1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741 |
- \documentstyle[A4,11pt,bnf]{article}
- \newcommand{\rw}[1]{{\bf #1}}
- \newcommand{\see}[1]{see Section~\ref{#1}}
- \newcommand{\nil}{{\bf nil}}
- \newcommand{\Line}{\rule{\linewidth}{.5mm}}
- \def\tecgraf{{\sf TeC\kern-.21em\lower.7ex\hbox{Graf}}}
- \newcommand{\Index}[1]{#1\index{#1}}
- \newcommand{\IndexVerb}[1]{{\tt #1}\index{#1}}
- \newcommand{\Def}[1]{{\em #1}\index{#1}}
- \newcommand{\Deffunc}[1]{\index{{\tt #1}}}
- \begin{document}
- \title{Reference Manual of the Programming Language Lua 2.2}
- \author{%
- Roberto Ierusalimschy\quad
- Luiz Henrique de Figueiredo\quad
- Waldemar Celes Filho
- \vspace{1.0ex}\\
- %\small \tecgraf \ --- PUC-Rio\\
- \smallskip
- \small\tt roberto,lhf,[email protected]
- \vspace{2.0ex}\\
- %MCC 08/95 ---
- Departamento de Inform\'atica --- PUC-Rio
- }
- \date{November, 1995}
- \maketitle
- \begin{abstract}
- \noindent
- Lua is an extension programming language designed to be used
- as a configuration language for any program that needs one.
- This document describes version 2.2 of the Lua programming language and the
- API that allows interaction between Lua programs and its host C program.
- It also presents some examples of using the main features of the system.
- \end{abstract}
- \vspace{4ex}
- \begin{quotation}
- \small
- \begin{center}{\bf Sum\'ario}\end{center}
- \vspace{1ex}
- \noindent
- Lua \'e uma linguagem de extens\~ao projetada para ser usada como
- linguagem de configura\c{c}\~ao em qualquer programa que precise de
- uma.
- Este documento descreve a vers\~ao 2.2 da linguagem de programa\c{c}\~ao Lua e a
- Interface de Programa\c{c}\~ao que permite a intera\c{c}\~ao entre programas Lua
- e o programa C hospedeiro.
- O documento tamb\'em apresenta alguns exemplos de uso das principais
- ca\-racte\-r\'{\i}sticas do sistema.
- \end{quotation}
- \section{Introduction}
- Lua is an extension programming language designed to support
- general procedural programming features with data description
- facilities.
- It is supposed to be used as a configuration language for any
- program that needs one.
- Its main extensions are related to object-oriented facilities,
- and fallbacks,
- but it has some other minor contributions.
- Lua has been designed and implemented by
- W.~Celes~F., L.~H.~de Figueiredo and R.~Ierusalimschy.
- Lua is implemented as a library, written in C.
- Being an extension language, Lua has no notion of a ``main'' program:
- it only works {\em embedded} in a host client,
- called the {\em embedding} program.
- This host program can invoke functions to execute a piece of
- code in Lua, can write and read Lua variables,
- and can register C functions to be called by Lua code.
- Through the use of C functions, Lua can be augmented to cope with
- rather different domains,
- thus creating customized programming languages sharing a syntactical framework.
- Lua is free distribution software,
- and provided as usual with no guarantees.
- The implementation described in this manual is available
- by anonymous ftp from
- \begin{verbatim}
- ftp.icad.puc-rio.br:/pub/lua/lua-2.2.tar.gz
- \end{verbatim}
- or by WWW (World Wide Web) from
- \begin{verbatim}
- http://www.inf.puc-rio.br/~roberto/lua.html
- \end{verbatim}
- \section{Environment and Modules}
- All statements in Lua are executed in a \Def{global environment}.
- This environment, which keeps all global variables and functions,
- is initialized at the beginning of the embedding program and
- persists until its end.
- The global environment can be manipulated by Lua code or
- by the embedding program,
- which can read and write global variables
- using functions in the library that implements Lua.
- \Index{Global variables} do not need declaration.
- Any variable is assumed to be global unless explicitly declared local
- (see local declarations, Section~\ref{localvar}).
- Before the first assignment, the value of a global variable is \nil.
- The unit of execution of Lua is called a \Def{chunk}.
- The syntax for chunks is:%
- \footnote{As usual, \rep{{\em a}} means 0 or more {\em a\/}'s,
- \opt{{\em a}} means an optional {\em a} and \oneormore{{\em a}} means
- one or more {\em a\/}'s.}
- \begin{Produc}
- \produc{chunk}{\rep{statement \Or function}}
- \end{Produc}%
- A chunk may contain statements and function definitions,
- and may be in a file or in a string inside the host program.
- When a chunk is executed, first all its functions and statements are compiled,
- then the statements are executed in sequential order.
- All modifications a chunk effects on the global environment persist
- after its end.
- Those include modifications to global variables and definitions
- of new functions%
- \footnote{Actually, a function definition is an
- assignment to a global variable; \see{TypesSec}.}.
- \section{\Index{Types}} \label{TypesSec}
- Lua is a dynamically typed language.
- Variables do not have types; only values do.
- All values carry their own type.
- Therefore, there are no type definitions in the language.
- There are seven \Index{basic types} in Lua: \Def{nil}, \Def{number},
- \Def{string}, \Def{function}, \Def{CFunction}, \Def{userdata},
- and \Def{table}.
- {\em Nil} is the type of the value \nil,
- whose main property is to be different from any other value.
- {\em Number} represents real (floating point) numbers,
- while {\em string} has the usual meaning.
- Functions are considered first-class values in Lua.
- This means that functions can be stored in variables,
- passed as arguments to other functions and returned as results.
- When a function is defined in Lua, its body is compiled and stored
- in a given variable.
- Lua can call (and manipulate) functions written in Lua and
- functions written in C; the latter have type {\em CFunction\/}.
- The type {\em userdata} is provided to allow
- arbitrary \Index{C pointers} to be stored in Lua variables.
- It corresponds to \verb'void*' and has no pre-defined operations in Lua,
- besides assignment and equality test.
- However, by using fallbacks, the programmer may define operations
- for {\em userdata} values; \see{fallback}.
- The type {\em table} implements \Index{associative arrays},
- that is, \Index{arrays} which can be indexed not only with numbers,
- but with any value (except \nil).
- Therefore, this type may be used not only to represent ordinary arrays,
- but also symbol tables, sets, records, etc.
- To represent \Index{records}, Lua uses the field name as an index.
- The language supports this representation by
- providing \verb'a.name' as syntactic sugar for \verb'a["name"]'.
- Tables may also carry methods.
- Because functions are first class values,
- table fields may contain functions.
- The form \verb't:f(x)' is syntactic sugar for \verb't.f(t,x)',
- which calls the method \verb'f' from the table \verb't' passing
- itself as the first parameter.
- It is important to notice that tables are objects, and not values.
- Variables cannot contain tables, only references to them.
- Assignment, parameter passing and returns always manipulate references
- to tables, and do not imply any kind of copy.
- Moreover, tables must be explicitly created before used;
- \see{tableconstructor}.
- \section{The Language}
- This section describes the lexis, syntax and semantics of Lua.
- \subsection{Lexical Conventions} \label{lexical}
- Lua is a case sensitive language.
- \Index{Identifiers} can be any string of letters, digits, and underscores,
- not beginning with a digit.
- The following words are reserved, and cannot be used as identifiers:
- \index{reserved words}
- \begin{verbatim}
- and do else elseif end
- function if local nil not
- or repeat return until then while
- \end{verbatim}
- The following strings denote other \Index{tokens}:
- \begin{verbatim}
- ~= <= >= < > == = .. + - * /
- % ( ) { } [ ] ; , .
- \end{verbatim}
- \Index{Literal strings} can be delimited by matching single or double quotes,
- and can contain the C-like escape sequences
- \verb-'\n'-, \verb-'\t'- and \verb-'\r'-.
- Literal strings can also be delimited by matching \verb'[[ ... ]]'.
- Literals in this last form may run for several lines,
- may contain nested \verb'[[ ... ]]',
- and do not interpret escape sequences.
- \Index{Comments} start anywhere outside a string with a
- double hyphen (\verb'--') and run until the end of the line.
- \Index{Numerical constants} may be written with an optional decimal part,
- and an optional decimal exponent.
- Examples of valid numerical constants are:
- \begin{verbatim}
- 4 4. .4 4.57e-3 .3e12
- \end{verbatim}
- \subsection{\Index{Coercion}} \label{coercion}
- Lua provides some automatic conversions.
- Any arithmetic operation applied to a string tries to convert
- that string to a number, following the usual rules.
- Conversely, whenever a number is used when a string is expected,
- that number is converted to a string, according to the following rule:
- if the number is an integer, it is written without exponent or decimal point;
- otherwise, it is formatted following the ``\verb'%g'''
- conversion specification of the standard \verb'printf' C function.
- \subsection{\Index{Adjustment}} \label{adjust}
- Functions in Lua can return many values.
- Because there are no type declarations,
- the system does not know how many values a function will return,
- or how many parameters it needs.
- Therefore, sometimes, a list of values must be {\em adjusted\/}, at run time,
- to a given length.
- If there are more values than are needed, the last values are thrown away.
- If there are more needs than values, the list is extended with as
- many \nil's as needed.
- Adjustment occurs in multiple assignment and function calls.
- \subsection{Statements}
- Lua supports an almost conventional set of \Index{statements}.
- The conventional commands include
- assignment, control structures and procedure calls.
- Non-conventional commands include table constructors,
- explained in Section \ref{tableconstructor},
- and local variable declarations.
- \subsubsection{Blocks}
- A \Index{block} is a list of statements, executed sequentially.
- Any statement can be optionally followed by a semicolon.
- \begin{Produc}
- \produc{block}{\rep{stat sc} \opt{ret sc}}
- \produc{sc}{\opt{\ter{;}}}
- \end{Produc}%
- For syntactic reasons, a \Index{return statement} can only be written
- as the last statement of a block.
- This restriction also avoids some ``statement not reached'' errors.
- \subsubsection{\Index{Assignment}} \label{assignment}
- The language allows \Index{multiple assignment}.
- Therefore, the syntax defines a list of variables on the left side,
- and a list of expressions on the right side.
- Both lists have their elements separated by commas.
- \begin{Produc}
- \produc{stat}{varlist1 \ter{=} explist1}
- \produc{varlist1}{var \rep{\ter{,} var}}
- \end{Produc}%
- This statement first evaluates all values on the right side
- and eventual indices on the left side,
- and then makes the assignments.
- Therefore, it can be used to exchange two values, as in
- \begin{verbatim}
- x, y = y, x
- \end{verbatim}
- Before the assignment, the list of values is {\em adjusted} to
- the length of the list of variables; \see{adjust}.
- \begin{Produc}
- \produc{var}{name}
- \end{Produc}%
- A single name can denote a global or a local variable,
- or a formal parameter.
- \begin{Produc}
- \produc{var}{var \ter{[} exp1 \ter{]}}
- \end{Produc}%
- Square brackets are used to index a table.
- If \verb'var' results in a table value,
- the field indexed by the expression value gets the assigned value.
- Otherwise, the fallback {\em settable} is called,
- with three parameters: the value of \verb'var',
- the value of expression, and the value being assigned to it;
- \see{fallback}.
- \begin{Produc}
- \produc{var}{var \ter{.} name}
- \end{Produc}%
- The syntax \verb'var.NAME' is just syntactic sugar for
- \verb'var["NAME"]'.
- \subsubsection{Control Structures}
- The \Index{condition expression} of a control structure can return any value.
- All values different from \nil\ are considered true,
- while \nil\ is considered false.
- {\tt if}'s, {\tt while}'s and {\tt repeat}'s have the usual meaning.
- \index{while-do}\index{repeat-until}\index{if-then-else}
- \begin{Produc}
- \produc{stat}{\rwd{while} exp1 \rwd{do} block \rwd{end} \OrNL
- \rwd{repeat} block \rwd{until} exp1 \OrNL
- \rwd{if} exp1 \rwd{then} block \rep{elseif}
- \opt{\rwd{else} block} \rwd{end}}
- \produc{elseif}{\rwd{elseif} exp1 \rwd{then} block}
- \end{Produc}
- A {\tt return} is used to return values from a function. \label{return}
- Because a function may return more than one value,
- the syntax for a \Index{return statement} is:
- \begin{Produc}
- \produc{ret}{\rwd{return} explist}
- \end{Produc}
- \subsubsection{Expressions as Statements} \label{statexp}
- All expressions with possible side-effects can be
- executed as statements.
- These include function calls and table constructors:
- \begin{Produc}
- \produc{stat}{functioncall}
- \produc{stat}{tableconstructor}
- \end{Produc}%
- Eventual returned values are thrown away.
- Function calls are explained in Section \ref{functioncall};
- constructors are the subject of Section \ref{tableconstructor}.
- \subsubsection{Local Declarations} \label{localvar}
- \Index{Local variables} can be declared anywhere inside a block.
- Their scope begins after the declaration and lasts until the
- end of the block.
- The declaration may include an initial assignment:
- \begin{Produc}
- \produc{stat}{\rwd{local} declist \opt{init}}
- \produc{declist}{name \rep{\ter{,} name}}
- \produc{init}{\ter{=} explist1}
- \end{Produc}%
- If there is an initial assignment, it has the same semantics
- of a multiple assignment.
- Otherwise, all variables are initialized with \nil.
- \subsection{\Index{Expressions}}
- \subsubsection{\Index{Simple Expressions}}
- Simple expressions are:
- \begin{Produc}
- \produc{exp}{\ter{(} exp \ter{)}}
- \produc{exp}{\rwd{nil}}
- \produc{exp}{\ter{number}}
- \produc{exp}{\ter{literal}}
- \produc{exp}{var}
- \end{Produc}%
- Numbers (numerical constants) and
- string literals are explained in Section~\ref{lexical}.
- Variables are explained in Section~\ref{assignment}.
- \subsubsection{Arithmetic Operators}
- Lua supports the usual \Index{arithmetic operators}.
- These operators are the binary
- \verb'+', \verb'-', \verb'*', \verb'/' and \verb'^' (exponentiation),
- and the unary \verb'-'.
- If the operands are numbers, or strings that can be converted to
- numbers, according to the rules given in Section \ref{coercion},
- all operations but exponentiation have the usual meaning.
- Otherwise, the fallback ``arith'' is called; \see{fallback}.
- An exponentiation always calls this fallback.
- The standard mathematical library redefines this fallback,
- giving the expected meaning to \Index{exponentiation};
- \see{mathlib}.
- \subsubsection{Relational Operators}
- Lua offers the following \Index{relational operators}:
- \begin{verbatim}
- < > <= >= ~= ==
- \end{verbatim}
- All return \nil\ as false and 1 as true.
- Equality first compares the types of its operands.
- If they are different, the result is \nil.
- Otherwise, their values are compared.
- Numbers and strings are compared in the usual way.
- Tables, CFunctions, and functions are compared by reference,
- that is, two tables are considered equal only if they are the same table.
- The operator \verb'~=' is exactly the negation of equality (\verb'=').
- The other operators work as follows.
- If both arguments are numbers, they are compared as such.
- Otherwise, if both arguments can be converted to strings,
- their values are compared using lexicographical order.
- Otherwise, the fallback ``order'' is called; \see{fallback}.
- \subsubsection{Logical Operators}
- All logical operators, like control structures,
- consider \nil\ as false and anything else as true.
- The \Index{logical operators} are:
- \index{and}\index{or}\index{not}
- \begin{verbatim}
- and or not
- \end{verbatim}
- The operators \verb'and' and \verb'or' use \Index{short-cut evaluation},
- that is,
- the second operand is evaluated only if necessary.
- \subsubsection{Concatenation}
- Lua offers a string \Index{concatenation} operator,
- denoted by ``\IndexVerb{..}''.
- If operands are strings or numbers, they are converted to
- strings according to the rules in Section \ref{coercion}.
- Otherwise, the fallback ``concat'' is called; \see{fallback}.
- \subsubsection{Precedence}
- \Index{Operator precedence} follows the table below,
- from the lower to the higher priority:
- \begin{verbatim}
- and or
- < > <= >= ~= =
- ..
- + -
- * /
- not - (unary)
- ^
- \end{verbatim}
- All binary operators are left associative, except for \verb'^',
- which is right associative.
- \subsubsection{Table Constructors} \label{tableconstructor}
- Table \Index{constructors} are expressions that create tables;
- every time a constructor is evaluated, a new table is created.
- Constructors can be used to create empty tables,
- or to create a table and initialize some fields.
- The general syntax for constructors is:
- \begin{Produc}
- \produc{tableconstructor}{\ter{\{} fieldlist \ter{\}}}
- \produc{fieldlist}{lfieldlist \Or ffieldlist \Or lfieldlist \ter{;} ffieldlist}
- \produc{lfieldlist}{\opt{lfieldlist1}}
- \produc{ffieldlist}{\opt{ffieldlist1}}
- \end{Produc}
- The form {\em lfieldlist1} is used to initialize lists.
- \begin{Produc}
- \produc{lfieldlist1}{exp \rep{\ter{,} exp} \opt{\ter{,}}}
- \end{Produc}%
- The expressions in the list are assigned to consecutive numerical indexes,
- starting with 1.
- As an example:
- \begin{verbatim}
- a = {"v1", "v2", 34}
- \end{verbatim}
- is equivalent to:
- \begin{verbatim}
- temp = {}
- temp[1] = "v1"
- temp[2] = "v2"
- temp[3] = 34
- a = temp
- \end{verbatim}
- The next form initializes named fields in a table.
- \begin{Produc}
- \produc{ffieldlist1}{ffield \rep{\ter{,} ffield} \opt{\ter{,}}}
- \produc{ffield}{name \ter{=} exp}
- \end{Produc}%
- As an example:
- \begin{verbatim}
- a = {x = 1, y = 3}
- \end{verbatim}
- is equivalent to:
- \begin{verbatim}
- temp = {}
- temp.x = 1
- temp.y = 3
- a = temp
- \end{verbatim}
- \subsubsection{Function Calls} \label{functioncall}
- A \Index{function call} has the following syntax:
- \begin{Produc}
- \produc{functioncall}{var realParams}
- \end{Produc}%
- Here, \verb'var' can be any variable (global, local, indexed, etc).
- If its type is {\em function\/} or {\em CFunction\/},
- this function is called.
- Otherwise, the fallback ``function'' is called,
- having as first parameter the value of \verb'var',
- and then the original call parameters.
- The form:
- \begin{Produc}
- \produc{functioncall}{var \ter{:} name realParams}
- \end{Produc}%
- can be used to call ``methods''.
- A call \verb'var:name(...)'
- is syntactic sugar for
- \begin{verbatim}
- var.name(var, ...)
- \end{verbatim}
- except that \verb'var' is evaluated only once.
- \begin{Produc}
- \produc{realParams}{\ter{(} \opt{explist1} \ter{)}}
- \produc{realParams}{tableconstructor}
- \produc{explist1}{exp1 \rep{\ter{,} exp1}}
- \end{Produc}%
- All argument expressions are evaluated before the call;
- then the list of \Index{arguments} is adjusted to
- the length of the list of parameters (\see{adjust});
- finally, this list is assigned to the formal parameters.
- A call of the form \verb'f{...}' is syntactic sugar for
- \verb'f({...})', that is,
- the parameter list is a single new table.
- Because a function can return any number of results
- (\see{return}),
- the number of results must be adjusted before used.
- If the function is called as an statement (\see{statexp}),
- its return list is adjusted to 0.
- If the function is called in a place that needs a single value
- (syntactically denoted by the non-terminal \verb'exp1'),
- its return list is adjusted to 1.
- If the function is called in a place that can hold many values
- (syntactically denoted by the non-terminal \verb'exp'),
- no adjustment is done.
- \subsection{\Index{Function Definitions}}
- Functions in Lua can be defined anywhere in the global level of a module.
- The syntax for function definition is:
- \begin{Produc}
- \produc{function}{\rwd{function} var \ter{(} \opt{parlist1} \ter{)}
- block \rwd{end}}
- \end{Produc}
- When Lua pre-compiles a chunk,
- all its function bodies are pre-compiled, too.
- Then, when Lua ``executes'' the function definition,
- its body is stored, with type {\em function},
- into the variable \verb'var'.
- Parameters act as local variables,
- initialized with the argument values.
- \begin{Produc}
- \produc{parlist1}{'name' \rep{\ter{,} name}}
- \end{Produc}
- Results are returned using the \verb'return' statement (\see{return}).
- If control reaches the end of a function without a return instruction,
- the function returns with no results.
- There is a special syntax for definition of \Index{methods},
- that is, functions which have an extra parameter \Def{self}.
- \begin{Produc}
- \produc{function}{\rwd{function} var \ter{:} name \ter{(} \opt{parlist1}
- \ter{)} block \rwd{end}}
- \end{Produc}%
- A declaration like
- \begin{verbatim}
- function v:f (...)
- ...
- end
- \end{verbatim}
- is equivalent to
- \begin{verbatim}
- function v.f (self, ...)
- ...
- end
- \end{verbatim}
- that is, the function gets an extra formal parameter called \verb'self'.
- Notice that
- the variable \verb'v' must be previously initialized with a table value.
- \subsection{Fallbacks} \label{fallback}
- Lua provides a powerful mechanism to extend its semantics,
- called \Def{fallbacks}.
- Basically, a fallback is a programmer defined function
- which is called whenever Lua does not know how to proceed.
- Lua supports the following fallbacks,
- identified by the given strings:
- \begin{description}
- \item[``arith'']\index{arithmetic fallback}
- called when an arithmetic operation is applied to non numerical operands,
- or when the binary \verb'^' operation is called.
- It receives three arguments:
- the two operands (the second one is nil when the operation is unary minus)
- and one of the following strings describing the offended operator:
- \begin{verbatim}
- add sub mul div pow unm
- \end{verbatim}
- Its return value is the final result of the arithmetic operation.
- The default function issues an error.
- \item[``order'']\index{order fallback}
- called when an order comparison is applied to non numerical or
- non string operands.
- It receives three arguments:
- the two operands and
- one of the following strings describing the offended operator:
- \begin{verbatim}
- lt gt le ge
- \end{verbatim}
- Its return value is the final result of the comparison operation.
- The default function issues an error.
- \item[``concat'']\index{concatenation fallback}
- called when a concatenation is applied to non string operands.
- It receives the two operands as arguments.
- Its return value is the final result of the concatenation operation.
- The default function issues an error.
- \item[``index'']\index{index fallback}
- called when Lua tries to retrieve the value of an index
- not present in a table.
- It receives as arguments the table and the index.
- Its return value is the final result of the indexing operation.
- The default function returns nil.
- \item[``gettable'']\index{gettable fallback}
- called when Lua tries to index a non table value.
- It receives as arguments the non table value and the index.
- Its return value is the final result of the indexing operation.
- The default function issues an error.
- \item[``settable'']\index{settable fallback}
- called when Lua tries to assign indexed a non table value.
- It receives as arguments the non table value,
- the index, and the assigned value.
- The default function issues an error.
- \item[``function'']\index{function falback}
- called when Lua tries to call a non function value.
- It receives as arguments the non function value and the
- arguments given in the original call.
- Its return values are the final results of the call operation.
- The default function issues an error.
- \item[``gc'']
- called during garbage collection.
- It receives as argument the table being collected.
- After each run of the collector this function is called with argument nil.
- Because this function operates during garbage collection,
- it must be used with great care,
- and programmers should avoid the creation of new objects
- (tables or strings) in this function.
- The default function does nothing.
- \item[``error'']\index{error fallback}
- called when an error occurs.
- It receives as argument a string describing the error.
- The default function prints the message on the standard error output.
- \end{description}
- The function \IndexVerb{setfallback} is used to change a fallback action.
- Its first argument is a string describing the fallback,
- and the second the new function to be called.
- It returns the old function for the given fallback.
- Section \ref{exfallback} shows an example of the use of fallbacks.
- \subsection{Error Handling} \label{error}
- Because Lua is an extension language,
- all Lua actions start from C code calling a function from the Lua library.
- Whenever an error occurs during Lua compilation or execution,
- an error fallback function is called,
- and then the corresponding function from the library
- (\verb'lua_dofile', \verb'lua_dostring',
- \verb'lua_call', and \verb'lua_callfunction')
- is terminated returning an error condition.
- The only argument to the error fallback function is a string describing
- the error and some extra informations,
- like current line (when the error is at compilation)
- or current function (when the error is at execution).
- For more information about an error,
- the Lua program can include the compilation pragma \verb'$debug'.
- \index{debug pragma}
- This pragma must be written in a line by itself.
- When an error occurs in a program compiled with this option,
- the error message includes extra information showing the stack of calls.
- The standard error routine only prints the error message
- to \verb'stderr'.
- If needed, it is possible to change the error fallback routine;
- \see{fallback}.
- Lua code can generate an error by calling the function \verb'error'.
- Its optional parameter is a string,
- which is used as the error message.
- \section{The Application Program Interface}
- This section describes the API for Lua, that is,
- the set of C functions available to the host program to communicate
- with the library.
- The API functions can be classified in the following categories:
- \begin{enumerate}
- \item executing Lua code;
- \item converting values between C and Lua;
- \item manipulating (reading and writing) Lua objects;
- \item calling Lua functions;
- \item C functions to be called by Lua;
- \item locking Lua Objects.
- \end{enumerate}
- All API functions are declared in the file \verb'lua.h'.
- \subsection{Executing Lua Code}
- A host program can execute Lua programs written in a file or in a string,
- using the following functions:
- \Deffunc{lua_dofile}\Deffunc{lua_dostring}
- \begin{verbatim}
- int lua_dofile (char *filename);
- int lua_dostring (char *string);
- \end{verbatim}
- Both functions return an error code:
- 0, in case of success; non zero, in case of errors.
- The function \verb'lua_dofile', if called with argument NULL (0),
- executes the ``file'' {\tt stdin}.
- \subsection{Converting Values between C and Lua} \label{valuesCLua}
- Because Lua has no static type system,
- all values passed between Lua and C have type \IndexVerb{lua\_Object},
- which works like an abstract type in C that can hold any Lua value.
- Lua has automatic memory management, and garbage collection.
- Because of that, a \verb'lua_Object' has a limited scope,
- and is only valid inside the {\em block\/} where it was created.
- A C function called from Lua is a block,
- and its parameters are valid only until its end.
- A good programming practice is to convert Lua objects to C values
- as soon as they are available,
- and never to store \verb'lua_Object's in C global variables.
- When C code calls Lua repeatedly, as in a loop,
- objects returned by these calls accumulate,
- and may create a memory problem.
- To avoid this,
- nested blocks can be defined with the functions:
- \begin{verbatim}
- void lua_beginblock (void);
- void lua_endblock (void);
- \end{verbatim}
- After the end of the block,
- all \verb'lua_Object''s created inside it are released.
- To check the type of a \verb'lua_Object',
- the following function is available:
- \Deffunc{lua_type}
- \begin{verbatim}
- int lua_type (lua_Object object);
- \end{verbatim}
- plus the following macros:
- \Deffunc{lua_isnil}\Deffunc{lua_isnumber}\Deffunc{lua_isstring}
- \Deffunc{lua_istable}\Deffunc{lua_iscfunction}\Deffunc{lua_isuserdata}
- \begin{verbatim}
- int lua_isnil (lua_Object object);
- int lua_isnumber (lua_Object object);
- int lua_isstring (lua_Object object);
- int lua_istable (lua_Object object);
- int lua_iscfunction (lua_Object object);
- int lua_isuserdata (lua_Object object);
- \end{verbatim}
- All macros return 1 if the object has the given type,
- and 0 otherwise.
- The function \verb'lua_type' can be used to distinguish between
- different kinds of user data; see below.
- To translate a value from type \verb'lua_Object' to a specific C type,
- the programmer can use:
- \Deffunc{lua_getnumber}\Deffunc{lua_getstring}
- \Deffunc{lua_getcfunction}\Deffunc{lua_getuserdata}
- \begin{verbatim}
- double lua_getnumber (lua_Object object);
- char *lua_getstring (lua_Object object);
- lua_CFunction lua_getcfunction (lua_Object object);
- void *lua_getuserdata (lua_Object object);
- \end{verbatim}
- \verb'lua_getnumber' converts a \verb'lua_Object' to a float.
- This \verb'lua_Object' must be a number or a string convertible to number
- (\see{coercion}); otherwise, the function returns 0.
- \verb'lua_getstring' converts a \verb'lua_Object' to a string (\verb'char *').
- This \verb'lua_Object' must be a string or a number;
- otherwise, the function returns 0 (the null pointer).
- This function does not create a new string, but returns a pointer to
- a string inside the Lua environment.
- Because Lua has garbage collection, there is no guarantee that such
- pointer will be valid after the block ends.
- \verb'lua_getcfunction' converts a \verb'lua_Object' to a C function.
- This \verb'lua_Object' must have type {\em CFunction\/};
- otherwise, the function returns 0 (the null pointer).
- The type \verb'lua_CFunction' is explained in Section~\ref{LuacallC}.
- \verb'lua_getuserdata' converts a \verb'lua_Object' to \verb'void*'.
- This \verb'lua_Object' must have type {\em userdata\/};
- otherwise, the function returns 0 (the null pointer).
- The reverse process, that is, passing a specific C value to Lua,
- is done by using the following functions:
- \Deffunc{lua_pushnumber}\Deffunc{lua_pushstring}\Deffunc{lua_pushliteral}
- \Deffunc{lua_pushcfunction}\Deffunc{lua_pushusertag}\Deffunc{lua_pushuserdata}
- \begin{verbatim}
- void lua_pushnumber (double n);
- void lua_pushstring (char *s);
- void lua_pushliteral (char *s);
- void lua_pushcfunction (lua_CFunction f);
- void lua_pushusertag (void *u, int tag);
- \end{verbatim}
- plus the macro:
- \begin{verbatim}
- void lua_pushuserdata (void *u);
- \end{verbatim}
- All of them receive a C value,
- convert it to a correspondent \verb'lua_Object',
- and leave the result on the top of the Lua stack,
- where it can be assigned to a Lua variable,
- passed as paramenter to a Lua function, etc (see below). \label{pushing}
- \verb'lua_pushliteral' is like \verb'lua_pushstring',
- but also puts the string in the Lua literal table.
- This avoids the string to be garbage collected,
- and therefore has a better overall performance.
- As a rule, when the string to be pushed is a literal,
- \verb'lua_pushliteral' should be used.
- User data can have different tags,
- whose semantics are defined by the host program.
- Any positive integer can be used to tag a user data.
- When a user data is retrieved,
- the function \verb'lua_type' can be used to get its tag.
- To complete the set,
- the value \nil\ or a \verb'lua_Object' can also be pushed onto the stack,
- with:
- \Deffunc{lua_pushnil}\Deffunc{lua_pushobject}
- \begin{verbatim}
- void lua_pushnil (void);
- void lua_pushobject (lua_Object object);
- \end{verbatim}
- \subsection{Manipulating Lua Objects}
- To read the value of any global Lua variable,
- one can use the function:
- \Deffunc{lua_getglobal}
- \begin{verbatim}
- lua_Object lua_getglobal (char *varname);
- \end{verbatim}
- To store a value previously pushed onto the stack in a global variable,
- there is the function:
- \Deffunc{lua_storeglobal}
- \begin{verbatim}
- void lua_storeglobal (char *varname);
- \end{verbatim}
- Tables can also be manipulated via the API.
- The function
- \Deffunc{lua_getsubscript}
- \begin{verbatim}
- lua_Object lua_getsubscript (void);
- \end{verbatim}
- expects on the stack a table and an index,
- and returns the contents of the table at that index.
- As in Lua, if the first object is not a table,
- or the index is not present in the table,
- the correspondent fallback is called.
- For compatibility with previous versions of the API,
- the following macros are supported:
- \Deffunc{lua_getindexed}\Deffunc{lua_getfield}
- \begin{verbatim}
- lua_Object lua_getindexed (lua_Object table, float index);
- lua_Object lua_getfield (lua_Object table, char *field);
- \end{verbatim}
- The first one is used for numeric indices,
- while the second can be used for any string index.
- To store a value in an index,
- the program must push onto the stack the table, the index,
- and the value,
- and then call the function:
- \Deffunc{lua_storesubscript}
- \begin{verbatim}
- void lua_storesubscript (void);
- \end{verbatim}
- Again, the correspondent fallback is called if needed.
- Finally, the function
- \Deffunc{lua_createtable}
- \begin{verbatim}
- lua_Object lua_createtable (void);
- \end{verbatim}
- creates a new table.
- {\em Please Notice:\/}
- Most functions from the Lua library receive parameters through the stack.
- Because other functions also use the stack,
- it is important that these
- parameters be pushed just before the correspondent call,
- without intermediate calls to the Lua library.
- For instance, suppose the user wants the value of \verb'a[i]'.
- A simplistic solution would be:
- \begin{verbatim}
- /* Warning: WRONG CODE */
- lua_Object result;
- lua_pushobject(lua_getglobal("a")); /* push table */
- lua_pushobject(lua_getglobal("i")); /* push index */
- result = lua_getsubscript();
- \end{verbatim}
- However, the call \verb'lua_getglobal("i")' modifies the stack,
- and invalidates the previous pushed value.
- A correct solution could be:
- \begin{verbatim}
- lua_Object result;
- lua_Object index = lua_getglobal("i");
- lua_pushobject(lua_getglobal("a")); /* push table */
- lua_pushobject(index); /* push index */
- result = lua_getsubscript();
- \end{verbatim}
- \subsection{Calling Lua Functions}
- Functions defined in Lua by a chunk executed with
- \verb'dofile' or \verb'dostring' can be called from the host program.
- This is done using the following protocol:
- first, the arguments to the function are pushed onto the Lua stack
- (\see{pushing}), in direct order, i.e., the first argument is pushed first.
- Again, it is important to emphasize that, during this phase,
- no other Lua function can be called.
- Then, the function is called using
- \Deffunc{lua_call}\Deffunc{lua_callfunction}
- \begin{verbatim}
- int lua_call (char *functionname);
- \end{verbatim}
- or
- \begin{verbatim}
- int lua_callfunction (lua_Object function);
- \end{verbatim}
- Both functions return an error code:
- 0, in case of success; non zero, in case of errors.
- Finally, the returned values (a Lua function may return many values)
- can be retrieved with the macro
- \Deffunc{lua_getresult}
- \begin{verbatim}
- lua_Object lua_getresult (int number);
- \end{verbatim}
- where \verb'number' is the order of the result, starting with 1.
- When called with a number larger than the actual number of results,
- this function returns \verb'LUA_NOOBJECT'.
- Two special Lua functions have exclusive interfaces:
- \verb'error' and \verb'setfallback'.
- A C function can generate a Lua error calling the function
- \Deffunc{lua_error}
- \begin{verbatim}
- void lua_error (char *message);
- \end{verbatim}
- This function never returns.
- If the C function has been called from Lua,
- the corresponding Lua execution terminates,
- as if an error had occurred inside Lua code.
- Otherwise, the whole program terminates.
- Fallbacks can be changed with:
- \Deffunc{lua_setfallback}
- \begin{verbatim}
- lua_Object lua_setfallback (char *name, lua_CFunction fallback);
- \end{verbatim}
- The first parameter is the fallback name,
- and the second a CFunction to be used as the new fallback.
- This function returns a \verb'lua_Object',
- which is the old fallback value,
- or nil on fail (invalid fallback name).
- This old value can be used for chaining fallbacks.
- An example of C code calling a Lua function is shown in
- Section~\ref{exLuacall}.
- \subsection{C Functions} \label{LuacallC}
- To register a C function to Lua,
- there is the following macro:
- \Deffunc{lua_register}
- \begin{verbatim}
- #define lua_register(n,f) (lua_pushcfunction(f), lua_storeglobal(n))
- /* char *n; */
- /* lua_CFunction f; */
- \end{verbatim}
- which receives the name the function will have in Lua,
- and a pointer to the function.
- This pointer must have type \verb'lua_CFunction',
- which is defined as
- \Deffunc{lua_CFunction}
- \begin{verbatim}
- typedef void (*lua_CFunction) (void);
- \end{verbatim}
- that is, a pointer to a function with no parameters and no results.
- In order to communicate properly with Lua,
- a C function must follow a protocol,
- which defines the way parameters and results are passed.
- To access its arguments, a C function calls:
- \Deffunc{lua_getparam}
- \begin{verbatim}
- lua_Object lua_getparam (int number);
- \end{verbatim}
- where \verb'number' starts with 1 to get the first argument.
- When called with a number larger than the actual number of arguments,
- this function returns \IndexVerb{LUA\_NOOBJECT}.
- In this way, it is possible to write functions that work with
- a variable number of parameters.
- To return values, a C function just pushes them onto the stack,
- in direct order; \see{valuesCLua}.
- Like a Lua function, a C function called by Lua can also return
- many results.
- Section~\ref{exCFunction} presents an example of a CFunction.
- \subsection{Locking Lua Objects}
- As already noted, \verb'lua_Object's are volatile.
- If the C code needs to keep a \verb'lua_Object'
- outside block boundaries,
- it has to {\em lock} the object.
- The routines to manipulate locking are the following:
- \Deffunc{lua_lock}\Deffunc{lua_getlocked}
- \Deffunc{lua_pushlocked}\Deffunc{lua_unlock}
- \begin{verbatim}
- int lua_lock (void);
- lua_Object lua_getlocked (int ref);
- void lua_pushlocked (int ref);
- void lua_unlock (int ref);
- \end{verbatim}
- The function \verb'lua_lock' locks the object
- which is on the top of the stack,
- and returns a reference to it.
- Whenever the locked object is needed,
- a call to \verb'lua_getlocked'
- returns a handle to it,
- while \verb'lua_pushlocked' pushes the handle on the stack.
- When a locked object is no longer needed,
- it can be unlocked with a call to \verb'lua_unlock'.
- \section{Predefined Functions and Libraries}
- The set of \Index{predefined functions} in Lua is small but powerful.
- Most of them provide features that allows some degree of
- \Index{reflexivity} in the language.
- Many of these features cannot be simulated with the rest of the
- Language nor with the standard API.
- The libraries, on the other hand, provide useful routines
- that are implemented directly through the standard API.
- Therefore, they are not necessary to the language,
- and are provided as separated C modules.
- Currently there are three standard libraries:
- \begin{itemize}
- \item string manipulation;
- \item mathematical functions (sin, cos, etc);
- \item input and output.
- \end{itemize}
- In order to have access to these libraries,
- the host program must call the functions
- \verb-strlib_open-, \verb-mathlib_open-, and \verb-iolib_open-,
- declared in \verb-lualib.h-.
- \subsection{Predefined Functions}
- \subsubsection*{{\tt dofile (filename)}}\Deffunc{dofile}
- This function receives a file name,
- opens it and executes its contents as a Lua chunk.
- It returns 1 if there are no errors, \nil\ otherwise.
- \subsubsection*{{\tt dostring (string)}}\Deffunc{dostring}
- This function executes a given string as a Lua chunk.
- It returns 1 if there are no errors, \nil\ otherwise.
- \subsubsection*{{\tt next (table, index)}}\Deffunc{next}
- This function allows a program to traverse all fields of a table.
- Its first argument is a table and its second argument
- is an index in this table.
- It returns the next index of the table and the
- value associated with the index.
- When called with \nil\ as its second argument,
- the function returns the first index
- of the table (and its associated value).
- When called with the last index, or with \nil\ in an empty table,
- it returns \nil.
- In Lua there is no declaration of fields;
- semantically, there is no difference between a
- field not present in a table or a field with value \nil.
- Therefore, the function only considers fields with non nil values.
- The order the indices are enumerated is not specified,
- {\em even for numeric indices}.
- See Section \ref{exnext} for an example of the use of this function.
- \subsubsection*{{\tt nextvar (name)}}\Deffunc{nextvar}
- This function is similar to the function \verb'next',
- but it iterates over the global variables.
- Its single argument is the name of a global variable,
- or \nil\ to get a first name.
- Similarly to \verb'next', it returns the name of another variable
- and its value,
- or \nil\ if there are no more variables.
- See Section \ref{exnext} for an example of the use of this function.
- \subsubsection*{{\tt print (e1, e2, ...)}}\Deffunc{print}
- This function receives any number of arguments,
- and prints their values in a reasonable format.
- Each value is printed in a new line.
- This function is not intended for formatted output,
- but as a quick way to show a value,
- for instance for error messages or debugging.
- See Section~\ref{libio} for functions for formatted output.
- \subsubsection*{{\tt tonumber (e)}}\Deffunc{tonumber}
- This function receives one argument,
- and tries to convert it to a number.
- If the argument is already a number or a string convertible
- to a number (\see{coercion}), it returns that number;
- otherwise, it returns \nil.
- \subsubsection*{{\tt type (v)}}\Deffunc{type}
- This function allows Lua to test the type of a value.
- It receives one argument, and returns its type, coded as a string.
- The possible results of this function are
- \verb'"nil"' (a string, not the value \nil),
- \verb'"number"',
- \verb'"string"',
- \verb'"table"',
- \verb'"function"' (returned both for C functions and Lua functions),
- and \verb'"userdata"'.
- Besides this string, the function returns a second result,
- which is the \Def{tag} of the value.
- This tag can be used to distinguish between user
- data with different tags,
- and between C functions and Lua functions.
- \subsubsection*{{\tt error (message)}}\Deffunc{error}
- This function issues an error message and terminates
- the last called function from the library
- (\verb'lua_dofile', \verb'lua_dostring', \ldots).
- It never returns.
- \subsubsection*{{\tt setglobal (name, value)}}\Deffunc{setglobal}
- This function assigns the given value to a global variable.
- The string \verb'name' does not need to be a syntactically valid variable name.
- Therefore, this function can set global variables with strange names like
- \verb'm v 1' or \verb'34'.
- \subsubsection*{{\tt getglobal (name)}}\Deffunc{getglobal}
- This function retrieves the value of a global variable.
- The string \verb'name' does not need to be a syntactically valid variable name.
- \subsubsection*{{\tt setfallback (fallbackname, newfallback)}}
- \Deffunc{setfallback}
- This function sets a new fallback function to the given fallback.
- It returns the old fallback function.
- \subsection{String Manipulation}
- This library provides generic functions for string manipulation,
- such as finding and extracting substrings.
- When indexing a string, the first character has position 1.
- See Section \ref{exstring} for some examples on string manipulation
- in Lua.
- \subsubsection*{{\tt strfind (str, substr, [init, [end]])}}
- \Deffunc{strfind}
- Receives two string arguments,
- and returns a number.
- This number indicates the first position where the second argument appears
- in the first argument.
- If the second argument is not a substring of the first one,
- then \verb'strfind' returns \nil.
- A third optional numerical argument specifies where to start the search.
- Another optional numerical argument specifies where to stop it.
- \subsubsection*{{\tt strlen (s)}}\Deffunc{strlen}
- Receives a string and returns its length.
- \subsubsection*{{\tt strsub (s, i, [j])}}\Deffunc{strsub}
- Returns another string, which is a substring of \verb's',
- starting at \verb'i' and runing until \verb'j'.
- If \verb'j' is absent,
- it is assumed to be equal to the length of \verb's'.
- Particularly, the call \verb'strsub(s,1,j)' returns a prefix of \verb's'
- with length \verb'j',
- while the call \verb'strsub(s,i)' returns a suffix of \verb's',
- starting at \verb'i'.
- \subsubsection*{{\tt strlower (s)}}\Deffunc{strlower}
- Receives a string and returns a copy of that string with all
- upper case letters changed to lower case.
- All other characters are left unchanged.
- \subsubsection*{{\tt strupper (s)}}\Deffunc{strupper}
- Receives a string and returns a copy of that string with all
- lower case letters changed to upper case.
- All other characters are left unchanged.
- \subsubsection*{{\tt ascii (s, [i])}}\Deffunc{ascii}
- Returns the ascii code of the character \verb's[i]'.
- If \verb'i' is absent, it is assumed to be 1.
- \subsubsection*{{\tt int2str (\{i\})}}\Deffunc{int2str}
- Receives 0 or more numbers.
- Returns a string with length equal to the number of arguments,
- wherein each character has ascii value equal
- to its correspondent argument.
- \subsection{Mathematical Functions} \label{mathlib}
- This library is an interface to some functions of the standard C math library.
- Moreover, it registers a fallback for the binary operator \verb'^' which,
- when applied to numbers \verb'x^y', returns $x^y$.
- The library provides the following functions:
- \Deffunc{abs}\Deffunc{acos}\Deffunc{asin}\Deffunc{atan}
- \Deffunc{atan2}\Deffunc{ceil}\Deffunc{cos}\Deffunc{floor}
- \Deffunc{log}\Deffunc{log10}\Deffunc{max}\Deffunc{min}
- \Deffunc{mod}\Deffunc{sin}\Deffunc{sqrt}\Deffunc{tan}
- \begin{verbatim}
- abs acos asin atan atan2 ceil cos floor
- log log10 max min mod sin sqrt tan
- \end{verbatim}
- Most of them
- are only interfaces to the homonymous functions in the C library,
- except that, for the trigonometric functions,
- all angles are expressed in degrees.
- The function \verb'max' returns the maximum
- value of its numeric arguments.
- Similarly, \verb'min' computes the minimum.
- Both can be used with an unlimited number of arguments.
- The function \verb'mod' is equivalent to the \verb'%' operator in C.
- \subsection{I/O Facilities} \label{libio}
- All I/O operations in Lua are done over two {\em current} files,
- one for reading and one for writing.
- Initially, the current input file is \verb'stdin',
- and the current output file is \verb'stdout'.
- Unless otherwise stated,
- all I/O functions return 1 on success and \nil\ on failure.
- \subsubsection*{{\tt readfrom (filename)}}\Deffunc{readfrom}
- This function opens a file named \verb'filename' and sets it as the
- {\em current} input file.
- When called without parameters,
- this function closes the current input file,
- and restores \verb'stdin' as the current input file.
- {\em System dependent:} if \verb'filename' starts with a \verb'|',
- then a \Index{piped input} is open, via function \IndexVerb{popen}.
- \subsubsection*{{\tt writeto (filename)}}\Deffunc{writeto}
- This function opens a file named \verb'filename' and sets it as the
- {\em current} output file.
- Notice that, if the file already exists, it is completely erased with this
- operation.
- When called without parameters,
- this function closes the current output file,
- and restores \verb'stdout' as the current output file.
- \index{closing a file}
- {\em System dependent:} if \verb'filename' starts with a \verb'|',
- then a \Index{piped output} is open, via function \IndexVerb{popen}.
- \subsubsection*{{\tt appendto (filename)}}\Deffunc{appendto}
- This function opens a file named \verb'filename' and sets it as the
- {\em current} output file.
- Unlike the \verb'writeto' operation,
- this function does not erase any previous content of the file.
- This function returns 2 if the file already exists,
- 1 if it creates a new file, and \nil\ on failure.
- \subsubsection*{{\tt remove (filename)}}\Deffunc{remove}
- This function deletes the file with the given name.
- \subsubsection*{{\tt read ([format])}}\Deffunc{read}
- This function returns a value read from the current input.
- An optional string argument specifies the way the input is interpreted.
- Without a format argument, {\tt read} first skips blanks, tabs and newlines.
- Then it checks whether the current character is \verb'"' or \verb-'-.
- If so, it reads a string up to the ending quotation mark,
- and returns this string, without the quotation marks.
- Otherwise it reads up to a blank, tab or newline.
- The format string can have the following format:
- \begin{verbatim}
- ?[n]
- \end{verbatim}
- where \verb'?' can be:
- \begin{description}
- \item['s' or 'S'] to read a string;
- \item['f' or 'F'] to read a real number;
- \item['i' or 'I'] to read an integer.
- \end{description}
- The optional \verb'n' is a number which specifies how many characters
- must be read to compose the input value.
- Particularly, the format \verb'"s1"' reads a single character.
- \subsubsection*{{\tt readuntil (char)}}\Deffunc{readuntil}
- Reads the current input until the first ocurrence of the given character.
- Returns the string read.
- The character itself is not read.
- \subsubsection*{{\tt write (value, [format])}}\Deffunc{write}
- This function writes the value of its first argument to the current output.
- An optional second argument specifies the format to be used.
- This format is given as a string, composed of four parts.
- The first part is the only one not optional, and must be one of the
- following characters:
- \begin{description}
- \item['s' or 'S'] to write strings;
- \item['f' or 'F'] to write floats;
- \item['i' or 'I'] to write integers.
- \end{description}
- These characters can be followed by
- \begin{verbatim}
- [?][m][.n]
- \end{verbatim}
- where:
- \begin{description}
- \item[\verb'?'] indicates justification inside the field.
- \begin{itemize}
- \item['\verb'<''] right justification (default);
- \item['\verb'>''] left justification;
- \item['\verb'|''] center justification.
- \end{itemize}
- \item[\verb'm'] Indicates the field size in characters.
- \item[\verb'.n'] For reals, indicates the number of digital places.
- For integers, it is the minimum number of digits.
- This option has no meaning for strings.
- \end{description}
- When called without a format string,
- this function writes numbers using the \verb'%g' format
- and strings with \verb'%s'.
- % \subsubsection*{{\tt debug ()}}
- % This function, when called, repeatedly presents a prompt \verb'lua_debug> '
- % in the error output stream (\verb'stderr'),
- % reads a line from the standard input,
- % and executes (``dostring'') the line.
- % The loop ends when the user types \verb'cont' to the prompt.
- % This function then returns and the execution of the program continues.
- \section{Some Examples}
- This section gives examples showing some features of Lua.
- It does not intend to cover the whole language,
- but only to illustrate some interesting uses of the system.
- \subsection{The Functions {\tt next} and {\tt nextvar}} \label{exnext}
- \Deffunc{next}\Deffunc{nextvar}
- This example shows how to use the function \verb'next' to iterate
- over the fields of a table.
- Function \Def{clone} receives any table and returns a clone of it.
- \begin{verbatim}
- function clone (t) -- t is a table
- local new_t = {} -- creates a new table
- local i, v = next(t, nil) -- i is an index of t, v = t[i]
- while i do
- new_t[i] = v
- i, v = next(t, i) -- get next index
- end
- return new_t
- end
- \end{verbatim}
- The next example prints the names of all global variables
- in the system with non nil values:
- \begin{verbatim}
- function printGlobalVariables ()
- local i, v = nextvar(nil)
- while i do
- print(i)
- i, v = nextvar(i)
- end
- end
- \end{verbatim}
- \subsection{String Manipulation} \label{exstring}
- The first example is a function to trim extra blanks at the beginning
- and end of a string.
- \begin{verbatim}
- function trim(s)
- local l = 1
- while strsub(s,l,l) == ' ' do
- l = l+1
- end
- local r = strlen(s)
- while strsub(s,r,r) == ' ' do
- r = r-1
- end
- return strsub(s,l,r)
- end
- \end{verbatim}
- The second example shows a function that eliminates all blanks
- of a string.
- \begin{verbatim}
- function remove_blanks (s)
- local b = strfind(s, ' ')
- while b do
- s = strsub(s, 1, b-1) .. strsub(s, b+1)
- b = strfind(s, ' ')
- end
- return s
- end
- \end{verbatim}
- \subsection{\Index{Persistence}}
- Because of its reflexive facilities,
- persistence in Lua can be achieved within the language.
- This section shows some ways to store and retrieve values in Lua,
- using a text file written in the language itself as the storage media.
- To store a single value with a name,
- the following code is enough:
- \begin{verbatim}
- function store (name, value)
- write('\n' .. name .. '=')
- write_value(value)
- end
- \end{verbatim}
- \begin{verbatim}
- function write_value (value)
- local t = type(value)
- if t == 'nil' then write('nil')
- elseif t == 'number' then write(value)
- elseif t == 'string' then write('[[' .. value .. ']]')
- end
- end
- \end{verbatim}
- In order to restore this value, a \verb'lua_dofile' suffices.
- Storing tables is a little more complex.
- Assuming that the table is a tree,
- and all indices are identifiers
- (that is, the tables are being used as records),
- its value can be written directly with table constructors.
- First, the function \verb'write_value' is changed to
- \begin{verbatim}
- function write_value (value)
- local t = type(value)
- if t == 'nil' then write('nil')
- elseif t == 'number' then write(value)
- elseif t == 'string' then write('"' .. value .. '"')
- elseif t == 'table' then write_record(value)
- end
- end
- \end{verbatim}
- The function \verb'write_record' is:
- \begin{verbatim}
- function write_record(t)
- local i, v = next(t, nil)
- write('{') -- starts constructor
- while i do
- store(i, v)
- write(', ')
- i, v = next(t, i)
- end
- write('}') -- closes constructor
- end
- \end{verbatim}
- \subsection{Inheritance} \label{exfallback}
- The fallback for absent indices can be used to implement many
- kinds of \Index{inheritance} in Lua.
- As an example,
- the following code implements single inheritance:
- \begin{verbatim}
- function Index (t,f)
- if f == 'parent' then -- to avoid loop
- return OldIndex(t,f)
- end
- local p = t.parent
- if type(p) == 'table' then
- return p[f]
- else
- return OldIndex(t,f)
- end
- end
- OldIndex = setfallback("index", Index)
- \end{verbatim}
- Whenever Lua attempts to access an absent field in a table,
- it calls the fallback function \verb'Index'.
- If the table has a field \verb'parent' with a table value,
- then Lua attempts to access the desired field in this parent object.
- This process is repeated ``upwards'' until a value
- for the field is found or the object has no parent.
- In the latter case, the previous fallback is called to supply a value
- for the field.
- When better performance is needed,
- the same fallback may be implemented in C,
- as illustrated in Figure~\ref{Cinher}.
- \begin{figure}
- \Line
- \begin{verbatim}
- int lockedParentName; /* stores the lock index for the string "parent" */
- int lockedOldIndex; /* previous fallback function */
- void callOldFallback (lua_Object table, lua_Object index)
- {
- lua_Object oldIndex = lua_getlocked(lockedOldIndex);
- lua_pushobject(table);
- lua_pushobject(index);
- lua_callfunction(oldIndex);
- }
- void Index (void)
- {
- lua_Object table = lua_getparam(1);
- lua_Object index = lua_getparam(2);
- lua_Object parent;
- if (lua_isstring(index) && strcmp(lua_getstring(index), "parent") == 0)
- {
- callOldFallback(table, index);
- return;
- }
- lua_pushobject(table);
- lua_pushlocked(lockedParentName);
- parent = lua_getsubscript();
- if (lua_istable(parent))
- {
- lua_pushobject(parent);
- lua_pushobject(index);
- /* return result from getsubscript */
- lua_pushobject(lua_getsubscript());
- }
- else
- callOldFallback(table, index);
- }
- \end{verbatim}
- \caption{Inheritance in C.\label{Cinher}}
- \Line
- \end{figure}
- This code must be registered with:
- \begin{verbatim}
- lua_pushliteral("parent");
- lockedParentName = lua_lock();
- lua_pushobject(lua_setfallback("index", Index));
- lockedOldIndex = lua_lock();
- \end{verbatim}
- Notice how the string \verb'"parent"' is kept
- locked in Lua for optimal performance.
- \subsection{A CFunction} \label{exCFunction}\index{functions in C}
- A CFunction to compute the maximum of a variable number of arguments
- is shown in Figure~\ref{Cmax}.
- \begin{figure}
- \Line
- \begin{verbatim}
- void math_max (void)
- {
- int i=1; /* number of arguments */
- double d, dmax;
- lua_Object o;
- /* the function must get at least one argument */
- if ((o = lua_getparam(i++)) == LUA_NOOBJECT)
- lua_error ("too few arguments to function `max'");
- /* and this argument must be a number */
- if (!lua_isnumber(o))
- lua_error ("incorrect argument to function `max'");
- dmax = lua_getnumber (o);
- /* loops until there is no more arguments */
- while ((o = lua_getparam(i++)) != LUA_NOOBJECT)
- {
- if (!lua_isnumber(o))
- lua_error ("incorrect argument to function `max'");
- d = lua_getnumber (o);
- if (d > dmax) dmax = d;
- }
- /* push the result to be returned */
- lua_pushnumber (dmax);
- }
- \end{verbatim}
- \caption{C function {\tt math\_max}.\label{Cmax}}
- \Line
- \end{figure}
- After registered with
- \begin{verbatim}
- lua_register ("max", math_max);
- \end{verbatim}
- this function is available in Lua, as follows:
- \begin{verbatim}
- i = max(4, 5, 10, -34) -- i receives 10
- \end{verbatim}
- \subsection{Calling Lua Functions} \label{exLuacall}
- This example illustrates how a C function can call the Lua function
- \verb'remove_blanks' presented in Section~\ref{exstring}.
- \begin{verbatim}
- void remove_blanks (char *s)
- {
- lua_pushstring(s); /* prepare parameter */
- lua_call("remove_blanks"); /* call Lua function */
- strcpy(s, lua_getstring(lua_getresult(1))); /* copy result back to 's' */
- }
- \end{verbatim}
- \section*{Acknowledgments}
- The authors would like to thank CENPES/PETROBR\'AS which,
- jointly with TeCGraf, used extensively early versions of
- this system and gave valuable comments.
- The authors would also like to thank Carlos Henrique Levy,
- who found the name of the game%
- \footnote{BTW, Lua means {\em moon} in Portuguese.}.
- \appendix
- \section{Incompatibilities with Previous Versions}
- Although great care has been taken to avoid incompatibilities with
- the previous public versions of Lua,
- some differences had to be introduced.
- Here is a list of all these differences.
- \subsection*{Incompatibilities with \Index{version 2.1}}
- \begin{itemize}
- \item
- The function {\tt type} now returns the string {\tt function}
- both for C and Lua functions.
- Because Lua functions and C functions are compatible,
- this behavior is usually more useful.
- When needed, the second result of function {\tt type} may be used
- to distinguish between Lua and C functions.
- \item
- A function definition only assigns the function value to the
- given variable at execution time.
- \end{itemize}
- \subsection*{Incompatibilities with \Index{version 1.1}}
- \begin{itemize}
- \item
- The equality test operator now is denoted by \verb'==',
- instead of \verb'='.
- \item
- The syntax for table construction has been greatly simplified.
- The old \verb'@(size)' has been substituted by \verb'{}'.
- The list constructor (formerly \verb'@[...]') and the record
- constructor (formerly \verb'@{...}') now are both coded like
- \verb'{...}'.
- When the construction involves a function call,
- like in \verb'@func{...}',
- the new syntax does not use the \verb'@'.
- More important, {\em a construction function must now
- explicitly return the constructed table}.
- \item
- The function \verb'lua_call' no longer has the parameter \verb'nparam'.
- \item
- The function \verb'lua_pop' is no longer available,
- since it could lead to strange behavior.
- In particular,
- to access results returned from a Lua function,
- the new macro \verb'lua_getresult' should be used.
- \item
- The old functions \verb'lua_storefield' and \verb'lua_storeindexed'
- have been replaced by
- \begin{verbatim}
- int lua_storesubscript (void);
- \end{verbatim}
- with the parameters explicitly pushed on the stack.
- \item
- The functionality of the function \verb'lua_errorfunction' has been
- replaced by the {\em fallback} mechanism; \see{error}.
- \item
- When calling a function from the Lua library,
- parameters passed through the stack
- must be pushed just before the correspondent call,
- with no intermediate calls to Lua.
- Special care should be taken with macros like
- \verb'lua_getindexed' and \verb'lua_getfield'.
- \end{itemize}
- \end{document}
|