ltable.c 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917
  1. /*
  2. ** $Id: ltable.c $
  3. ** Lua tables (hash)
  4. ** See Copyright Notice in lua.h
  5. */
  6. #define ltable_c
  7. #define LUA_CORE
  8. #include "lprefix.h"
  9. /*
  10. ** Implementation of tables (aka arrays, objects, or hash tables).
  11. ** Tables keep its elements in two parts: an array part and a hash part.
  12. ** Non-negative integer keys are all candidates to be kept in the array
  13. ** part. The actual size of the array is the largest 'n' such that
  14. ** more than half the slots between 1 and n are in use.
  15. ** Hash uses a mix of chained scatter table with Brent's variation.
  16. ** A main invariant of these tables is that, if an element is not
  17. ** in its main position (i.e. the 'original' position that its hash gives
  18. ** to it), then the colliding element is in its own main position.
  19. ** Hence even when the load factor reaches 100%, performance remains good.
  20. */
  21. #include <math.h>
  22. #include <limits.h>
  23. #include "lua.h"
  24. #include "ldebug.h"
  25. #include "ldo.h"
  26. #include "lgc.h"
  27. #include "lmem.h"
  28. #include "lobject.h"
  29. #include "lstate.h"
  30. #include "lstring.h"
  31. #include "ltable.h"
  32. #include "lvm.h"
  33. /*
  34. ** MAXABITS is the largest integer such that MAXASIZE fits in an
  35. ** unsigned int.
  36. */
  37. #define MAXABITS cast_int(sizeof(int) * CHAR_BIT - 1)
  38. /*
  39. ** MAXASIZE is the maximum size of the array part. It is the minimum
  40. ** between 2^MAXABITS and the maximum size that, measured in bytes,
  41. ** fits in a 'size_t'.
  42. */
  43. #define MAXASIZE luaM_limitN(1u << MAXABITS, TValue)
  44. /*
  45. ** MAXHBITS is the largest integer such that 2^MAXHBITS fits in a
  46. ** signed int.
  47. */
  48. #define MAXHBITS (MAXABITS - 1)
  49. /*
  50. ** MAXHSIZE is the maximum size of the hash part. It is the minimum
  51. ** between 2^MAXHBITS and the maximum size such that, measured in bytes,
  52. ** it fits in a 'size_t'.
  53. */
  54. #define MAXHSIZE luaM_limitN(1u << MAXHBITS, Node)
  55. #define hashpow2(t,n) (gnode(t, lmod((n), sizenode(t))))
  56. #define hashstr(t,str) hashpow2(t, (str)->hash)
  57. #define hashboolean(t,p) hashpow2(t, p)
  58. #define hashint(t,i) hashpow2(t, i)
  59. /*
  60. ** for some types, it is better to avoid modulus by power of 2, as
  61. ** they tend to have many 2 factors.
  62. */
  63. #define hashmod(t,n) (gnode(t, ((n) % ((sizenode(t)-1)|1))))
  64. #define hashpointer(t,p) hashmod(t, point2uint(p))
  65. #define dummynode (&dummynode_)
  66. static const Node dummynode_ = {
  67. {{NULL}, LUA_TEMPTY, /* value's value and type */
  68. LUA_TNIL, 0, {NULL}} /* key type, next, and key value */
  69. };
  70. static const TValue absentkey = {ABSTKEYCONSTANT};
  71. /*
  72. ** Hash for floating-point numbers.
  73. ** The main computation should be just
  74. ** n = frexp(n, &i); return (n * INT_MAX) + i
  75. ** but there are some numerical subtleties.
  76. ** In a two-complement representation, INT_MAX does not has an exact
  77. ** representation as a float, but INT_MIN does; because the absolute
  78. ** value of 'frexp' is smaller than 1 (unless 'n' is inf/NaN), the
  79. ** absolute value of the product 'frexp * -INT_MIN' is smaller or equal
  80. ** to INT_MAX. Next, the use of 'unsigned int' avoids overflows when
  81. ** adding 'i'; the use of '~u' (instead of '-u') avoids problems with
  82. ** INT_MIN.
  83. */
  84. #if !defined(l_hashfloat)
  85. static int l_hashfloat (lua_Number n) {
  86. int i;
  87. lua_Integer ni;
  88. n = l_mathop(frexp)(n, &i) * -cast_num(INT_MIN);
  89. if (!lua_numbertointeger(n, &ni)) { /* is 'n' inf/-inf/NaN? */
  90. lua_assert(luai_numisnan(n) || l_mathop(fabs)(n) == cast_num(HUGE_VAL));
  91. return 0;
  92. }
  93. else { /* normal case */
  94. unsigned int u = cast_uint(i) + cast_uint(ni);
  95. return cast_int(u <= cast_uint(INT_MAX) ? u : ~u);
  96. }
  97. }
  98. #endif
  99. /*
  100. ** returns the 'main' position of an element in a table (that is,
  101. ** the index of its hash value). The key comes broken (tag in 'ktt'
  102. ** and value in 'vkl') so that we can call it on keys inserted into
  103. ** nodes.
  104. */
  105. static Node *mainposition (const Table *t, int ktt, const Value *kvl) {
  106. switch (withvariant(ktt)) {
  107. case LUA_TNUMINT:
  108. return hashint(t, ivalueraw(*kvl));
  109. case LUA_TNUMFLT:
  110. return hashmod(t, l_hashfloat(fltvalueraw(*kvl)));
  111. case LUA_TSHRSTR:
  112. return hashstr(t, tsvalueraw(*kvl));
  113. case LUA_TLNGSTR:
  114. return hashpow2(t, luaS_hashlongstr(tsvalueraw(*kvl)));
  115. case LUA_TBOOLEAN:
  116. return hashboolean(t, bvalueraw(*kvl));
  117. case LUA_TLIGHTUSERDATA:
  118. return hashpointer(t, pvalueraw(*kvl));
  119. case LUA_TLCF:
  120. return hashpointer(t, fvalueraw(*kvl));
  121. default:
  122. return hashpointer(t, gcvalueraw(*kvl));
  123. }
  124. }
  125. static Node *mainpositionTV (const Table *t, const TValue *key) {
  126. return mainposition(t, rawtt(key), valraw(key));
  127. }
  128. /*
  129. ** Check whether key 'k1' is equal to the key in node 'n2'.
  130. ** This equality is raw, so there are no metamethods. Floats
  131. ** with integer values have been normalized, so integers cannot
  132. ** be equal to floats. It is assumed that 'eqshrstr' is simply
  133. ** pointer equality, so that short strings are handled in the
  134. ** default case.
  135. */
  136. static int equalkey (const TValue *k1, const Node *n2) {
  137. if (rawtt(k1) != keytt(n2)) /* not the same variants? */
  138. return 0; /* cannot be same key */
  139. switch (ttypetag(k1)) {
  140. case LUA_TNIL:
  141. return 1;
  142. case LUA_TNUMINT:
  143. return (ivalue(k1) == keyival(n2));
  144. case LUA_TNUMFLT:
  145. return luai_numeq(fltvalue(k1), fltvalueraw(keyval(n2)));
  146. case LUA_TBOOLEAN:
  147. return bvalue(k1) == bvalueraw(keyval(n2));
  148. case LUA_TLIGHTUSERDATA:
  149. return pvalue(k1) == pvalueraw(keyval(n2));
  150. case LUA_TLCF:
  151. return fvalue(k1) == fvalueraw(keyval(n2));
  152. case LUA_TLNGSTR:
  153. return luaS_eqlngstr(tsvalue(k1), keystrval(n2));
  154. default:
  155. return gcvalue(k1) == gcvalueraw(keyval(n2));
  156. }
  157. }
  158. /*
  159. ** True if value of 'alimit' is equal to the real size of the array
  160. ** part of table 't'. (Otherwise, the array part must be larger than
  161. ** 'alimit'.)
  162. */
  163. #define limitequalsasize(t) (isrealasize(t) || ispow2((t)->alimit))
  164. /*
  165. ** Returns the real size of the 'array' array
  166. */
  167. LUAI_FUNC unsigned int luaH_realasize (const Table *t) {
  168. if (limitequalsasize(t))
  169. return t->alimit; /* this is the size */
  170. else {
  171. unsigned int size = t->alimit;
  172. /* compute the smallest power of 2 not smaller than 'n' */
  173. size |= (size >> 1);
  174. size |= (size >> 2);
  175. size |= (size >> 4);
  176. size |= (size >> 8);
  177. size |= (size >> 16);
  178. #if (UINT_MAX >> 30) > 3
  179. size |= (size >> 32); /* unsigned int has more than 32 bits */
  180. #endif
  181. size++;
  182. lua_assert(ispow2(size) && size/2 < t->alimit && t->alimit < size);
  183. return size;
  184. }
  185. }
  186. /*
  187. ** Check whether real size of the array is a power of 2.
  188. ** (If it is not, 'alimit' cannot be changed to any other value
  189. ** without changing the real size.)
  190. */
  191. static int ispow2realasize (const Table *t) {
  192. return (!isrealasize(t) || ispow2(t->alimit));
  193. }
  194. static unsigned int setlimittosize (Table *t) {
  195. t->alimit = luaH_realasize(t);
  196. setrealasize(t);
  197. return t->alimit;
  198. }
  199. #define limitasasize(t) check_exp(isrealasize(t), t->alimit)
  200. /*
  201. ** "Generic" get version. (Not that generic: not valid for integers,
  202. ** which may be in array part, nor for floats with integral values.)
  203. */
  204. static const TValue *getgeneric (Table *t, const TValue *key) {
  205. Node *n = mainpositionTV(t, key);
  206. for (;;) { /* check whether 'key' is somewhere in the chain */
  207. if (equalkey(key, n))
  208. return gval(n); /* that's it */
  209. else {
  210. int nx = gnext(n);
  211. if (nx == 0)
  212. return &absentkey; /* not found */
  213. n += nx;
  214. }
  215. }
  216. }
  217. /*
  218. ** returns the index for 'k' if 'k' is an appropriate key to live in
  219. ** the array part of a table, 0 otherwise.
  220. */
  221. static unsigned int arrayindex (lua_Integer k) {
  222. if (l_castS2U(k) - 1u < MAXASIZE) /* 'k' in [1, MAXASIZE]? */
  223. return cast_uint(k); /* 'key' is an appropriate array index */
  224. else
  225. return 0;
  226. }
  227. /*
  228. ** returns the index of a 'key' for table traversals. First goes all
  229. ** elements in the array part, then elements in the hash part. The
  230. ** beginning of a traversal is signaled by 0.
  231. */
  232. static unsigned int findindex (lua_State *L, Table *t, TValue *key,
  233. unsigned int asize) {
  234. unsigned int i;
  235. if (ttisnil(key)) return 0; /* first iteration */
  236. i = ttisinteger(key) ? arrayindex(ivalue(key)) : 0;
  237. if (i - 1u < asize) /* is 'key' inside array part? */
  238. return i; /* yes; that's the index */
  239. else {
  240. const TValue *n = getgeneric(t, key);
  241. if (unlikely(isabstkey(n)))
  242. luaG_runerror(L, "invalid key to 'next'"); /* key not found */
  243. i = cast_int(nodefromval(n) - gnode(t, 0)); /* key index in hash table */
  244. /* hash elements are numbered after array ones */
  245. return (i + 1) + asize;
  246. }
  247. }
  248. int luaH_next (lua_State *L, Table *t, StkId key) {
  249. unsigned int asize = luaH_realasize(t);
  250. unsigned int i = findindex(L, t, s2v(key), asize); /* find original key */
  251. for (; i < asize; i++) { /* try first array part */
  252. if (!isempty(&t->array[i])) { /* a non-empty entry? */
  253. setivalue(s2v(key), i + 1);
  254. setobj2s(L, key + 1, &t->array[i]);
  255. return 1;
  256. }
  257. }
  258. for (i -= asize; cast_int(i) < sizenode(t); i++) { /* hash part */
  259. if (!isempty(gval(gnode(t, i)))) { /* a non-empty entry? */
  260. Node *n = gnode(t, i);
  261. getnodekey(L, s2v(key), n);
  262. setobj2s(L, key + 1, gval(n));
  263. return 1;
  264. }
  265. }
  266. return 0; /* no more elements */
  267. }
  268. static void freehash (lua_State *L, Table *t) {
  269. if (!isdummy(t))
  270. luaM_freearray(L, t->node, cast_sizet(sizenode(t)));
  271. }
  272. /*
  273. ** {=============================================================
  274. ** Rehash
  275. ** ==============================================================
  276. */
  277. /*
  278. ** Compute the optimal size for the array part of table 't'. 'nums' is a
  279. ** "count array" where 'nums[i]' is the number of integers in the table
  280. ** between 2^(i - 1) + 1 and 2^i. 'pna' enters with the total number of
  281. ** integer keys in the table and leaves with the number of keys that
  282. ** will go to the array part; return the optimal size. (The condition
  283. ** 'twotoi > 0' in the for loop stops the loop if 'twotoi' overflows.)
  284. */
  285. static unsigned int computesizes (unsigned int nums[], unsigned int *pna) {
  286. int i;
  287. unsigned int twotoi; /* 2^i (candidate for optimal size) */
  288. unsigned int a = 0; /* number of elements smaller than 2^i */
  289. unsigned int na = 0; /* number of elements to go to array part */
  290. unsigned int optimal = 0; /* optimal size for array part */
  291. /* loop while keys can fill more than half of total size */
  292. for (i = 0, twotoi = 1;
  293. twotoi > 0 && *pna > twotoi / 2;
  294. i++, twotoi *= 2) {
  295. a += nums[i];
  296. if (a > twotoi/2) { /* more than half elements present? */
  297. optimal = twotoi; /* optimal size (till now) */
  298. na = a; /* all elements up to 'optimal' will go to array part */
  299. }
  300. }
  301. lua_assert((optimal == 0 || optimal / 2 < na) && na <= optimal);
  302. *pna = na;
  303. return optimal;
  304. }
  305. static int countint (lua_Integer key, unsigned int *nums) {
  306. unsigned int k = arrayindex(key);
  307. if (k != 0) { /* is 'key' an appropriate array index? */
  308. nums[luaO_ceillog2(k)]++; /* count as such */
  309. return 1;
  310. }
  311. else
  312. return 0;
  313. }
  314. /*
  315. ** Count keys in array part of table 't': Fill 'nums[i]' with
  316. ** number of keys that will go into corresponding slice and return
  317. ** total number of non-nil keys.
  318. */
  319. static unsigned int numusearray (const Table *t, unsigned int *nums) {
  320. int lg;
  321. unsigned int ttlg; /* 2^lg */
  322. unsigned int ause = 0; /* summation of 'nums' */
  323. unsigned int i = 1; /* count to traverse all array keys */
  324. unsigned int asize = limitasasize(t); /* real array size */
  325. /* traverse each slice */
  326. for (lg = 0, ttlg = 1; lg <= MAXABITS; lg++, ttlg *= 2) {
  327. unsigned int lc = 0; /* counter */
  328. unsigned int lim = ttlg;
  329. if (lim > asize) {
  330. lim = asize; /* adjust upper limit */
  331. if (i > lim)
  332. break; /* no more elements to count */
  333. }
  334. /* count elements in range (2^(lg - 1), 2^lg] */
  335. for (; i <= lim; i++) {
  336. if (!isempty(&t->array[i-1]))
  337. lc++;
  338. }
  339. nums[lg] += lc;
  340. ause += lc;
  341. }
  342. return ause;
  343. }
  344. static int numusehash (const Table *t, unsigned int *nums, unsigned int *pna) {
  345. int totaluse = 0; /* total number of elements */
  346. int ause = 0; /* elements added to 'nums' (can go to array part) */
  347. int i = sizenode(t);
  348. while (i--) {
  349. Node *n = &t->node[i];
  350. if (!isempty(gval(n))) {
  351. if (keyisinteger(n))
  352. ause += countint(keyival(n), nums);
  353. totaluse++;
  354. }
  355. }
  356. *pna += ause;
  357. return totaluse;
  358. }
  359. /*
  360. ** Creates an array for the hash part of a table with the given
  361. ** size, or reuses the dummy node if size is zero.
  362. ** The computation for size overflow is in two steps: the first
  363. ** comparison ensures that the shift in the second one does not
  364. ** overflow.
  365. */
  366. static void setnodevector (lua_State *L, Table *t, unsigned int size) {
  367. if (size == 0) { /* no elements to hash part? */
  368. t->node = cast(Node *, dummynode); /* use common 'dummynode' */
  369. t->lsizenode = 0;
  370. t->lastfree = NULL; /* signal that it is using dummy node */
  371. }
  372. else {
  373. int i;
  374. int lsize = luaO_ceillog2(size);
  375. if (lsize > MAXHBITS || (1u << lsize) > MAXHSIZE)
  376. luaG_runerror(L, "table overflow");
  377. size = twoto(lsize);
  378. t->node = luaM_newvector(L, size, Node);
  379. for (i = 0; i < (int)size; i++) {
  380. Node *n = gnode(t, i);
  381. gnext(n) = 0;
  382. setnilkey(n);
  383. setempty(gval(n));
  384. }
  385. t->lsizenode = cast_byte(lsize);
  386. t->lastfree = gnode(t, size); /* all positions are free */
  387. }
  388. }
  389. /*
  390. ** (Re)insert all elements from the hash part of 'ot' into table 't'.
  391. */
  392. static void reinsert (lua_State *L, Table *ot, Table *t) {
  393. int j;
  394. int size = sizenode(ot);
  395. for (j = 0; j < size; j++) {
  396. Node *old = gnode(ot, j);
  397. if (!isempty(gval(old))) {
  398. /* doesn't need barrier/invalidate cache, as entry was
  399. already present in the table */
  400. TValue k;
  401. getnodekey(L, &k, old);
  402. setobjt2t(L, luaH_set(L, t, &k), gval(old));
  403. }
  404. }
  405. }
  406. /*
  407. ** Exchange the hash part of 't1' and 't2'.
  408. */
  409. static void exchangehashpart (Table *t1, Table *t2) {
  410. lu_byte lsizenode = t1->lsizenode;
  411. Node *node = t1->node;
  412. Node *lastfree = t1->lastfree;
  413. t1->lsizenode = t2->lsizenode;
  414. t1->node = t2->node;
  415. t1->lastfree = t2->lastfree;
  416. t2->lsizenode = lsizenode;
  417. t2->node = node;
  418. t2->lastfree = lastfree;
  419. }
  420. /*
  421. ** Resize table 't' for the new given sizes. Both allocations (for
  422. ** the hash part and for the array part) can fail, which creates some
  423. ** subtleties. If the first allocation, for the hash part, fails, an
  424. ** error is raised and that is it. Otherwise, it copies the elements from
  425. ** the shrinking part of the array (if it is shrinking) into the new
  426. ** hash. Then it reallocates the array part. If that fails, the table
  427. ** is in its original state; the function frees the new hash part and then
  428. ** raises the allocation error. Otherwise, it sets the new hash part
  429. ** into the table, initializes the new part of the array (if any) with
  430. ** nils and reinserts the elements of the old hash back into the new
  431. ** parts of the table.
  432. */
  433. void luaH_resize (lua_State *L, Table *t, unsigned int newasize,
  434. unsigned int nhsize) {
  435. unsigned int i;
  436. Table newt; /* to keep the new hash part */
  437. unsigned int oldasize = setlimittosize(t);
  438. TValue *newarray;
  439. /* create new hash part with appropriate size into 'newt' */
  440. setnodevector(L, &newt, nhsize);
  441. if (newasize < oldasize) { /* will array shrink? */
  442. t->alimit = newasize; /* pretend array has new size... */
  443. exchangehashpart(t, &newt); /* and new hash */
  444. /* re-insert into the new hash the elements from vanishing slice */
  445. for (i = newasize; i < oldasize; i++) {
  446. if (!isempty(&t->array[i]))
  447. luaH_setint(L, t, i + 1, &t->array[i]);
  448. }
  449. t->alimit = oldasize; /* restore current size... */
  450. exchangehashpart(t, &newt); /* and hash (in case of errors) */
  451. }
  452. /* allocate new array */
  453. newarray = luaM_reallocvector(L, t->array, oldasize, newasize, TValue);
  454. if (unlikely(newarray == NULL && newasize > 0)) { /* allocation failed? */
  455. freehash(L, &newt); /* release new hash part */
  456. luaM_error(L); /* raise error (with array unchanged) */
  457. }
  458. /* allocation ok; initialize new part of the array */
  459. exchangehashpart(t, &newt); /* 't' has the new hash ('newt' has the old) */
  460. t->array = newarray; /* set new array part */
  461. t->alimit = newasize;
  462. for (i = oldasize; i < newasize; i++) /* clear new slice of the array */
  463. setempty(&t->array[i]);
  464. /* re-insert elements from old hash part into new parts */
  465. reinsert(L, &newt, t); /* 'newt' now has the old hash */
  466. freehash(L, &newt); /* free old hash part */
  467. }
  468. void luaH_resizearray (lua_State *L, Table *t, unsigned int nasize) {
  469. int nsize = allocsizenode(t);
  470. luaH_resize(L, t, nasize, nsize);
  471. }
  472. /*
  473. ** nums[i] = number of keys 'k' where 2^(i - 1) < k <= 2^i
  474. */
  475. static void rehash (lua_State *L, Table *t, const TValue *ek) {
  476. unsigned int asize; /* optimal size for array part */
  477. unsigned int na; /* number of keys in the array part */
  478. unsigned int nums[MAXABITS + 1];
  479. int i;
  480. int totaluse;
  481. for (i = 0; i <= MAXABITS; i++) nums[i] = 0; /* reset counts */
  482. setlimittosize(t);
  483. na = numusearray(t, nums); /* count keys in array part */
  484. totaluse = na; /* all those keys are integer keys */
  485. totaluse += numusehash(t, nums, &na); /* count keys in hash part */
  486. /* count extra key */
  487. if (ttisinteger(ek))
  488. na += countint(ivalue(ek), nums);
  489. totaluse++;
  490. /* compute new size for array part */
  491. asize = computesizes(nums, &na);
  492. /* resize the table to new computed sizes */
  493. luaH_resize(L, t, asize, totaluse - na);
  494. }
  495. /*
  496. ** }=============================================================
  497. */
  498. Table *luaH_new (lua_State *L) {
  499. GCObject *o = luaC_newobj(L, LUA_TTABLE, sizeof(Table));
  500. Table *t = gco2t(o);
  501. t->metatable = NULL;
  502. t->flags = cast_byte(~0);
  503. t->array = NULL;
  504. t->alimit = 0;
  505. setnodevector(L, t, 0);
  506. return t;
  507. }
  508. void luaH_free (lua_State *L, Table *t) {
  509. freehash(L, t);
  510. luaM_freearray(L, t->array, luaH_realasize(t));
  511. luaM_free(L, t);
  512. }
  513. static Node *getfreepos (Table *t) {
  514. if (!isdummy(t)) {
  515. while (t->lastfree > t->node) {
  516. t->lastfree--;
  517. if (keyisnil(t->lastfree))
  518. return t->lastfree;
  519. }
  520. }
  521. return NULL; /* could not find a free place */
  522. }
  523. /*
  524. ** inserts a new key into a hash table; first, check whether key's main
  525. ** position is free. If not, check whether colliding node is in its main
  526. ** position or not: if it is not, move colliding node to an empty place and
  527. ** put new key in its main position; otherwise (colliding node is in its main
  528. ** position), new key goes to an empty position.
  529. */
  530. TValue *luaH_newkey (lua_State *L, Table *t, const TValue *key) {
  531. Node *mp;
  532. TValue aux;
  533. if (unlikely(ttisnil(key)))
  534. luaG_runerror(L, "table index is nil");
  535. else if (ttisfloat(key)) {
  536. lua_Number f = fltvalue(key);
  537. lua_Integer k;
  538. if (luaV_flttointeger(f, &k, 0)) { /* does key fit in an integer? */
  539. setivalue(&aux, k);
  540. key = &aux; /* insert it as an integer */
  541. }
  542. else if (unlikely(luai_numisnan(f)))
  543. luaG_runerror(L, "table index is NaN");
  544. }
  545. mp = mainpositionTV(t, key);
  546. if (!isempty(gval(mp)) || isdummy(t)) { /* main position is taken? */
  547. Node *othern;
  548. Node *f = getfreepos(t); /* get a free place */
  549. if (f == NULL) { /* cannot find a free place? */
  550. rehash(L, t, key); /* grow table */
  551. /* whatever called 'newkey' takes care of TM cache */
  552. return luaH_set(L, t, key); /* insert key into grown table */
  553. }
  554. lua_assert(!isdummy(t));
  555. othern = mainposition(t, keytt(mp), &keyval(mp));
  556. if (othern != mp) { /* is colliding node out of its main position? */
  557. /* yes; move colliding node into free position */
  558. while (othern + gnext(othern) != mp) /* find previous */
  559. othern += gnext(othern);
  560. gnext(othern) = cast_int(f - othern); /* rechain to point to 'f' */
  561. *f = *mp; /* copy colliding node into free pos. (mp->next also goes) */
  562. if (gnext(mp) != 0) {
  563. gnext(f) += cast_int(mp - f); /* correct 'next' */
  564. gnext(mp) = 0; /* now 'mp' is free */
  565. }
  566. setempty(gval(mp));
  567. }
  568. else { /* colliding node is in its own main position */
  569. /* new node will go into free position */
  570. if (gnext(mp) != 0)
  571. gnext(f) = cast_int((mp + gnext(mp)) - f); /* chain new position */
  572. else lua_assert(gnext(f) == 0);
  573. gnext(mp) = cast_int(f - mp);
  574. mp = f;
  575. }
  576. }
  577. setnodekey(L, mp, key);
  578. luaC_barrierback(L, obj2gco(t), key);
  579. lua_assert(isempty(gval(mp)));
  580. return gval(mp);
  581. }
  582. /*
  583. ** Search function for integers. If integer is inside 'alimit', get it
  584. ** directly from the array part. Otherwise, if 'alimit' is not equal to
  585. ** the real size of the array, key still can be in the array part. In
  586. ** this case, try to avoid a call to 'luaH_realasize' when key is just
  587. ** one more than the limit (so that it can be incremented without
  588. ** changing the real size of the array).
  589. */
  590. const TValue *luaH_getint (Table *t, lua_Integer key) {
  591. if (l_castS2U(key) - 1u < t->alimit) /* 'key' in [1, t->alimit]? */
  592. return &t->array[key - 1];
  593. else if (!limitequalsasize(t) && /* key still may be in the array part? */
  594. (l_castS2U(key) == t->alimit + 1 ||
  595. l_castS2U(key) - 1u < luaH_realasize(t))) {
  596. t->alimit = cast_uint(key); /* probably '#t' is here now */
  597. return &t->array[key - 1];
  598. }
  599. else {
  600. Node *n = hashint(t, key);
  601. for (;;) { /* check whether 'key' is somewhere in the chain */
  602. if (keyisinteger(n) && keyival(n) == key)
  603. return gval(n); /* that's it */
  604. else {
  605. int nx = gnext(n);
  606. if (nx == 0) break;
  607. n += nx;
  608. }
  609. }
  610. return &absentkey;
  611. }
  612. }
  613. /*
  614. ** search function for short strings
  615. */
  616. const TValue *luaH_getshortstr (Table *t, TString *key) {
  617. Node *n = hashstr(t, key);
  618. lua_assert(key->tt == LUA_TSHRSTR);
  619. for (;;) { /* check whether 'key' is somewhere in the chain */
  620. if (keyisshrstr(n) && eqshrstr(keystrval(n), key))
  621. return gval(n); /* that's it */
  622. else {
  623. int nx = gnext(n);
  624. if (nx == 0)
  625. return &absentkey; /* not found */
  626. n += nx;
  627. }
  628. }
  629. }
  630. const TValue *luaH_getstr (Table *t, TString *key) {
  631. if (key->tt == LUA_TSHRSTR)
  632. return luaH_getshortstr(t, key);
  633. else { /* for long strings, use generic case */
  634. TValue ko;
  635. setsvalue(cast(lua_State *, NULL), &ko, key);
  636. return getgeneric(t, &ko);
  637. }
  638. }
  639. /*
  640. ** main search function
  641. */
  642. const TValue *luaH_get (Table *t, const TValue *key) {
  643. switch (ttypetag(key)) {
  644. case LUA_TSHRSTR: return luaH_getshortstr(t, tsvalue(key));
  645. case LUA_TNUMINT: return luaH_getint(t, ivalue(key));
  646. case LUA_TNIL: return &absentkey;
  647. case LUA_TNUMFLT: {
  648. lua_Integer k;
  649. if (luaV_flttointeger(fltvalue(key), &k, 0)) /* index is an integral? */
  650. return luaH_getint(t, k); /* use specialized version */
  651. /* else... */
  652. } /* FALLTHROUGH */
  653. default:
  654. return getgeneric(t, key);
  655. }
  656. }
  657. /*
  658. ** beware: when using this function you probably need to check a GC
  659. ** barrier and invalidate the TM cache.
  660. */
  661. TValue *luaH_set (lua_State *L, Table *t, const TValue *key) {
  662. const TValue *p = luaH_get(t, key);
  663. if (!isabstkey(p))
  664. return cast(TValue *, p);
  665. else return luaH_newkey(L, t, key);
  666. }
  667. void luaH_setint (lua_State *L, Table *t, lua_Integer key, TValue *value) {
  668. const TValue *p = luaH_getint(t, key);
  669. TValue *cell;
  670. if (!isabstkey(p))
  671. cell = cast(TValue *, p);
  672. else {
  673. TValue k;
  674. setivalue(&k, key);
  675. cell = luaH_newkey(L, t, &k);
  676. }
  677. setobj2t(L, cell, value);
  678. }
  679. /*
  680. ** Try to find a boundary in the hash part of table 't'. From the
  681. ** caller, we know that 'j' is zero or present and that 'j + 1' is
  682. ** present. We want to find a larger key that is absent from the
  683. ** table, so that we can do a binary search between the two keys to
  684. ** find a boundary. We keep doubling 'j' until we get an absent index.
  685. ** If the doubling would overflow, we try LUA_MAXINTEGER. If it is
  686. ** absent, we are ready for the binary search. ('j', being max integer,
  687. ** is larger or equal to 'i', but it cannot be equal because it is
  688. ** absent while 'i' is present; so 'j > i'.) Otherwise, 'j' is a
  689. ** boundary. ('j + 1' cannot be a present integer key because it is
  690. ** not a valid integer in Lua.)
  691. */
  692. static lua_Unsigned hash_search (Table *t, lua_Unsigned j) {
  693. lua_Unsigned i;
  694. if (j == 0) j++; /* the caller ensures 'j + 1' is present */
  695. do {
  696. i = j; /* 'i' is a present index */
  697. if (j <= l_castS2U(LUA_MAXINTEGER) / 2)
  698. j *= 2;
  699. else {
  700. j = LUA_MAXINTEGER;
  701. if (isempty(luaH_getint(t, j))) /* t[j] not present? */
  702. break; /* 'j' now is an absent index */
  703. else /* weird case */
  704. return j; /* well, max integer is a boundary... */
  705. }
  706. } while (!isempty(luaH_getint(t, j))); /* repeat until an absent t[j] */
  707. /* i < j && t[i] present && t[j] absent */
  708. while (j - i > 1u) { /* do a binary search between them */
  709. lua_Unsigned m = (i + j) / 2;
  710. if (isempty(luaH_getint(t, m))) j = m;
  711. else i = m;
  712. }
  713. return i;
  714. }
  715. static unsigned int binsearch (const TValue *array, unsigned int i,
  716. unsigned int j) {
  717. while (j - i > 1u) { /* binary search */
  718. unsigned int m = (i + j) / 2;
  719. if (isempty(&array[m - 1])) j = m;
  720. else i = m;
  721. }
  722. return i;
  723. }
  724. /*
  725. ** Try to find a boundary in table 't'. (A 'boundary' is an integer index
  726. ** such that t[i] is present and t[i+1] is absent, or 0 if t[1] is absent
  727. ** and 'maxinteger' if t[maxinteger] is present.)
  728. ** (In the next explanation, we use Lua indices, that is, with base 1.
  729. ** The code itself uses base 0 when indexing the array part of the table.)
  730. ** The code starts with 'limit', a position in the array part that may
  731. ** be a boundary.
  732. ** (1) If 't[limit]' is empty, there must be a boundary before it.
  733. ** As a common case (e.g., after 't[#t]=nil'), check whether 'hint-1'
  734. ** is present. If so, it is a boundary. Otherwise, do a binary search
  735. ** between 0 and limit to find a boundary. In both cases, try to
  736. ** use this boundary as the new 'limit', as a hint for the next call.
  737. ** (2) If 't[limit]' is not empty and the array has more elements
  738. ** after 'limit', try to find a boundary there. Again, try first
  739. ** the special case (which should be quite frequent) where 'limit+1'
  740. ** is empty, so that 'limit' is a boundary. Otherwise, check the
  741. ** last element of the array part (set it as a new limit). If it is empty,
  742. ** there must be a boundary between the old limit (present) and the new
  743. ** limit (absent), which is found with a binary search. (This boundary
  744. ** always can be a new limit.)
  745. ** (3) The last case is when there are no elements in the array part
  746. ** (limit == 0) or its last element (the new limit) is present.
  747. ** In this case, must check the hash part. If there is no hash part,
  748. ** the boundary is 0. Otherwise, if 'limit+1' is absent, 'limit' is
  749. ** a boundary. Finally, if 'limit+1' is present, call 'hash_search'
  750. ** to find a boundary in the hash part of the table. (In those
  751. ** cases, the boundary is not inside the array part, and therefore
  752. ** cannot be used as a new limit.)
  753. */
  754. lua_Unsigned luaH_getn (Table *t) {
  755. unsigned int limit = t->alimit;
  756. if (limit > 0 && isempty(&t->array[limit - 1])) {
  757. /* (1) there must be a boundary before 'limit' */
  758. if (limit >= 2 && !isempty(&t->array[limit - 2])) {
  759. /* 'limit - 1' is a boundary; can it be a new limit? */
  760. if (ispow2realasize(t) && !ispow2(limit - 1)) {
  761. t->alimit = limit - 1;
  762. setnorealasize(t);
  763. }
  764. return limit - 1;
  765. }
  766. else { /* must search for a boundary in [0, limit] */
  767. unsigned int boundary = binsearch(t->array, 0, limit);
  768. /* can this boundary represent the real size of the array? */
  769. if (ispow2realasize(t) && boundary > luaH_realasize(t) / 2) {
  770. t->alimit = boundary; /* use it as the new limit */
  771. setnorealasize(t);
  772. }
  773. return boundary;
  774. }
  775. }
  776. /* 'limit' is zero or present in table */
  777. if (!limitequalsasize(t)) {
  778. /* (2) 'limit' > 0 and array has more elements after 'limit' */
  779. if (isempty(&t->array[limit])) /* 'limit + 1' is empty? */
  780. return limit; /* this is the boundary */
  781. /* else, try last element in the array */
  782. limit = luaH_realasize(t);
  783. if (isempty(&t->array[limit - 1])) { /* empty? */
  784. /* there must be a boundary in the array after old limit,
  785. and it must be a valid new limit */
  786. unsigned int boundary = binsearch(t->array, t->alimit, limit);
  787. t->alimit = boundary;
  788. return boundary;
  789. }
  790. /* else, new limit is present in the table; check the hash part */
  791. }
  792. /* (3) 'limit' is the last element and either is zero or present in table */
  793. lua_assert(limit == luaH_realasize(t) &&
  794. (limit == 0 || !isempty(&t->array[limit - 1])));
  795. if (isdummy(t) || isempty(luaH_getint(t, cast(lua_Integer, limit + 1))))
  796. return limit; /* 'limit + 1' is absent... */
  797. else /* 'limit + 1' is also present */
  798. return hash_search(t, limit);
  799. }
  800. #if defined(LUA_DEBUG)
  801. Node *luaH_mainposition (const Table *t, const TValue *key) {
  802. return mainpositionTV(t, key);
  803. }
  804. int luaH_isdummy (const Table *t) { return isdummy(t); }
  805. #endif