1e30 % -math.huge == -math.huge)
- assert(-1 % math.huge == math.huge)
- assert(-1 % -math.huge == -1)
- end
- -- testing unsigned comparisons
- assert(math.ult(3, 4))
- assert(not math.ult(4, 4))
- assert(math.ult(-2, -1))
- assert(math.ult(2, -1))
- assert(not math.ult(-2, -2))
- assert(math.ult(maxint, minint))
- assert(not math.ult(minint, maxint))
- assert(eq(math.sin(-9.8)^2 + math.cos(-9.8)^2, 1))
- assert(eq(math.tan(math.pi/4), 1))
- assert(eq(math.sin(math.pi/2), 1) and eq(math.cos(math.pi/2), 0))
- assert(eq(math.atan(1), math.pi/4) and eq(math.acos(0), math.pi/2) and
- eq(math.asin(1), math.pi/2))
- assert(eq(math.deg(math.pi/2), 90) and eq(math.rad(90), math.pi/2))
- assert(math.abs(-10.43) == 10.43)
- assert(eqT(math.abs(minint), minint))
- assert(eqT(math.abs(maxint), maxint))
- assert(eqT(math.abs(-maxint), maxint))
- assert(eq(math.atan(1,0), math.pi/2))
- assert(math.fmod(10,3) == 1)
- assert(eq(math.sqrt(10)^2, 10))
- assert(eq(math.log(2, 10), math.log(2)/math.log(10)))
- assert(eq(math.log(2, 2), 1))
- assert(eq(math.log(9, 3), 2))
- assert(eq(math.exp(0), 1))
- assert(eq(math.sin(10), math.sin(10%(2*math.pi))))
- assert(tonumber(' 1.3e-2 ') == 1.3e-2)
- assert(tonumber(' -1.00000000000001 ') == -1.00000000000001)
- -- testing constant limits
- -- 2^23 = 8388608
- assert(8388609 + -8388609 == 0)
- assert(8388608 + -8388608 == 0)
- assert(8388607 + -8388607 == 0)
- do -- testing floor & ceil
- assert(eqT(math.floor(3.4), 3))
- assert(eqT(math.ceil(3.4), 4))
- assert(eqT(math.floor(-3.4), -4))
- assert(eqT(math.ceil(-3.4), -3))
- assert(eqT(math.floor(maxint), maxint))
- assert(eqT(math.ceil(maxint), maxint))
- assert(eqT(math.floor(minint), minint))
- assert(eqT(math.floor(minint + 0.0), minint))
- assert(eqT(math.ceil(minint), minint))
- assert(eqT(math.ceil(minint + 0.0), minint))
- assert(math.floor(1e50) == 1e50)
- assert(math.ceil(1e50) == 1e50)
- assert(math.floor(-1e50) == -1e50)
- assert(math.ceil(-1e50) == -1e50)
- for _, p in pairs{31,32,63,64} do
- assert(math.floor(2^p) == 2^p)
- assert(math.floor(2^p + 0.5) == 2^p)
- assert(math.ceil(2^p) == 2^p)
- assert(math.ceil(2^p - 0.5) == 2^p)
- end
- checkerror("number expected", math.floor, {})
- checkerror("number expected", math.ceil, print)
- assert(eqT(math.tointeger(minint), minint))
- assert(eqT(math.tointeger(minint .. ""), minint))
- assert(eqT(math.tointeger(maxint), maxint))
- assert(eqT(math.tointeger(maxint .. ""), maxint))
- assert(eqT(math.tointeger(minint + 0.0), minint))
- assert(not math.tointeger(0.0 - minint))
- assert(not math.tointeger(math.pi))
- assert(not math.tointeger(-math.pi))
- assert(math.floor(math.huge) == math.huge)
- assert(math.ceil(math.huge) == math.huge)
- assert(not math.tointeger(math.huge))
- assert(math.floor(-math.huge) == -math.huge)
- assert(math.ceil(-math.huge) == -math.huge)
- assert(not math.tointeger(-math.huge))
- assert(math.tointeger("34.0") == 34)
- assert(not math.tointeger("34.3"))
- assert(not math.tointeger({}))
- assert(not math.tointeger(0/0)) -- NaN
- end
- -- testing fmod for integers
- for i = -6, 6 do
- for j = -6, 6 do
- if j ~= 0 then
- local mi = math.fmod(i, j)
- local mf = math.fmod(i + 0.0, j)
- assert(mi == mf)
- assert(math.type(mi) == 'integer' and math.type(mf) == 'float')
- if (i >= 0 and j >= 0) or (i <= 0 and j <= 0) or mi == 0 then
- assert(eqT(mi, i % j))
- end
- end
- end
- end
- assert(eqT(math.fmod(minint, minint), 0))
- assert(eqT(math.fmod(maxint, maxint), 0))
- assert(eqT(math.fmod(minint + 1, minint), minint + 1))
- assert(eqT(math.fmod(maxint - 1, maxint), maxint - 1))
- checkerror("zero", math.fmod, 3, 0)
- do -- testing max/min
- checkerror("value expected", math.max)
- checkerror("value expected", math.min)
- assert(eqT(math.max(3), 3))
- assert(eqT(math.max(3, 5, 9, 1), 9))
- assert(math.max(maxint, 10e60) == 10e60)
- assert(eqT(math.max(minint, minint + 1), minint + 1))
- assert(eqT(math.min(3), 3))
- assert(eqT(math.min(3, 5, 9, 1), 1))
- assert(math.min(3.2, 5.9, -9.2, 1.1) == -9.2)
- assert(math.min(1.9, 1.7, 1.72) == 1.7)
- assert(math.min(-10e60, minint) == -10e60)
- assert(eqT(math.min(maxint, maxint - 1), maxint - 1))
- assert(eqT(math.min(maxint - 2, maxint, maxint - 1), maxint - 2))
- end
- -- testing implicit conversions
- local a,b = '10', '20'
- assert(a*b == 200 and a+b == 30 and a-b == -10 and a/b == 0.5 and -b == -20)
- assert(a == '10' and b == '20')
- do
- print("testing -0 and NaN")
- global rawset, undef
- local mz <const> = -0.0
- local z <const> = 0.0
- assert(mz == z)
- assert(1/mz < 0 and 0 < 1/z)
- local a = {[mz] = 1}
- assert(a[z] == 1 and a[mz] == 1)
- a[z] = 2
- assert(a[z] == 2 and a[mz] == 2)
- local inf = math.huge * 2 + 1
- local mz <const> = -1/inf
- local z <const> = 1/inf
- assert(mz == z)
- assert(1/mz < 0 and 0 < 1/z)
- local NaN <const> = inf - inf
- assert(NaN ~= NaN)
- assert(not (NaN < NaN))
- assert(not (NaN <= NaN))
- assert(not (NaN > NaN))
- assert(not (NaN >= NaN))
- assert(not (0 < NaN) and not (NaN < 0))
- local NaN1 <const> = 0/0
- assert(NaN ~= NaN1 and not (NaN <= NaN1) and not (NaN1 <= NaN))
- local a = {}
- assert(not pcall(rawset, a, NaN, 1))
- assert(a[NaN] == undef)
- a[1] = 1
- assert(not pcall(rawset, a, NaN, 1))
- assert(a[NaN] == undef)
- -- strings with same binary representation as 0.0 (might create problems
- -- for constant manipulation in the pre-compiler)
- local a1, a2, a3, a4, a5 = 0, 0, "\0\0\0\0\0\0\0\0", 0, "\0\0\0\0\0\0\0\0"
- assert(a1 == a2 and a2 == a4 and a1 ~= a3)
- assert(a3 == a5)
- end
- --
- -- [[==================================================================
- print("testing 'math.random'")
- -- -===================================================================
- --
- local random, max, min = math.random, math.max, math.min
- local function testnear (val, ref, tol)
- return (math.abs(val - ref) < ref * tol)
- end
- -- low-level!! For the current implementation of random in Lua,
- -- the first call after seed 1007 should return 0x7a7040a5a323c9d6
- do
- -- all computations should work with 32-bit integers
- local h <const> = 0x7a7040a5 -- higher half
- local l <const> = 0xa323c9d6 -- lower half
- math.randomseed(1007)
- -- get the low 'intbits' of the 64-bit expected result
- local res = (h << 32 | l) & ~(~0 << intbits)
- assert(random(0) == res)
- math.randomseed(1007, 0)
- -- using higher bits to generate random floats; (the '% 2^32' converts
- -- 32-bit integers to floats as unsigned)
- local res
- if floatbits <= 32 then
- -- get all bits from the higher half
- res = (h >> (32 - floatbits)) % 2^32
- else
- -- get 32 bits from the higher half and the rest from the lower half
- res = (h % 2^32) * 2^(floatbits - 32) + ((l >> (64 - floatbits)) % 2^32)
- end
- local rand = random()
- assert(eq(rand, 0x0.7a7040a5a323c9d6, 2^-floatbits))
- assert(rand * 2^floatbits == res)
- end
- do
- -- testing return of 'randomseed'
- local x, y = math.randomseed()
- local res = math.random(0)
- x, y = math.randomseed(x, y) -- should repeat the state
- assert(math.random(0) == res)
- math.randomseed(x, y) -- again should repeat the state
- assert(math.random(0) == res)
- -- keep the random seed for following tests
- print(string.format("random seeds: %d, %d", x, y))
- end
- do -- test random for floats
- local randbits = math.min(floatbits, 64) -- at most 64 random bits
- local mult = 2^randbits -- to make random float into an integral
- local counts = {} -- counts for bits
- for i = 1, randbits do counts[i] = 0 end
- local up = -math.huge
- local low = math.huge
- local rounds = 100 * randbits -- 100 times for each bit
- local totalrounds = 0
- ::doagain:: -- will repeat test until we get good statistics
- for i = 0, rounds do
- local t = random()
- assert(0 <= t and t < 1)
- up = max(up, t)
- low = min(low, t)
- assert(t * mult % 1 == 0) -- no extra bits
- local bit = i % randbits -- bit to be tested
- if (t * 2^bit) % 1 >= 0.5 then -- is bit set?
- counts[bit + 1] = counts[bit + 1] + 1 -- increment its count
- end
- end
- totalrounds = totalrounds + rounds
- if not (eq(up, 1, 0.001) and eq(low, 0, 0.001)) then
- goto doagain
- end
- -- all bit counts should be near 50%
- local expected = (totalrounds / randbits / 2)
- for i = 1, randbits do
- if not testnear(counts[i], expected, 0.10) then
- goto doagain
- end
- end
- print(string.format("float random range in %d calls: [%f, %f]",
- totalrounds, low, up))
- end
- do -- test random for full integers
- local up = 0
- local low = 0
- local counts = {} -- counts for bits
- for i = 1, intbits do counts[i] = 0 end
- local rounds = 100 * intbits -- 100 times for each bit
- local totalrounds = 0
- ::doagain:: -- will repeat test until we get good statistics
- for i = 0, rounds do
- local t = random(0)
- up = max(up, t)
- low = min(low, t)
- local bit = i % intbits -- bit to be tested
- -- increment its count if it is set
- counts[bit + 1] = counts[bit + 1] + ((t >> bit) & 1)
- end
- totalrounds = totalrounds + rounds
- local lim = maxint >> 10
- if not (maxint - up < lim and low - minint < lim) then
- goto doagain
- end
- -- all bit counts should be near 50%
- local expected = (totalrounds / intbits / 2)
- for i = 1, intbits do
- if not testnear(counts[i], expected, 0.10) then
- goto doagain
- end
- end
- print(string.format(
- "integer random range in %d calls: [minint + %.0fppm, maxint - %.0fppm]",
- totalrounds, (minint - low) / minint * 1e6,
- (maxint - up) / maxint * 1e6))
- end
- do
- -- test distribution for a dice
- local count = {0, 0, 0, 0, 0, 0}
- local rep = 200
- local totalrep = 0
- ::doagain::
- for i = 1, rep * 6 do
- local r = random(6)
- count[r] = count[r] + 1
- end
- totalrep = totalrep + rep
- for i = 1, 6 do
- if not testnear(count[i], totalrep, 0.05) then
- goto doagain
- end
- end
- end
- do
- local function aux (x1, x2) -- test random for small intervals
- local mark = {}; local count = 0 -- to check that all values appeared
- while true do
- local t = random(x1, x2)
- assert(x1 <= t and t <= x2)
- if not mark[t] then -- new value
- mark[t] = true
- count = count + 1
- if count == x2 - x1 + 1 then -- all values appeared; OK
- goto ok
- end
- end
- end
- ::ok::
- end
- aux(-10,0)
- aux(1, 6)
- aux(1, 2)
- aux(1, 13)
- aux(1, 31)
- aux(1, 32)
- aux(1, 33)
- aux(-10, 10)
- aux(-10,-10) -- unit set
- aux(minint, minint) -- unit set
- aux(maxint, maxint) -- unit set
- aux(minint, minint + 9)
- aux(maxint - 3, maxint)
- end
- do
- local function aux(p1, p2) -- test random for large intervals
- local max = minint
- local min = maxint
- local n = 100
- local mark = {}; local count = 0 -- to count how many different values
- ::doagain::
- for _ = 1, n do
- local t = random(p1, p2)
- if not mark[t] then -- new value
- assert(p1 <= t and t <= p2)
- max = math.max(max, t)
- min = math.min(min, t)
- mark[t] = true
- count = count + 1
- end
- end
- -- at least 80% of values are different
- if not (count >= n * 0.8) then
- goto doagain
- end
- -- min and max not too far from formal min and max
- local diff = (p2 - p1) >> 4
- if not (min < p1 + diff and max > p2 - diff) then
- goto doagain
- end
- end
- aux(0, maxint)
- aux(1, maxint)
- aux(3, maxint // 3)
- aux(minint, -1)
- aux(minint // 2, maxint // 2)
- aux(minint, maxint)
- aux(minint + 1, maxint)
- aux(minint, maxint - 1)
- aux(0, 1 << (intbits - 5))
- end
- assert(not pcall(random, 1, 2, 3)) -- too many arguments
- -- empty interval
- assert(not pcall(random, minint + 1, minint))
- assert(not pcall(random, maxint, maxint - 1))
- assert(not pcall(random, maxint, minint))
- -- ]]==================================================================
- --
- -- [[==================================================================
- print("testing precision of 'tostring'")
- -- -===================================================================
- --
- -- number of decimal digits supported by float precision
- local decdig = math.floor(floatbits * math.log(2, 10))
- print(string.format(" %d-digit float numbers with full precision",
- decdig))
- -- number of decimal digits supported by integer precision
- local Idecdig = math.floor(math.log(maxint, 10))
- print(string.format(" %d-digit integer numbers with full precision",
- Idecdig))
- do
- -- Any number should print so that reading it back gives itself:
- -- tonumber(tostring(x)) == x
- -- Mersenne fractions
- local p = 1.0
- for i = 1, maxexp do
- p = p + p
- local x = 1 / (p - 1)
- assert(x == tonumber(tostring(x)))
- end
- -- some random numbers in [0,1)
- for i = 1, 100 do
- local x = math.random()
- assert(x == tonumber(tostring(x)))
- end
- -- different numbers should print differently.
- -- check pairs of floats with minimum detectable difference
- local p = floatbits - 1
- global ipairs
- for i = 1, maxexp - 1 do
- for _, i in ipairs{-i, i} do
- local x = 2^i
- local diff = 2^(i - p) -- least significant bit for 'x'
- local y = x + diff
- local fy = tostring(y)
- assert(x ~= y and tostring(x) ~= fy)
- assert(tonumber(fy) == y)
- end
- end
- -- "reasonable" numerals should be printed like themselves
- -- create random float numerals with 5 digits, with a decimal point
- -- inserted in all places. (With more than 5, things like "0.00001"
- -- reformats like "1e-5".)
- for i = 1, 1000 do
- -- random numeral with 5 digits
- local x = string.format("%.5d", math.random(0, 99999))
- for i = 2, #x do
- -- insert decimal point at position 'i'
- local y = string.sub(x, 1, i - 1) .. "." .. string.sub(x, i, -1)
- y = string.gsub(y, "^0*(%d.-%d)0*$", "%1") -- trim extra zeros
- assert(y == tostring(tonumber(y)))
- end
- end
- -- all-random floats
- local Fsz = string.packsize("n") -- size of floats in bytes
- for i = 1, 400 do
- local s = string.pack("j", math.random(0)) -- a random string of bits
- while #s < Fsz do -- make 's' long enough
- s = s .. string.pack("j", math.random(0))
- end
- local n = string.unpack("n", s) -- read 's' as a float
- s = tostring(n)
- if string.find(s, "^%-?%d") then -- avoid NaN, inf, -inf
- assert(tonumber(s) == n)
- end
- end
- end
- -- ]]==================================================================
- print('OK')
|