ltable.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688
  1. /*
  2. ** $Id: ltable.c,v 2.118.1.4 2018/06/08 16:22:51 roberto Exp $
  3. ** Lua tables (hash)
  4. ** See Copyright Notice in lua.h
  5. */
  6. #define ltable_c
  7. #define LUA_CORE
  8. #include "lprefix.h"
  9. /*
  10. ** Implementation of tables (aka arrays, objects, or hash tables).
  11. ** Tables keep its elements in two parts: an array part and a hash part.
  12. ** Non-negative integer keys are all candidates to be kept in the array
  13. ** part. The actual size of the array is the largest 'n' such that
  14. ** more than half the slots between 1 and n are in use.
  15. ** Hash uses a mix of chained scatter table with Brent's variation.
  16. ** A main invariant of these tables is that, if an element is not
  17. ** in its main position (i.e. the 'original' position that its hash gives
  18. ** to it), then the colliding element is in its own main position.
  19. ** Hence even when the load factor reaches 100%, performance remains good.
  20. */
  21. #include <math.h>
  22. #include <limits.h>
  23. #include "lua.h"
  24. #include "ldebug.h"
  25. #include "ldo.h"
  26. #include "lgc.h"
  27. #include "lmem.h"
  28. #include "lobject.h"
  29. #include "lstate.h"
  30. #include "lstring.h"
  31. #include "ltable.h"
  32. #include "lvm.h"
  33. /*
  34. ** Maximum size of array part (MAXASIZE) is 2^MAXABITS. MAXABITS is
  35. ** the largest integer such that MAXASIZE fits in an unsigned int.
  36. */
  37. #define MAXABITS cast_int(sizeof(int) * CHAR_BIT - 1)
  38. #define MAXASIZE (1u << MAXABITS)
  39. /*
  40. ** Maximum size of hash part is 2^MAXHBITS. MAXHBITS is the largest
  41. ** integer such that 2^MAXHBITS fits in a signed int. (Note that the
  42. ** maximum number of elements in a table, 2^MAXABITS + 2^MAXHBITS, still
  43. ** fits comfortably in an unsigned int.)
  44. */
  45. #define MAXHBITS (MAXABITS - 1)
  46. #define hashpow2(t,n) (gnode(t, lmod((n), sizenode(t))))
  47. #define hashstr(t,str) hashpow2(t, (str)->hash)
  48. #define hashboolean(t,p) hashpow2(t, p)
  49. #define hashint(t,i) hashpow2(t, i)
  50. /*
  51. ** for some types, it is better to avoid modulus by power of 2, as
  52. ** they tend to have many 2 factors.
  53. */
  54. #define hashmod(t,n) (gnode(t, ((n) % ((sizenode(t)-1)|1))))
  55. #define hashpointer(t,p) hashmod(t, point2uint(p))
  56. #define dummynode (&dummynode_)
  57. static const Node dummynode_ = {
  58. {NILCONSTANT}, /* value */
  59. {{NILCONSTANT, 0}} /* key */
  60. };
  61. /*
  62. ** Hash for floating-point numbers.
  63. ** The main computation should be just
  64. ** n = frexp(n, &i); return (n * INT_MAX) + i
  65. ** but there are some numerical subtleties.
  66. ** In a two-complement representation, INT_MAX does not has an exact
  67. ** representation as a float, but INT_MIN does; because the absolute
  68. ** value of 'frexp' is smaller than 1 (unless 'n' is inf/NaN), the
  69. ** absolute value of the product 'frexp * -INT_MIN' is smaller or equal
  70. ** to INT_MAX. Next, the use of 'unsigned int' avoids overflows when
  71. ** adding 'i'; the use of '~u' (instead of '-u') avoids problems with
  72. ** INT_MIN.
  73. */
  74. #if !defined(l_hashfloat)
  75. static int l_hashfloat (lua_Number n) {
  76. int i;
  77. lua_Integer ni;
  78. n = l_mathop(frexp)(n, &i) * -cast_num(INT_MIN);
  79. if (!lua_numbertointeger(n, &ni)) { /* is 'n' inf/-inf/NaN? */
  80. lua_assert(luai_numisnan(n) || l_mathop(fabs)(n) == cast_num(HUGE_VAL));
  81. return 0;
  82. }
  83. else { /* normal case */
  84. unsigned int u = cast(unsigned int, i) + cast(unsigned int, ni);
  85. return cast_int(u <= cast(unsigned int, INT_MAX) ? u : ~u);
  86. }
  87. }
  88. #endif
  89. /*
  90. ** returns the 'main' position of an element in a table (that is, the index
  91. ** of its hash value)
  92. */
  93. static Node *mainposition (const Table *t, const TValue *key) {
  94. switch (ttype(key)) {
  95. case LUA_TNUMINT:
  96. return hashint(t, ivalue(key));
  97. case LUA_TNUMFLT:
  98. return hashmod(t, l_hashfloat(fltvalue(key)));
  99. case LUA_TSHRSTR:
  100. return hashstr(t, tsvalue(key));
  101. case LUA_TLNGSTR:
  102. return hashpow2(t, luaS_hashlongstr(tsvalue(key)));
  103. case LUA_TBOOLEAN:
  104. return hashboolean(t, bvalue(key));
  105. case LUA_TLIGHTUSERDATA:
  106. return hashpointer(t, pvalue(key));
  107. case LUA_TLCF:
  108. return hashpointer(t, fvalue(key));
  109. default:
  110. lua_assert(!ttisdeadkey(key));
  111. return hashpointer(t, gcvalue(key));
  112. }
  113. }
  114. /*
  115. ** returns the index for 'key' if 'key' is an appropriate key to live in
  116. ** the array part of the table, 0 otherwise.
  117. */
  118. static unsigned int arrayindex (const TValue *key) {
  119. if (ttisinteger(key)) {
  120. lua_Integer k = ivalue(key);
  121. if (0 < k && (lua_Unsigned)k <= MAXASIZE)
  122. return cast(unsigned int, k); /* 'key' is an appropriate array index */
  123. }
  124. return 0; /* 'key' did not match some condition */
  125. }
  126. /*
  127. ** returns the index of a 'key' for table traversals. First goes all
  128. ** elements in the array part, then elements in the hash part. The
  129. ** beginning of a traversal is signaled by 0.
  130. */
  131. static unsigned int findindex (lua_State *L, Table *t, StkId key) {
  132. unsigned int i;
  133. if (ttisnil(key)) return 0; /* first iteration */
  134. i = arrayindex(key);
  135. if (i != 0 && i <= t->sizearray) /* is 'key' inside array part? */
  136. return i; /* yes; that's the index */
  137. else {
  138. int nx;
  139. Node *n = mainposition(t, key);
  140. for (;;) { /* check whether 'key' is somewhere in the chain */
  141. /* key may be dead already, but it is ok to use it in 'next' */
  142. if (luaV_rawequalobj(gkey(n), key) ||
  143. (ttisdeadkey(gkey(n)) && iscollectable(key) &&
  144. deadvalue(gkey(n)) == gcvalue(key))) {
  145. i = cast_int(n - gnode(t, 0)); /* key index in hash table */
  146. /* hash elements are numbered after array ones */
  147. return (i + 1) + t->sizearray;
  148. }
  149. nx = gnext(n);
  150. if (nx == 0)
  151. luaG_runerror(L, "invalid key to 'next'"); /* key not found */
  152. else n += nx;
  153. }
  154. }
  155. }
  156. int luaH_next (lua_State *L, Table *t, StkId key) {
  157. unsigned int i = findindex(L, t, key); /* find original element */
  158. for (; i < t->sizearray; i++) { /* try first array part */
  159. if (!ttisnil(&t->array[i])) { /* a non-nil value? */
  160. setivalue(key, i + 1);
  161. setobj2s(L, key+1, &t->array[i]);
  162. return 1;
  163. }
  164. }
  165. for (i -= t->sizearray; cast_int(i) < sizenode(t); i++) { /* hash part */
  166. if (!ttisnil(gval(gnode(t, i)))) { /* a non-nil value? */
  167. setobj2s(L, key, gkey(gnode(t, i)));
  168. setobj2s(L, key+1, gval(gnode(t, i)));
  169. return 1;
  170. }
  171. }
  172. return 0; /* no more elements */
  173. }
  174. /*
  175. ** {=============================================================
  176. ** Rehash
  177. ** ==============================================================
  178. */
  179. /*
  180. ** Compute the optimal size for the array part of table 't'. 'nums' is a
  181. ** "count array" where 'nums[i]' is the number of integers in the table
  182. ** between 2^(i - 1) + 1 and 2^i. 'pna' enters with the total number of
  183. ** integer keys in the table and leaves with the number of keys that
  184. ** will go to the array part; return the optimal size.
  185. */
  186. static unsigned int computesizes (unsigned int nums[], unsigned int *pna) {
  187. int i;
  188. unsigned int twotoi; /* 2^i (candidate for optimal size) */
  189. unsigned int a = 0; /* number of elements smaller than 2^i */
  190. unsigned int na = 0; /* number of elements to go to array part */
  191. unsigned int optimal = 0; /* optimal size for array part */
  192. /* loop while keys can fill more than half of total size */
  193. for (i = 0, twotoi = 1;
  194. twotoi > 0 && *pna > twotoi / 2;
  195. i++, twotoi *= 2) {
  196. if (nums[i] > 0) {
  197. a += nums[i];
  198. if (a > twotoi/2) { /* more than half elements present? */
  199. optimal = twotoi; /* optimal size (till now) */
  200. na = a; /* all elements up to 'optimal' will go to array part */
  201. }
  202. }
  203. }
  204. lua_assert((optimal == 0 || optimal / 2 < na) && na <= optimal);
  205. *pna = na;
  206. return optimal;
  207. }
  208. static int countint (const TValue *key, unsigned int *nums) {
  209. unsigned int k = arrayindex(key);
  210. if (k != 0) { /* is 'key' an appropriate array index? */
  211. nums[luaO_ceillog2(k)]++; /* count as such */
  212. return 1;
  213. }
  214. else
  215. return 0;
  216. }
  217. /*
  218. ** Count keys in array part of table 't': Fill 'nums[i]' with
  219. ** number of keys that will go into corresponding slice and return
  220. ** total number of non-nil keys.
  221. */
  222. static unsigned int numusearray (const Table *t, unsigned int *nums) {
  223. int lg;
  224. unsigned int ttlg; /* 2^lg */
  225. unsigned int ause = 0; /* summation of 'nums' */
  226. unsigned int i = 1; /* count to traverse all array keys */
  227. /* traverse each slice */
  228. for (lg = 0, ttlg = 1; lg <= MAXABITS; lg++, ttlg *= 2) {
  229. unsigned int lc = 0; /* counter */
  230. unsigned int lim = ttlg;
  231. if (lim > t->sizearray) {
  232. lim = t->sizearray; /* adjust upper limit */
  233. if (i > lim)
  234. break; /* no more elements to count */
  235. }
  236. /* count elements in range (2^(lg - 1), 2^lg] */
  237. for (; i <= lim; i++) {
  238. if (!ttisnil(&t->array[i-1]))
  239. lc++;
  240. }
  241. nums[lg] += lc;
  242. ause += lc;
  243. }
  244. return ause;
  245. }
  246. static int numusehash (const Table *t, unsigned int *nums, unsigned int *pna) {
  247. int totaluse = 0; /* total number of elements */
  248. int ause = 0; /* elements added to 'nums' (can go to array part) */
  249. int i = sizenode(t);
  250. while (i--) {
  251. Node *n = &t->node[i];
  252. if (!ttisnil(gval(n))) {
  253. ause += countint(gkey(n), nums);
  254. totaluse++;
  255. }
  256. }
  257. *pna += ause;
  258. return totaluse;
  259. }
  260. static void setarrayvector (lua_State *L, Table *t, unsigned int size) {
  261. unsigned int i;
  262. luaM_reallocvector(L, t->array, t->sizearray, size, TValue);
  263. for (i=t->sizearray; i<size; i++)
  264. setnilvalue(&t->array[i]);
  265. t->sizearray = size;
  266. }
  267. static void setnodevector (lua_State *L, Table *t, unsigned int size) {
  268. if (size == 0) { /* no elements to hash part? */
  269. t->node = cast(Node *, dummynode); /* use common 'dummynode' */
  270. t->lsizenode = 0;
  271. t->lastfree = NULL; /* signal that it is using dummy node */
  272. }
  273. else {
  274. int i;
  275. int lsize = luaO_ceillog2(size);
  276. if (lsize > MAXHBITS)
  277. luaG_runerror(L, "table overflow");
  278. size = twoto(lsize);
  279. t->node = luaM_newvector(L, size, Node);
  280. for (i = 0; i < (int)size; i++) {
  281. Node *n = gnode(t, i);
  282. gnext(n) = 0;
  283. setnilvalue(wgkey(n));
  284. setnilvalue(gval(n));
  285. }
  286. t->lsizenode = cast_byte(lsize);
  287. t->lastfree = gnode(t, size); /* all positions are free */
  288. }
  289. }
  290. typedef struct {
  291. Table *t;
  292. unsigned int nhsize;
  293. } AuxsetnodeT;
  294. static void auxsetnode (lua_State *L, void *ud) {
  295. AuxsetnodeT *asn = cast(AuxsetnodeT *, ud);
  296. setnodevector(L, asn->t, asn->nhsize);
  297. }
  298. void luaH_resize (lua_State *L, Table *t, unsigned int nasize,
  299. unsigned int nhsize) {
  300. unsigned int i;
  301. int j;
  302. AuxsetnodeT asn;
  303. unsigned int oldasize = t->sizearray;
  304. int oldhsize = allocsizenode(t);
  305. Node *nold = t->node; /* save old hash ... */
  306. if (nasize > oldasize) /* array part must grow? */
  307. setarrayvector(L, t, nasize);
  308. /* create new hash part with appropriate size */
  309. asn.t = t; asn.nhsize = nhsize;
  310. if (luaD_rawrunprotected(L, auxsetnode, &asn) != LUA_OK) { /* mem. error? */
  311. setarrayvector(L, t, oldasize); /* array back to its original size */
  312. luaD_throw(L, LUA_ERRMEM); /* rethrow memory error */
  313. }
  314. if (nasize < oldasize) { /* array part must shrink? */
  315. t->sizearray = nasize;
  316. /* re-insert elements from vanishing slice */
  317. for (i=nasize; i<oldasize; i++) {
  318. if (!ttisnil(&t->array[i]))
  319. luaH_setint(L, t, i + 1, &t->array[i]);
  320. }
  321. /* shrink array */
  322. luaM_reallocvector(L, t->array, oldasize, nasize, TValue);
  323. }
  324. /* re-insert elements from hash part */
  325. for (j = oldhsize - 1; j >= 0; j--) {
  326. Node *old = nold + j;
  327. if (!ttisnil(gval(old))) {
  328. /* doesn't need barrier/invalidate cache, as entry was
  329. already present in the table */
  330. setobjt2t(L, luaH_set(L, t, gkey(old)), gval(old));
  331. }
  332. }
  333. if (oldhsize > 0) /* not the dummy node? */
  334. luaM_freearray(L, nold, cast(size_t, oldhsize)); /* free old hash */
  335. }
  336. void luaH_resizearray (lua_State *L, Table *t, unsigned int nasize) {
  337. int nsize = allocsizenode(t);
  338. luaH_resize(L, t, nasize, nsize);
  339. }
  340. /*
  341. ** nums[i] = number of keys 'k' where 2^(i - 1) < k <= 2^i
  342. */
  343. static void rehash (lua_State *L, Table *t, const TValue *ek) {
  344. unsigned int asize; /* optimal size for array part */
  345. unsigned int na; /* number of keys in the array part */
  346. unsigned int nums[MAXABITS + 1];
  347. int i;
  348. int totaluse;
  349. for (i = 0; i <= MAXABITS; i++) nums[i] = 0; /* reset counts */
  350. na = numusearray(t, nums); /* count keys in array part */
  351. totaluse = na; /* all those keys are integer keys */
  352. totaluse += numusehash(t, nums, &na); /* count keys in hash part */
  353. /* count extra key */
  354. na += countint(ek, nums);
  355. totaluse++;
  356. /* compute new size for array part */
  357. asize = computesizes(nums, &na);
  358. /* resize the table to new computed sizes */
  359. luaH_resize(L, t, asize, totaluse - na);
  360. }
  361. /*
  362. ** }=============================================================
  363. */
  364. Table *luaH_new (lua_State *L) {
  365. GCObject *o = luaC_newobj(L, LUA_TTABLE, sizeof(Table));
  366. Table *t = gco2t(o);
  367. t->metatable = NULL;
  368. t->flags = cast_byte(~0);
  369. t->array = NULL;
  370. t->sizearray = 0;
  371. setnodevector(L, t, 0);
  372. return t;
  373. }
  374. void luaH_free (lua_State *L, Table *t) {
  375. if (!isdummy(t))
  376. luaM_freearray(L, t->node, cast(size_t, sizenode(t)));
  377. luaM_freearray(L, t->array, t->sizearray);
  378. luaM_free(L, t);
  379. }
  380. static Node *getfreepos (Table *t) {
  381. if (!isdummy(t)) {
  382. while (t->lastfree > t->node) {
  383. t->lastfree--;
  384. if (ttisnil(gkey(t->lastfree)))
  385. return t->lastfree;
  386. }
  387. }
  388. return NULL; /* could not find a free place */
  389. }
  390. /*
  391. ** inserts a new key into a hash table; first, check whether key's main
  392. ** position is free. If not, check whether colliding node is in its main
  393. ** position or not: if it is not, move colliding node to an empty place and
  394. ** put new key in its main position; otherwise (colliding node is in its main
  395. ** position), new key goes to an empty position.
  396. */
  397. TValue *luaH_newkey (lua_State *L, Table *t, const TValue *key) {
  398. Node *mp;
  399. TValue aux;
  400. if (ttisnil(key)) luaG_runerror(L, "table index is nil");
  401. else if (ttisfloat(key)) {
  402. lua_Integer k;
  403. if (luaV_tointeger(key, &k, 0)) { /* does index fit in an integer? */
  404. setivalue(&aux, k);
  405. key = &aux; /* insert it as an integer */
  406. }
  407. else if (luai_numisnan(fltvalue(key)))
  408. luaG_runerror(L, "table index is NaN");
  409. }
  410. mp = mainposition(t, key);
  411. if (!ttisnil(gval(mp)) || isdummy(t)) { /* main position is taken? */
  412. Node *othern;
  413. Node *f = getfreepos(t); /* get a free place */
  414. if (f == NULL) { /* cannot find a free place? */
  415. rehash(L, t, key); /* grow table */
  416. /* whatever called 'newkey' takes care of TM cache */
  417. return luaH_set(L, t, key); /* insert key into grown table */
  418. }
  419. lua_assert(!isdummy(t));
  420. othern = mainposition(t, gkey(mp));
  421. if (othern != mp) { /* is colliding node out of its main position? */
  422. /* yes; move colliding node into free position */
  423. while (othern + gnext(othern) != mp) /* find previous */
  424. othern += gnext(othern);
  425. gnext(othern) = cast_int(f - othern); /* rechain to point to 'f' */
  426. *f = *mp; /* copy colliding node into free pos. (mp->next also goes) */
  427. if (gnext(mp) != 0) {
  428. gnext(f) += cast_int(mp - f); /* correct 'next' */
  429. gnext(mp) = 0; /* now 'mp' is free */
  430. }
  431. setnilvalue(gval(mp));
  432. }
  433. else { /* colliding node is in its own main position */
  434. /* new node will go into free position */
  435. if (gnext(mp) != 0)
  436. gnext(f) = cast_int((mp + gnext(mp)) - f); /* chain new position */
  437. else lua_assert(gnext(f) == 0);
  438. gnext(mp) = cast_int(f - mp);
  439. mp = f;
  440. }
  441. }
  442. setnodekey(L, &mp->i_key, key);
  443. luaC_barrierback(L, t, key);
  444. lua_assert(ttisnil(gval(mp)));
  445. return gval(mp);
  446. }
  447. /*
  448. ** search function for integers
  449. */
  450. const TValue *luaH_getint (Table *t, lua_Integer key) {
  451. /* (1 <= key && key <= t->sizearray) */
  452. if (l_castS2U(key) - 1 < t->sizearray)
  453. return &t->array[key - 1];
  454. else {
  455. Node *n = hashint(t, key);
  456. for (;;) { /* check whether 'key' is somewhere in the chain */
  457. if (ttisinteger(gkey(n)) && ivalue(gkey(n)) == key)
  458. return gval(n); /* that's it */
  459. else {
  460. int nx = gnext(n);
  461. if (nx == 0) break;
  462. n += nx;
  463. }
  464. }
  465. return luaO_nilobject;
  466. }
  467. }
  468. /*
  469. ** search function for short strings
  470. */
  471. const TValue *luaH_getshortstr (Table *t, TString *key) {
  472. Node *n = hashstr(t, key);
  473. lua_assert(key->tt == LUA_TSHRSTR);
  474. for (;;) { /* check whether 'key' is somewhere in the chain */
  475. const TValue *k = gkey(n);
  476. if (ttisshrstring(k) && eqshrstr(tsvalue(k), key))
  477. return gval(n); /* that's it */
  478. else {
  479. int nx = gnext(n);
  480. if (nx == 0)
  481. return luaO_nilobject; /* not found */
  482. n += nx;
  483. }
  484. }
  485. }
  486. /*
  487. ** "Generic" get version. (Not that generic: not valid for integers,
  488. ** which may be in array part, nor for floats with integral values.)
  489. */
  490. static const TValue *getgeneric (Table *t, const TValue *key) {
  491. Node *n = mainposition(t, key);
  492. for (;;) { /* check whether 'key' is somewhere in the chain */
  493. if (luaV_rawequalobj(gkey(n), key))
  494. return gval(n); /* that's it */
  495. else {
  496. int nx = gnext(n);
  497. if (nx == 0)
  498. return luaO_nilobject; /* not found */
  499. n += nx;
  500. }
  501. }
  502. }
  503. const TValue *luaH_getstr (Table *t, TString *key) {
  504. if (key->tt == LUA_TSHRSTR)
  505. return luaH_getshortstr(t, key);
  506. else { /* for long strings, use generic case */
  507. TValue ko;
  508. setsvalue(cast(lua_State *, NULL), &ko, key);
  509. return getgeneric(t, &ko);
  510. }
  511. }
  512. /*
  513. ** main search function
  514. */
  515. const TValue *luaH_get (Table *t, const TValue *key) {
  516. switch (ttype(key)) {
  517. case LUA_TSHRSTR: return luaH_getshortstr(t, tsvalue(key));
  518. case LUA_TNUMINT: return luaH_getint(t, ivalue(key));
  519. case LUA_TNIL: return luaO_nilobject;
  520. case LUA_TNUMFLT: {
  521. lua_Integer k;
  522. if (luaV_tointeger(key, &k, 0)) /* index is int? */
  523. return luaH_getint(t, k); /* use specialized version */
  524. /* else... */
  525. } /* FALLTHROUGH */
  526. default:
  527. return getgeneric(t, key);
  528. }
  529. }
  530. /*
  531. ** beware: when using this function you probably need to check a GC
  532. ** barrier and invalidate the TM cache.
  533. */
  534. TValue *luaH_set (lua_State *L, Table *t, const TValue *key) {
  535. const TValue *p = luaH_get(t, key);
  536. if (p != luaO_nilobject)
  537. return cast(TValue *, p);
  538. else return luaH_newkey(L, t, key);
  539. }
  540. void luaH_setint (lua_State *L, Table *t, lua_Integer key, TValue *value) {
  541. const TValue *p = luaH_getint(t, key);
  542. TValue *cell;
  543. if (p != luaO_nilobject)
  544. cell = cast(TValue *, p);
  545. else {
  546. TValue k;
  547. setivalue(&k, key);
  548. cell = luaH_newkey(L, t, &k);
  549. }
  550. setobj2t(L, cell, value);
  551. }
  552. static lua_Unsigned unbound_search (Table *t, lua_Unsigned j) {
  553. lua_Unsigned i = j; /* i is zero or a present index */
  554. j++;
  555. /* find 'i' and 'j' such that i is present and j is not */
  556. while (!ttisnil(luaH_getint(t, j))) {
  557. i = j;
  558. if (j > l_castS2U(LUA_MAXINTEGER) / 2) { /* overflow? */
  559. /* table was built with bad purposes: resort to linear search */
  560. i = 1;
  561. while (!ttisnil(luaH_getint(t, i))) i++;
  562. return i - 1;
  563. }
  564. j *= 2;
  565. }
  566. /* now do a binary search between them */
  567. while (j - i > 1) {
  568. lua_Unsigned m = (i+j)/2;
  569. if (ttisnil(luaH_getint(t, m))) j = m;
  570. else i = m;
  571. }
  572. return i;
  573. }
  574. /*
  575. ** Try to find a boundary in table 't'. A 'boundary' is an integer index
  576. ** such that t[i] is non-nil and t[i+1] is nil (and 0 if t[1] is nil).
  577. */
  578. lua_Unsigned luaH_getn (Table *t) {
  579. unsigned int j = t->sizearray;
  580. if (j > 0 && ttisnil(&t->array[j - 1])) {
  581. /* there is a boundary in the array part: (binary) search for it */
  582. unsigned int i = 0;
  583. while (j - i > 1) {
  584. unsigned int m = (i+j)/2;
  585. if (ttisnil(&t->array[m - 1])) j = m;
  586. else i = m;
  587. }
  588. return i;
  589. }
  590. /* else must find a boundary in hash part */
  591. else if (isdummy(t)) /* hash part is empty? */
  592. return j; /* that is easy... */
  593. else return unbound_search(t, j);
  594. }
  595. #if defined(LUA_DEBUG)
  596. Node *luaH_mainposition (const Table *t, const TValue *key) {
  597. return mainposition(t, key);
  598. }
  599. int luaH_isdummy (const Table *t) { return isdummy(t); }
  600. #endif