123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228 |
- /*
- ** $Id: lopcodes.h,v 1.77 2001/07/03 17:01:34 roberto Exp roberto $
- ** Opcodes for Lua virtual machine
- ** See Copyright Notice in lua.h
- */
- #ifndef lopcodes_h
- #define lopcodes_h
- #include "llimits.h"
- /*===========================================================================
- We assume that instructions are unsigned numbers.
- All instructions have an opcode in the first 6 bits.
- Instructions can have the following fields:
- `A' : 8 bits (25-32)
- `B' : 8 bits (17-24)
- `C' : 10 bits (7-16)
- `Bc' : 18 bits (`B' and `C' together)
- `sBc' : signed Bc
- A signed argument is represented in excess K; that is, the number
- value is the unsigned value minus K. K is exactly the maximum value
- for that argument (so that -max is represented by 0, and +max is
- represented by 2*max), which is half the maximum for the corresponding
- unsigned argument.
- ===========================================================================*/
- enum OpMode {iABC, iABc, iAsBc}; /* basic instruction format */
- /*
- ** size and position of opcode arguments.
- */
- #define SIZE_C 10
- #define SIZE_B 8
- #define SIZE_Bc (SIZE_C + SIZE_B)
- #define SIZE_A 8
- #define SIZE_OP 6
- #define POS_C SIZE_OP
- #define POS_B (POS_C + SIZE_C)
- #define POS_Bc POS_C
- #define POS_A (POS_B + SIZE_B)
- /*
- ** limits for opcode arguments.
- ** we use (signed) int to manipulate most arguments,
- ** so they must fit in BITS_INT-1 bits (-1 for sign)
- */
- #if SIZE_Bc < BITS_INT-1
- #define MAXARG_Bc ((1<<SIZE_Bc)-1)
- #define MAXARG_sBc (MAXARG_Bc>>1) /* `sBc' is signed */
- #else
- #define MAXARG_Bc MAX_INT
- #define MAXARG_sBc MAX_INT
- #endif
- #define MAXARG_A ((1<<SIZE_A)-1)
- #define MAXARG_B ((1<<SIZE_B)-1)
- #define MAXARG_C ((1<<SIZE_C)-1)
- /* creates a mask with `n' 1 bits at position `p' */
- #define MASK1(n,p) ((~((~(Instruction)0)<<n))<<p)
- /* creates a mask with `n' 0 bits at position `p' */
- #define MASK0(n,p) (~MASK1(n,p))
- /*
- ** the following macros help to manipulate instructions
- */
- #define GET_OPCODE(i) ((OpCode)((i)&MASK1(SIZE_OP,0)))
- #define SET_OPCODE(i,o) (((i)&MASK0(SIZE_OP,0)) | (Instruction)(o))
- #define GETARG_A(i) ((int)((i)>>POS_A))
- #define SETARG_A(i,u) ((i) = (((i)&MASK0(SIZE_A,POS_A)) | \
- ((Instruction)(u)<<POS_A)))
- #define GETARG_B(i) ((int)(((i)>>POS_B) & MASK1(SIZE_B,0)))
- #define SETARG_B(i,b) ((i) = (((i)&MASK0(SIZE_B,POS_B)) | \
- ((Instruction)(b)<<POS_B)))
- #define GETARG_C(i) ((int)(((i)>>POS_C) & MASK1(SIZE_C,0)))
- #define SETARG_C(i,b) ((i) = (((i)&MASK0(SIZE_C,POS_C)) | \
- ((Instruction)(b)<<POS_C)))
- #define GETARG_Bc(i) ((int)(((i)>>POS_Bc) & MASK1(SIZE_Bc,0)))
- #define SETARG_Bc(i,b) ((i) = (((i)&MASK0(SIZE_Bc,POS_Bc)) | \
- ((Instruction)(b)<<POS_Bc)))
- #define GETARG_sBc(i) (GETARG_Bc(i)-MAXARG_sBc)
- #define SETARG_sBc(i,b) SETARG_Bc((i),(unsigned int)((b)+MAXARG_sBc))
- #define CREATE_ABC(o,a,b,c) ((Instruction)(o) \
- | ((Instruction)(a)<<POS_A) \
- | ((Instruction)(b)<<POS_B) \
- | ((Instruction)(c)<<POS_C))
- #define CREATE_ABc(o,a,bc) ((Instruction)(o) \
- | ((Instruction)(a)<<POS_A) \
- | ((Instruction)(bc)<<POS_Bc))
- /*
- ** an invalid register that fits in 8 bits
- */
- #define NO_REG MAXARG_A
- /*
- ** R(x) - register
- ** Kst(x) - constant (in constant table)
- ** R/K(x) == if x < MAXSTACK then R(x) else Kst(x-MAXSTACK)
- */
- typedef enum {
- /*----------------------------------------------------------------------
- name args description
- ------------------------------------------------------------------------*/
- OP_MOVE,/* A B R(A) := R(B) */
- OP_LOADK,/* A Bc R(A) := Kst(Bc) */
- OP_LOADINT,/* A sBc R(A) := (Number)sBc */
- OP_LOADNIL,/* A B R(A) := ... := R(B) := nil */
- OP_LOADUPVAL,/* A Bc R(A) := UpValue[Bc] */
- OP_GETGLOBAL,/* A Bc R(A) := Gbl[Kst(Bc)] */
- OP_GETTABLE,/* A B C R(A) := R(B)[R/K(C)] */
- OP_SETGLOBAL,/* A Bc Gbl[Kst(Bc)] := R(A) */
- OP_SETTABLE,/* A B C R(B)[R/K(C)] := R(A) */
- OP_NEWTABLE,/* A Bc R(A) := {} (size = Bc) */
- OP_SELF,/* A B C R(A+1) := R(B); R(A) := R(B)[R/K(C)] */
- OP_ADD,/* A B C R(A) := R(B) + R/K(C) */
- OP_SUB,/* A B C R(A) := R(B) - R/K(C) */
- OP_MUL,/* A B C R(A) := R(B) * R/K(C) */
- OP_DIV,/* A B C R(A) := R(B) / R/K(C) */
- OP_POW,/* A B C R(A) := R(B) ^ R/K(C) */
- OP_UNM,/* A B R(A) := -R(B) */
- OP_NOT,/* A B R(A) := not R(B) */
- OP_CONCAT,/* A B C R(A) := R(B).. ... ..R(C) */
- OP_JMP,/* sBc PC += sBc */
- OP_CJMP,/* sBc if test then PC += sBc (see (1)) */
- OP_TESTEQ,/* A C test := (R(A) == R/K(C)) */
- OP_TESTNE,/* A C test := (R(A) ~= R/K(C)) */
- OP_TESTLT,/* A C test := (R(A) < R/K(C)) */
- OP_TESTLE,/* A C test := (R(A) <= R/K(C)) */
- OP_TESTGT,/* A C test := (R(A) > R/K(C)) */
- OP_TESTGE,/* A C test := (R(A) >= R/K(C)) */
- OP_TESTT,/* A B test := R(B); if (test) R(A) := R(B) */
- OP_TESTF,/* A B test := not R(B); if (test) R(A) := nil */
- OP_NILJMP,/* A Bc R(A) := nil; PC++; */
- OP_CALL,/* A B C R(A), ... ,R(A+C-1) := R(A)(R(A+1), ... ,R(A+B))*/
- OP_RETURN,/* A B return R(A), ... ,R(A+B-1) (see (3)) */
- OP_FORPREP,/* A sBc */
- OP_FORLOOP,/* A sBc */
- OP_TFORPREP,/* A sBc */
- OP_TFORLOOP,/* A sBc */
- OP_SETLIST,/* A Bc R(A)[Bc-Bc%FPF+i] := R(A+i), 1 <= i <= Bc%FPF+1 */
- OP_SETLISTO,/* A Bc */
- OP_CLOSURE /* A Bc R(A) := closure(KPROTO[Bc], R(A), ... ,R(A+n)) */
- } OpCode;
- #define NUM_OPCODES ((int)OP_CLOSURE+1)
- /*===========================================================================
- Notes:
- (1) In the current implementation there is no `test' variable;
- instructions OP_TEST* and OP_CJMP must always occur together.
- (2) In OP_CALL, if (B == NO_REG) then B = top. C is the number of returns,
- and can be NO_REG. OP_CALL can set `top' to last_result+1, so
- next open instruction (OP_CALL, OP_RETURN, OP_SETLIST) may use `top'.
- (3) In OP_RETURN, if (B == NO_REG) then return up to `top'
- ===========================================================================*/
- /*
- ** masks for instruction properties
- */
- enum OpModeMask {
- OpModeBreg = 2, /* B is a register */
- OpModeCreg, /* C is a register/constant */
- OpModesetA, /* instruction set register A */
- OpModeK, /* Bc is a constant */
- OpModeT /* operator is a test */
- };
- extern const lu_byte luaP_opmodes[];
- #define getOpMode(m) ((enum OpMode)(luaP_opmodes[m] & 3))
- #define testOpMode(m, b) (luaP_opmodes[m] & (1 << (b)))
- /*
- ** opcode names (only included when compiled with LUA_OPNAMES)
- */
- extern const l_char *const luaP_opnames[];
- #endif
|