lcode.c 52 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875
  1. /*
  2. ** $Id: lcode.c $
  3. ** Code generator for Lua
  4. ** See Copyright Notice in lua.h
  5. */
  6. #define lcode_c
  7. #define LUA_CORE
  8. #include "lprefix.h"
  9. #include <float.h>
  10. #include <limits.h>
  11. #include <math.h>
  12. #include <stdlib.h>
  13. #include "lua.h"
  14. #include "lcode.h"
  15. #include "ldebug.h"
  16. #include "ldo.h"
  17. #include "lgc.h"
  18. #include "llex.h"
  19. #include "lmem.h"
  20. #include "lobject.h"
  21. #include "lopcodes.h"
  22. #include "lparser.h"
  23. #include "lstring.h"
  24. #include "ltable.h"
  25. #include "lvm.h"
  26. /* Maximum number of registers in a Lua function (must fit in 8 bits) */
  27. #define MAXREGS 255
  28. /* (note that expressions VJMP also have jumps.) */
  29. #define hasjumps(e) ((e)->t != (e)->f)
  30. static int codesJ (FuncState *fs, OpCode o, int sj, int k);
  31. /* semantic error */
  32. l_noret luaK_semerror (LexState *ls, const char *msg) {
  33. ls->t.token = 0; /* remove "near <token>" from final message */
  34. luaX_syntaxerror(ls, msg);
  35. }
  36. /*
  37. ** If expression is a numeric constant, fills 'v' with its value
  38. ** and returns 1. Otherwise, returns 0.
  39. */
  40. static int tonumeral (const expdesc *e, TValue *v) {
  41. if (hasjumps(e))
  42. return 0; /* not a numeral */
  43. switch (e->k) {
  44. case VKINT:
  45. if (v) setivalue(v, e->u.ival);
  46. return 1;
  47. case VKFLT:
  48. if (v) setfltvalue(v, e->u.nval);
  49. return 1;
  50. default: return 0;
  51. }
  52. }
  53. /*
  54. ** Get the constant value from a constant expression
  55. */
  56. static TValue *const2val (FuncState *fs, const expdesc *e) {
  57. lua_assert(e->k == VCONST);
  58. return &fs->ls->dyd->actvar.arr[e->u.info].k;
  59. }
  60. /*
  61. ** If expression is a constant, fills 'v' with its value
  62. ** and returns 1. Otherwise, returns 0.
  63. */
  64. int luaK_exp2const (FuncState *fs, const expdesc *e, TValue *v) {
  65. if (hasjumps(e))
  66. return 0; /* not a constant */
  67. switch (e->k) {
  68. case VFALSE:
  69. setbfvalue(v);
  70. return 1;
  71. case VTRUE:
  72. setbtvalue(v);
  73. return 1;
  74. case VNIL:
  75. setnilvalue(v);
  76. return 1;
  77. case VKSTR: {
  78. setsvalue(fs->ls->L, v, e->u.strval);
  79. return 1;
  80. }
  81. case VCONST: {
  82. setobj(fs->ls->L, v, const2val(fs, e));
  83. return 1;
  84. }
  85. default: return tonumeral(e, v);
  86. }
  87. }
  88. /*
  89. ** Return the previous instruction of the current code. If there
  90. ** may be a jump target between the current instruction and the
  91. ** previous one, return an invalid instruction (to avoid wrong
  92. ** optimizations).
  93. */
  94. static Instruction *previousinstruction (FuncState *fs) {
  95. static const Instruction invalidinstruction = ~(Instruction)0;
  96. if (fs->pc > fs->lasttarget)
  97. return &fs->f->code[fs->pc - 1]; /* previous instruction */
  98. else
  99. return cast(Instruction*, &invalidinstruction);
  100. }
  101. /*
  102. ** Create a OP_LOADNIL instruction, but try to optimize: if the previous
  103. ** instruction is also OP_LOADNIL and ranges are compatible, adjust
  104. ** range of previous instruction instead of emitting a new one. (For
  105. ** instance, 'local a; local b' will generate a single opcode.)
  106. */
  107. void luaK_nil (FuncState *fs, int from, int n) {
  108. int l = from + n - 1; /* last register to set nil */
  109. Instruction *previous = previousinstruction(fs);
  110. if (GET_OPCODE(*previous) == OP_LOADNIL) { /* previous is LOADNIL? */
  111. int pfrom = GETARG_A(*previous); /* get previous range */
  112. int pl = pfrom + GETARG_B(*previous);
  113. if ((pfrom <= from && from <= pl + 1) ||
  114. (from <= pfrom && pfrom <= l + 1)) { /* can connect both? */
  115. if (pfrom < from) from = pfrom; /* from = min(from, pfrom) */
  116. if (pl > l) l = pl; /* l = max(l, pl) */
  117. SETARG_A(*previous, from);
  118. SETARG_B(*previous, l - from);
  119. return;
  120. } /* else go through */
  121. }
  122. luaK_codeABC(fs, OP_LOADNIL, from, n - 1, 0); /* else no optimization */
  123. }
  124. /*
  125. ** Gets the destination address of a jump instruction. Used to traverse
  126. ** a list of jumps.
  127. */
  128. static int getjump (FuncState *fs, int pc) {
  129. int offset = GETARG_sJ(fs->f->code[pc]);
  130. if (offset == NO_JUMP) /* point to itself represents end of list */
  131. return NO_JUMP; /* end of list */
  132. else
  133. return (pc+1)+offset; /* turn offset into absolute position */
  134. }
  135. /*
  136. ** Fix jump instruction at position 'pc' to jump to 'dest'.
  137. ** (Jump addresses are relative in Lua)
  138. */
  139. static void fixjump (FuncState *fs, int pc, int dest) {
  140. Instruction *jmp = &fs->f->code[pc];
  141. int offset = dest - (pc + 1);
  142. lua_assert(dest != NO_JUMP);
  143. if (!(-OFFSET_sJ <= offset && offset <= MAXARG_sJ - OFFSET_sJ))
  144. luaX_syntaxerror(fs->ls, "control structure too long");
  145. lua_assert(GET_OPCODE(*jmp) == OP_JMP);
  146. SETARG_sJ(*jmp, offset);
  147. }
  148. /*
  149. ** Concatenate jump-list 'l2' into jump-list 'l1'
  150. */
  151. void luaK_concat (FuncState *fs, int *l1, int l2) {
  152. if (l2 == NO_JUMP) return; /* nothing to concatenate? */
  153. else if (*l1 == NO_JUMP) /* no original list? */
  154. *l1 = l2; /* 'l1' points to 'l2' */
  155. else {
  156. int list = *l1;
  157. int next;
  158. while ((next = getjump(fs, list)) != NO_JUMP) /* find last element */
  159. list = next;
  160. fixjump(fs, list, l2); /* last element links to 'l2' */
  161. }
  162. }
  163. /*
  164. ** Create a jump instruction and return its position, so its destination
  165. ** can be fixed later (with 'fixjump').
  166. */
  167. int luaK_jump (FuncState *fs) {
  168. return codesJ(fs, OP_JMP, NO_JUMP, 0);
  169. }
  170. /*
  171. ** Code a 'return' instruction
  172. */
  173. void luaK_ret (FuncState *fs, int first, int nret) {
  174. OpCode op;
  175. switch (nret) {
  176. case 0: op = OP_RETURN0; break;
  177. case 1: op = OP_RETURN1; break;
  178. default: op = OP_RETURN; break;
  179. }
  180. luaK_codeABC(fs, op, first, nret + 1, 0);
  181. }
  182. /*
  183. ** Code a "conditional jump", that is, a test or comparison opcode
  184. ** followed by a jump. Return jump position.
  185. */
  186. static int condjump (FuncState *fs, OpCode op, int A, int B, int C, int k) {
  187. luaK_codeABCk(fs, op, A, B, C, k);
  188. return luaK_jump(fs);
  189. }
  190. /*
  191. ** returns current 'pc' and marks it as a jump target (to avoid wrong
  192. ** optimizations with consecutive instructions not in the same basic block).
  193. */
  194. int luaK_getlabel (FuncState *fs) {
  195. fs->lasttarget = fs->pc;
  196. return fs->pc;
  197. }
  198. /*
  199. ** Returns the position of the instruction "controlling" a given
  200. ** jump (that is, its condition), or the jump itself if it is
  201. ** unconditional.
  202. */
  203. static Instruction *getjumpcontrol (FuncState *fs, int pc) {
  204. Instruction *pi = &fs->f->code[pc];
  205. if (pc >= 1 && testTMode(GET_OPCODE(*(pi-1))))
  206. return pi-1;
  207. else
  208. return pi;
  209. }
  210. /*
  211. ** Patch destination register for a TESTSET instruction.
  212. ** If instruction in position 'node' is not a TESTSET, return 0 ("fails").
  213. ** Otherwise, if 'reg' is not 'NO_REG', set it as the destination
  214. ** register. Otherwise, change instruction to a simple 'TEST' (produces
  215. ** no register value)
  216. */
  217. static int patchtestreg (FuncState *fs, int node, int reg) {
  218. Instruction *i = getjumpcontrol(fs, node);
  219. if (GET_OPCODE(*i) != OP_TESTSET)
  220. return 0; /* cannot patch other instructions */
  221. if (reg != NO_REG && reg != GETARG_B(*i))
  222. SETARG_A(*i, reg);
  223. else {
  224. /* no register to put value or register already has the value;
  225. change instruction to simple test */
  226. *i = CREATE_ABCk(OP_TEST, GETARG_B(*i), 0, 0, GETARG_k(*i));
  227. }
  228. return 1;
  229. }
  230. /*
  231. ** Traverse a list of tests ensuring no one produces a value
  232. */
  233. static void removevalues (FuncState *fs, int list) {
  234. for (; list != NO_JUMP; list = getjump(fs, list))
  235. patchtestreg(fs, list, NO_REG);
  236. }
  237. /*
  238. ** Traverse a list of tests, patching their destination address and
  239. ** registers: tests producing values jump to 'vtarget' (and put their
  240. ** values in 'reg'), other tests jump to 'dtarget'.
  241. */
  242. static void patchlistaux (FuncState *fs, int list, int vtarget, int reg,
  243. int dtarget) {
  244. while (list != NO_JUMP) {
  245. int next = getjump(fs, list);
  246. if (patchtestreg(fs, list, reg))
  247. fixjump(fs, list, vtarget);
  248. else
  249. fixjump(fs, list, dtarget); /* jump to default target */
  250. list = next;
  251. }
  252. }
  253. /*
  254. ** Path all jumps in 'list' to jump to 'target'.
  255. ** (The assert means that we cannot fix a jump to a forward address
  256. ** because we only know addresses once code is generated.)
  257. */
  258. void luaK_patchlist (FuncState *fs, int list, int target) {
  259. lua_assert(target <= fs->pc);
  260. patchlistaux(fs, list, target, NO_REG, target);
  261. }
  262. void luaK_patchtohere (FuncState *fs, int list) {
  263. int hr = luaK_getlabel(fs); /* mark "here" as a jump target */
  264. luaK_patchlist(fs, list, hr);
  265. }
  266. /* limit for difference between lines in relative line info. */
  267. #define LIMLINEDIFF 0x80
  268. /*
  269. ** Save line info for a new instruction. If difference from last line
  270. ** does not fit in a byte, of after that many instructions, save a new
  271. ** absolute line info; (in that case, the special value 'ABSLINEINFO'
  272. ** in 'lineinfo' signals the existence of this absolute information.)
  273. ** Otherwise, store the difference from last line in 'lineinfo'.
  274. */
  275. static void savelineinfo (FuncState *fs, Proto *f, int line) {
  276. int linedif = line - fs->previousline;
  277. int pc = fs->pc - 1; /* last instruction coded */
  278. if (abs(linedif) >= LIMLINEDIFF || fs->iwthabs++ >= MAXIWTHABS) {
  279. luaM_growvector(fs->ls->L, f->abslineinfo, fs->nabslineinfo,
  280. f->sizeabslineinfo, AbsLineInfo, MAX_INT, "lines");
  281. f->abslineinfo[fs->nabslineinfo].pc = pc;
  282. f->abslineinfo[fs->nabslineinfo++].line = line;
  283. linedif = ABSLINEINFO; /* signal that there is absolute information */
  284. fs->iwthabs = 1; /* restart counter */
  285. }
  286. luaM_growvector(fs->ls->L, f->lineinfo, pc, f->sizelineinfo, ls_byte,
  287. MAX_INT, "opcodes");
  288. f->lineinfo[pc] = linedif;
  289. fs->previousline = line; /* last line saved */
  290. }
  291. /*
  292. ** Remove line information from the last instruction.
  293. ** If line information for that instruction is absolute, set 'iwthabs'
  294. ** above its max to force the new (replacing) instruction to have
  295. ** absolute line info, too.
  296. */
  297. static void removelastlineinfo (FuncState *fs) {
  298. Proto *f = fs->f;
  299. int pc = fs->pc - 1; /* last instruction coded */
  300. if (f->lineinfo[pc] != ABSLINEINFO) { /* relative line info? */
  301. fs->previousline -= f->lineinfo[pc]; /* correct last line saved */
  302. fs->iwthabs--; /* undo previous increment */
  303. }
  304. else { /* absolute line information */
  305. lua_assert(f->abslineinfo[fs->nabslineinfo - 1].pc == pc);
  306. fs->nabslineinfo--; /* remove it */
  307. fs->iwthabs = MAXIWTHABS + 1; /* force next line info to be absolute */
  308. }
  309. }
  310. /*
  311. ** Remove the last instruction created, correcting line information
  312. ** accordingly.
  313. */
  314. static void removelastinstruction (FuncState *fs) {
  315. removelastlineinfo(fs);
  316. fs->pc--;
  317. }
  318. /*
  319. ** Emit instruction 'i', checking for array sizes and saving also its
  320. ** line information. Return 'i' position.
  321. */
  322. int luaK_code (FuncState *fs, Instruction i) {
  323. Proto *f = fs->f;
  324. /* put new instruction in code array */
  325. luaM_growvector(fs->ls->L, f->code, fs->pc, f->sizecode, Instruction,
  326. MAX_INT, "opcodes");
  327. f->code[fs->pc++] = i;
  328. savelineinfo(fs, f, fs->ls->lastline);
  329. return fs->pc - 1; /* index of new instruction */
  330. }
  331. /*
  332. ** Format and emit an 'iABC' instruction. (Assertions check consistency
  333. ** of parameters versus opcode.)
  334. */
  335. int luaK_codeABCk (FuncState *fs, OpCode o, int a, int b, int c, int k) {
  336. lua_assert(getOpMode(o) == iABC);
  337. lua_assert(a <= MAXARG_A && b <= MAXARG_B &&
  338. c <= MAXARG_C && (k & ~1) == 0);
  339. return luaK_code(fs, CREATE_ABCk(o, a, b, c, k));
  340. }
  341. /*
  342. ** Format and emit an 'iABx' instruction.
  343. */
  344. int luaK_codeABx (FuncState *fs, OpCode o, int a, unsigned int bc) {
  345. lua_assert(getOpMode(o) == iABx);
  346. lua_assert(a <= MAXARG_A && bc <= MAXARG_Bx);
  347. return luaK_code(fs, CREATE_ABx(o, a, bc));
  348. }
  349. /*
  350. ** Format and emit an 'iAsBx' instruction.
  351. */
  352. static int codeAsBx (FuncState *fs, OpCode o, int a, int bc) {
  353. unsigned int b = bc + OFFSET_sBx;
  354. lua_assert(getOpMode(o) == iAsBx);
  355. lua_assert(a <= MAXARG_A && b <= MAXARG_Bx);
  356. return luaK_code(fs, CREATE_ABx(o, a, b));
  357. }
  358. /*
  359. ** Format and emit an 'isJ' instruction.
  360. */
  361. static int codesJ (FuncState *fs, OpCode o, int sj, int k) {
  362. unsigned int j = sj + OFFSET_sJ;
  363. lua_assert(getOpMode(o) == isJ);
  364. lua_assert(j <= MAXARG_sJ && (k & ~1) == 0);
  365. return luaK_code(fs, CREATE_sJ(o, j, k));
  366. }
  367. /*
  368. ** Emit an "extra argument" instruction (format 'iAx')
  369. */
  370. static int codeextraarg (FuncState *fs, int a) {
  371. lua_assert(a <= MAXARG_Ax);
  372. return luaK_code(fs, CREATE_Ax(OP_EXTRAARG, a));
  373. }
  374. /*
  375. ** Emit a "load constant" instruction, using either 'OP_LOADK'
  376. ** (if constant index 'k' fits in 18 bits) or an 'OP_LOADKX'
  377. ** instruction with "extra argument".
  378. */
  379. static int luaK_codek (FuncState *fs, int reg, int k) {
  380. if (k <= MAXARG_Bx)
  381. return luaK_codeABx(fs, OP_LOADK, reg, k);
  382. else {
  383. int p = luaK_codeABx(fs, OP_LOADKX, reg, 0);
  384. codeextraarg(fs, k);
  385. return p;
  386. }
  387. }
  388. /*
  389. ** Check register-stack level, keeping track of its maximum size
  390. ** in field 'maxstacksize'
  391. */
  392. void luaK_checkstack (FuncState *fs, int n) {
  393. int newstack = fs->freereg + n;
  394. if (newstack > fs->f->maxstacksize) {
  395. if (newstack >= MAXREGS)
  396. luaX_syntaxerror(fs->ls,
  397. "function or expression needs too many registers");
  398. fs->f->maxstacksize = cast_byte(newstack);
  399. }
  400. }
  401. /*
  402. ** Reserve 'n' registers in register stack
  403. */
  404. void luaK_reserveregs (FuncState *fs, int n) {
  405. luaK_checkstack(fs, n);
  406. fs->freereg += n;
  407. }
  408. /*
  409. ** Free register 'reg', if it is neither a constant index nor
  410. ** a local variable.
  411. )
  412. */
  413. static void freereg (FuncState *fs, int reg) {
  414. if (reg >= luaY_nvarstack(fs)) {
  415. fs->freereg--;
  416. lua_assert(reg == fs->freereg);
  417. }
  418. }
  419. /*
  420. ** Free two registers in proper order
  421. */
  422. static void freeregs (FuncState *fs, int r1, int r2) {
  423. if (r1 > r2) {
  424. freereg(fs, r1);
  425. freereg(fs, r2);
  426. }
  427. else {
  428. freereg(fs, r2);
  429. freereg(fs, r1);
  430. }
  431. }
  432. /*
  433. ** Free register used by expression 'e' (if any)
  434. */
  435. static void freeexp (FuncState *fs, expdesc *e) {
  436. if (e->k == VNONRELOC)
  437. freereg(fs, e->u.info);
  438. }
  439. /*
  440. ** Free registers used by expressions 'e1' and 'e2' (if any) in proper
  441. ** order.
  442. */
  443. static void freeexps (FuncState *fs, expdesc *e1, expdesc *e2) {
  444. int r1 = (e1->k == VNONRELOC) ? e1->u.info : -1;
  445. int r2 = (e2->k == VNONRELOC) ? e2->u.info : -1;
  446. freeregs(fs, r1, r2);
  447. }
  448. /*
  449. ** Add constant 'v' to prototype's list of constants (field 'k').
  450. ** Use scanner's table to cache position of constants in constant list
  451. ** and try to reuse constants. Because some values should not be used
  452. ** as keys (nil cannot be a key, integer keys can collapse with float
  453. ** keys), the caller must provide a useful 'key' for indexing the cache.
  454. ** Note that all functions share the same table, so entering or exiting
  455. ** a function can make some indices wrong.
  456. */
  457. static int addk (FuncState *fs, TValue *key, TValue *v) {
  458. TValue val;
  459. lua_State *L = fs->ls->L;
  460. Proto *f = fs->f;
  461. const TValue *idx = luaH_get(fs->ls->h, key); /* query scanner table */
  462. int k, oldsize;
  463. if (ttisinteger(idx)) { /* is there an index there? */
  464. k = cast_int(ivalue(idx));
  465. /* correct value? (warning: must distinguish floats from integers!) */
  466. if (k < fs->nk && ttypetag(&f->k[k]) == ttypetag(v) &&
  467. luaV_rawequalobj(&f->k[k], v))
  468. return k; /* reuse index */
  469. }
  470. /* constant not found; create a new entry */
  471. oldsize = f->sizek;
  472. k = fs->nk;
  473. /* numerical value does not need GC barrier;
  474. table has no metatable, so it does not need to invalidate cache */
  475. setivalue(&val, k);
  476. luaH_finishset(L, fs->ls->h, key, idx, &val);
  477. luaM_growvector(L, f->k, k, f->sizek, TValue, MAXARG_Ax, "constants");
  478. while (oldsize < f->sizek) setnilvalue(&f->k[oldsize++]);
  479. setobj(L, &f->k[k], v);
  480. fs->nk++;
  481. luaC_barrier(L, f, v);
  482. return k;
  483. }
  484. /*
  485. ** Add a string to list of constants and return its index.
  486. */
  487. static int stringK (FuncState *fs, TString *s) {
  488. TValue o;
  489. setsvalue(fs->ls->L, &o, s);
  490. return addk(fs, &o, &o); /* use string itself as key */
  491. }
  492. /*
  493. ** Add an integer to list of constants and return its index.
  494. */
  495. static int luaK_intK (FuncState *fs, lua_Integer n) {
  496. TValue o;
  497. setivalue(&o, n);
  498. return addk(fs, &o, &o); /* use integer itself as key */
  499. }
  500. /*
  501. ** Add a float to list of constants and return its index. Floats
  502. ** with integral values need a different key, to avoid collision
  503. ** with actual integers. To that, we add to the number its smaller
  504. ** power-of-two fraction that is still significant in its scale.
  505. ** For doubles, that would be 1/2^52.
  506. ** (This method is not bulletproof: there may be another float
  507. ** with that value, and for floats larger than 2^53 the result is
  508. ** still an integer. At worst, this only wastes an entry with
  509. ** a duplicate.)
  510. */
  511. static int luaK_numberK (FuncState *fs, lua_Number r) {
  512. TValue o;
  513. lua_Integer ik;
  514. setfltvalue(&o, r);
  515. if (!luaV_flttointeger(r, &ik, F2Ieq)) /* not an integral value? */
  516. return addk(fs, &o, &o); /* use number itself as key */
  517. else { /* must build an alternative key */
  518. const int nbm = l_floatatt(MANT_DIG);
  519. const lua_Number q = l_mathop(ldexp)(l_mathop(1.0), -nbm + 1);
  520. const lua_Number k = (ik == 0) ? q : r + r*q; /* new key */
  521. TValue kv;
  522. setfltvalue(&kv, k);
  523. /* result is not an integral value, unless value is too large */
  524. lua_assert(!luaV_flttointeger(k, &ik, F2Ieq) ||
  525. l_mathop(fabs)(r) >= l_mathop(1e6));
  526. return addk(fs, &kv, &o);
  527. }
  528. }
  529. /*
  530. ** Add a false to list of constants and return its index.
  531. */
  532. static int boolF (FuncState *fs) {
  533. TValue o;
  534. setbfvalue(&o);
  535. return addk(fs, &o, &o); /* use boolean itself as key */
  536. }
  537. /*
  538. ** Add a true to list of constants and return its index.
  539. */
  540. static int boolT (FuncState *fs) {
  541. TValue o;
  542. setbtvalue(&o);
  543. return addk(fs, &o, &o); /* use boolean itself as key */
  544. }
  545. /*
  546. ** Add nil to list of constants and return its index.
  547. */
  548. static int nilK (FuncState *fs) {
  549. TValue k, v;
  550. setnilvalue(&v);
  551. /* cannot use nil as key; instead use table itself to represent nil */
  552. sethvalue(fs->ls->L, &k, fs->ls->h);
  553. return addk(fs, &k, &v);
  554. }
  555. /*
  556. ** Check whether 'i' can be stored in an 'sC' operand. Equivalent to
  557. ** (0 <= int2sC(i) && int2sC(i) <= MAXARG_C) but without risk of
  558. ** overflows in the hidden addition inside 'int2sC'.
  559. */
  560. static int fitsC (lua_Integer i) {
  561. return (l_castS2U(i) + OFFSET_sC <= cast_uint(MAXARG_C));
  562. }
  563. /*
  564. ** Check whether 'i' can be stored in an 'sBx' operand.
  565. */
  566. static int fitsBx (lua_Integer i) {
  567. return (-OFFSET_sBx <= i && i <= MAXARG_Bx - OFFSET_sBx);
  568. }
  569. void luaK_int (FuncState *fs, int reg, lua_Integer i) {
  570. if (fitsBx(i))
  571. codeAsBx(fs, OP_LOADI, reg, cast_int(i));
  572. else
  573. luaK_codek(fs, reg, luaK_intK(fs, i));
  574. }
  575. static void luaK_float (FuncState *fs, int reg, lua_Number f) {
  576. lua_Integer fi;
  577. if (luaV_flttointeger(f, &fi, F2Ieq) && fitsBx(fi))
  578. codeAsBx(fs, OP_LOADF, reg, cast_int(fi));
  579. else
  580. luaK_codek(fs, reg, luaK_numberK(fs, f));
  581. }
  582. /*
  583. ** Convert a constant in 'v' into an expression description 'e'
  584. */
  585. static void const2exp (TValue *v, expdesc *e) {
  586. switch (ttypetag(v)) {
  587. case LUA_VNUMINT:
  588. e->k = VKINT; e->u.ival = ivalue(v);
  589. break;
  590. case LUA_VNUMFLT:
  591. e->k = VKFLT; e->u.nval = fltvalue(v);
  592. break;
  593. case LUA_VFALSE:
  594. e->k = VFALSE;
  595. break;
  596. case LUA_VTRUE:
  597. e->k = VTRUE;
  598. break;
  599. case LUA_VNIL:
  600. e->k = VNIL;
  601. break;
  602. case LUA_VSHRSTR: case LUA_VLNGSTR:
  603. e->k = VKSTR; e->u.strval = tsvalue(v);
  604. break;
  605. default: lua_assert(0);
  606. }
  607. }
  608. /*
  609. ** Fix an expression to return the number of results 'nresults'.
  610. ** 'e' must be a multi-ret expression (function call or vararg).
  611. */
  612. void luaK_setreturns (FuncState *fs, expdesc *e, int nresults) {
  613. Instruction *pc = &getinstruction(fs, e);
  614. if (e->k == VCALL) /* expression is an open function call? */
  615. SETARG_C(*pc, nresults + 1);
  616. else {
  617. lua_assert(e->k == VVARARG);
  618. SETARG_C(*pc, nresults + 1);
  619. SETARG_A(*pc, fs->freereg);
  620. luaK_reserveregs(fs, 1);
  621. }
  622. }
  623. /*
  624. ** Convert a VKSTR to a VK
  625. */
  626. static void str2K (FuncState *fs, expdesc *e) {
  627. lua_assert(e->k == VKSTR);
  628. e->u.info = stringK(fs, e->u.strval);
  629. e->k = VK;
  630. }
  631. /*
  632. ** Fix an expression to return one result.
  633. ** If expression is not a multi-ret expression (function call or
  634. ** vararg), it already returns one result, so nothing needs to be done.
  635. ** Function calls become VNONRELOC expressions (as its result comes
  636. ** fixed in the base register of the call), while vararg expressions
  637. ** become VRELOC (as OP_VARARG puts its results where it wants).
  638. ** (Calls are created returning one result, so that does not need
  639. ** to be fixed.)
  640. */
  641. void luaK_setoneret (FuncState *fs, expdesc *e) {
  642. if (e->k == VCALL) { /* expression is an open function call? */
  643. /* already returns 1 value */
  644. lua_assert(GETARG_C(getinstruction(fs, e)) == 2);
  645. e->k = VNONRELOC; /* result has fixed position */
  646. e->u.info = GETARG_A(getinstruction(fs, e));
  647. }
  648. else if (e->k == VVARARG) {
  649. SETARG_C(getinstruction(fs, e), 2);
  650. e->k = VRELOC; /* can relocate its simple result */
  651. }
  652. }
  653. /*
  654. ** Ensure that expression 'e' is not a variable (nor a <const>).
  655. ** (Expression still may have jump lists.)
  656. */
  657. void luaK_dischargevars (FuncState *fs, expdesc *e) {
  658. switch (e->k) {
  659. case VCONST: {
  660. const2exp(const2val(fs, e), e);
  661. break;
  662. }
  663. case VLOCAL: { /* already in a register */
  664. int temp = e->u.var.ridx;
  665. e->u.info = temp; /* (can't do a direct assignment; values overlap) */
  666. e->k = VNONRELOC; /* becomes a non-relocatable value */
  667. break;
  668. }
  669. case VUPVAL: { /* move value to some (pending) register */
  670. e->u.info = luaK_codeABC(fs, OP_GETUPVAL, 0, e->u.info, 0);
  671. e->k = VRELOC;
  672. break;
  673. }
  674. case VINDEXUP: {
  675. e->u.info = luaK_codeABC(fs, OP_GETTABUP, 0, e->u.ind.t, e->u.ind.idx);
  676. e->k = VRELOC;
  677. break;
  678. }
  679. case VINDEXI: {
  680. freereg(fs, e->u.ind.t);
  681. e->u.info = luaK_codeABC(fs, OP_GETI, 0, e->u.ind.t, e->u.ind.idx);
  682. e->k = VRELOC;
  683. break;
  684. }
  685. case VINDEXSTR: {
  686. freereg(fs, e->u.ind.t);
  687. e->u.info = luaK_codeABC(fs, OP_GETFIELD, 0, e->u.ind.t, e->u.ind.idx);
  688. e->k = VRELOC;
  689. break;
  690. }
  691. case VINDEXED: {
  692. freeregs(fs, e->u.ind.t, e->u.ind.idx);
  693. e->u.info = luaK_codeABC(fs, OP_GETTABLE, 0, e->u.ind.t, e->u.ind.idx);
  694. e->k = VRELOC;
  695. break;
  696. }
  697. case VVARARG: case VCALL: {
  698. luaK_setoneret(fs, e);
  699. break;
  700. }
  701. default: break; /* there is one value available (somewhere) */
  702. }
  703. }
  704. /*
  705. ** Ensure expression value is in register 'reg', making 'e' a
  706. ** non-relocatable expression.
  707. ** (Expression still may have jump lists.)
  708. */
  709. static void discharge2reg (FuncState *fs, expdesc *e, int reg) {
  710. luaK_dischargevars(fs, e);
  711. switch (e->k) {
  712. case VNIL: {
  713. luaK_nil(fs, reg, 1);
  714. break;
  715. }
  716. case VFALSE: {
  717. luaK_codeABC(fs, OP_LOADFALSE, reg, 0, 0);
  718. break;
  719. }
  720. case VTRUE: {
  721. luaK_codeABC(fs, OP_LOADTRUE, reg, 0, 0);
  722. break;
  723. }
  724. case VKSTR: {
  725. str2K(fs, e);
  726. } /* FALLTHROUGH */
  727. case VK: {
  728. luaK_codek(fs, reg, e->u.info);
  729. break;
  730. }
  731. case VKFLT: {
  732. luaK_float(fs, reg, e->u.nval);
  733. break;
  734. }
  735. case VKINT: {
  736. luaK_int(fs, reg, e->u.ival);
  737. break;
  738. }
  739. case VRELOC: {
  740. Instruction *pc = &getinstruction(fs, e);
  741. SETARG_A(*pc, reg); /* instruction will put result in 'reg' */
  742. break;
  743. }
  744. case VNONRELOC: {
  745. if (reg != e->u.info)
  746. luaK_codeABC(fs, OP_MOVE, reg, e->u.info, 0);
  747. break;
  748. }
  749. default: {
  750. lua_assert(e->k == VJMP);
  751. return; /* nothing to do... */
  752. }
  753. }
  754. e->u.info = reg;
  755. e->k = VNONRELOC;
  756. }
  757. /*
  758. ** Ensure expression value is in a register, making 'e' a
  759. ** non-relocatable expression.
  760. ** (Expression still may have jump lists.)
  761. */
  762. static void discharge2anyreg (FuncState *fs, expdesc *e) {
  763. if (e->k != VNONRELOC) { /* no fixed register yet? */
  764. luaK_reserveregs(fs, 1); /* get a register */
  765. discharge2reg(fs, e, fs->freereg-1); /* put value there */
  766. }
  767. }
  768. static int code_loadbool (FuncState *fs, int A, OpCode op) {
  769. luaK_getlabel(fs); /* those instructions may be jump targets */
  770. return luaK_codeABC(fs, op, A, 0, 0);
  771. }
  772. /*
  773. ** check whether list has any jump that do not produce a value
  774. ** or produce an inverted value
  775. */
  776. static int need_value (FuncState *fs, int list) {
  777. for (; list != NO_JUMP; list = getjump(fs, list)) {
  778. Instruction i = *getjumpcontrol(fs, list);
  779. if (GET_OPCODE(i) != OP_TESTSET) return 1;
  780. }
  781. return 0; /* not found */
  782. }
  783. /*
  784. ** Ensures final expression result (which includes results from its
  785. ** jump lists) is in register 'reg'.
  786. ** If expression has jumps, need to patch these jumps either to
  787. ** its final position or to "load" instructions (for those tests
  788. ** that do not produce values).
  789. */
  790. static void exp2reg (FuncState *fs, expdesc *e, int reg) {
  791. discharge2reg(fs, e, reg);
  792. if (e->k == VJMP) /* expression itself is a test? */
  793. luaK_concat(fs, &e->t, e->u.info); /* put this jump in 't' list */
  794. if (hasjumps(e)) {
  795. int final; /* position after whole expression */
  796. int p_f = NO_JUMP; /* position of an eventual LOAD false */
  797. int p_t = NO_JUMP; /* position of an eventual LOAD true */
  798. if (need_value(fs, e->t) || need_value(fs, e->f)) {
  799. int fj = (e->k == VJMP) ? NO_JUMP : luaK_jump(fs);
  800. p_f = code_loadbool(fs, reg, OP_LFALSESKIP); /* skip next inst. */
  801. p_t = code_loadbool(fs, reg, OP_LOADTRUE);
  802. /* jump around these booleans if 'e' is not a test */
  803. luaK_patchtohere(fs, fj);
  804. }
  805. final = luaK_getlabel(fs);
  806. patchlistaux(fs, e->f, final, reg, p_f);
  807. patchlistaux(fs, e->t, final, reg, p_t);
  808. }
  809. e->f = e->t = NO_JUMP;
  810. e->u.info = reg;
  811. e->k = VNONRELOC;
  812. }
  813. /*
  814. ** Ensures final expression result is in next available register.
  815. */
  816. void luaK_exp2nextreg (FuncState *fs, expdesc *e) {
  817. luaK_dischargevars(fs, e);
  818. freeexp(fs, e);
  819. luaK_reserveregs(fs, 1);
  820. exp2reg(fs, e, fs->freereg - 1);
  821. }
  822. /*
  823. ** Ensures final expression result is in some (any) register
  824. ** and return that register.
  825. */
  826. int luaK_exp2anyreg (FuncState *fs, expdesc *e) {
  827. luaK_dischargevars(fs, e);
  828. if (e->k == VNONRELOC) { /* expression already has a register? */
  829. if (!hasjumps(e)) /* no jumps? */
  830. return e->u.info; /* result is already in a register */
  831. if (e->u.info >= luaY_nvarstack(fs)) { /* reg. is not a local? */
  832. exp2reg(fs, e, e->u.info); /* put final result in it */
  833. return e->u.info;
  834. }
  835. /* else expression has jumps and cannot change its register
  836. to hold the jump values, because it is a local variable.
  837. Go through to the default case. */
  838. }
  839. luaK_exp2nextreg(fs, e); /* default: use next available register */
  840. return e->u.info;
  841. }
  842. /*
  843. ** Ensures final expression result is either in a register
  844. ** or in an upvalue.
  845. */
  846. void luaK_exp2anyregup (FuncState *fs, expdesc *e) {
  847. if (e->k != VUPVAL || hasjumps(e))
  848. luaK_exp2anyreg(fs, e);
  849. }
  850. /*
  851. ** Ensures final expression result is either in a register
  852. ** or it is a constant.
  853. */
  854. void luaK_exp2val (FuncState *fs, expdesc *e) {
  855. if (e->k == VJMP || hasjumps(e))
  856. luaK_exp2anyreg(fs, e);
  857. else
  858. luaK_dischargevars(fs, e);
  859. }
  860. /*
  861. ** Try to make 'e' a K expression with an index in the range of R/K
  862. ** indices. Return true iff succeeded.
  863. */
  864. static int luaK_exp2K (FuncState *fs, expdesc *e) {
  865. if (!hasjumps(e)) {
  866. int info;
  867. switch (e->k) { /* move constants to 'k' */
  868. case VTRUE: info = boolT(fs); break;
  869. case VFALSE: info = boolF(fs); break;
  870. case VNIL: info = nilK(fs); break;
  871. case VKINT: info = luaK_intK(fs, e->u.ival); break;
  872. case VKFLT: info = luaK_numberK(fs, e->u.nval); break;
  873. case VKSTR: info = stringK(fs, e->u.strval); break;
  874. case VK: info = e->u.info; break;
  875. default: return 0; /* not a constant */
  876. }
  877. if (info <= MAXINDEXRK) { /* does constant fit in 'argC'? */
  878. e->k = VK; /* make expression a 'K' expression */
  879. e->u.info = info;
  880. return 1;
  881. }
  882. }
  883. /* else, expression doesn't fit; leave it unchanged */
  884. return 0;
  885. }
  886. /*
  887. ** Ensures final expression result is in a valid R/K index
  888. ** (that is, it is either in a register or in 'k' with an index
  889. ** in the range of R/K indices).
  890. ** Returns 1 iff expression is K.
  891. */
  892. static int exp2RK (FuncState *fs, expdesc *e) {
  893. if (luaK_exp2K(fs, e))
  894. return 1;
  895. else { /* not a constant in the right range: put it in a register */
  896. luaK_exp2anyreg(fs, e);
  897. return 0;
  898. }
  899. }
  900. static void codeABRK (FuncState *fs, OpCode o, int a, int b,
  901. expdesc *ec) {
  902. int k = exp2RK(fs, ec);
  903. luaK_codeABCk(fs, o, a, b, ec->u.info, k);
  904. }
  905. /*
  906. ** Generate code to store result of expression 'ex' into variable 'var'.
  907. */
  908. void luaK_storevar (FuncState *fs, expdesc *var, expdesc *ex) {
  909. switch (var->k) {
  910. case VLOCAL: {
  911. freeexp(fs, ex);
  912. exp2reg(fs, ex, var->u.var.ridx); /* compute 'ex' into proper place */
  913. return;
  914. }
  915. case VUPVAL: {
  916. int e = luaK_exp2anyreg(fs, ex);
  917. luaK_codeABC(fs, OP_SETUPVAL, e, var->u.info, 0);
  918. break;
  919. }
  920. case VINDEXUP: {
  921. codeABRK(fs, OP_SETTABUP, var->u.ind.t, var->u.ind.idx, ex);
  922. break;
  923. }
  924. case VINDEXI: {
  925. codeABRK(fs, OP_SETI, var->u.ind.t, var->u.ind.idx, ex);
  926. break;
  927. }
  928. case VINDEXSTR: {
  929. codeABRK(fs, OP_SETFIELD, var->u.ind.t, var->u.ind.idx, ex);
  930. break;
  931. }
  932. case VINDEXED: {
  933. codeABRK(fs, OP_SETTABLE, var->u.ind.t, var->u.ind.idx, ex);
  934. break;
  935. }
  936. default: lua_assert(0); /* invalid var kind to store */
  937. }
  938. freeexp(fs, ex);
  939. }
  940. /*
  941. ** Emit SELF instruction (convert expression 'e' into 'e:key(e,').
  942. */
  943. void luaK_self (FuncState *fs, expdesc *e, expdesc *key) {
  944. int ereg;
  945. luaK_exp2anyreg(fs, e);
  946. ereg = e->u.info; /* register where 'e' was placed */
  947. freeexp(fs, e);
  948. e->u.info = fs->freereg; /* base register for op_self */
  949. e->k = VNONRELOC; /* self expression has a fixed register */
  950. luaK_reserveregs(fs, 2); /* function and 'self' produced by op_self */
  951. codeABRK(fs, OP_SELF, e->u.info, ereg, key);
  952. freeexp(fs, key);
  953. }
  954. /*
  955. ** Negate condition 'e' (where 'e' is a comparison).
  956. */
  957. static void negatecondition (FuncState *fs, expdesc *e) {
  958. Instruction *pc = getjumpcontrol(fs, e->u.info);
  959. lua_assert(testTMode(GET_OPCODE(*pc)) && GET_OPCODE(*pc) != OP_TESTSET &&
  960. GET_OPCODE(*pc) != OP_TEST);
  961. SETARG_k(*pc, (GETARG_k(*pc) ^ 1));
  962. }
  963. /*
  964. ** Emit instruction to jump if 'e' is 'cond' (that is, if 'cond'
  965. ** is true, code will jump if 'e' is true.) Return jump position.
  966. ** Optimize when 'e' is 'not' something, inverting the condition
  967. ** and removing the 'not'.
  968. */
  969. static int jumponcond (FuncState *fs, expdesc *e, int cond) {
  970. if (e->k == VRELOC) {
  971. Instruction ie = getinstruction(fs, e);
  972. if (GET_OPCODE(ie) == OP_NOT) {
  973. removelastinstruction(fs); /* remove previous OP_NOT */
  974. return condjump(fs, OP_TEST, GETARG_B(ie), 0, 0, !cond);
  975. }
  976. /* else go through */
  977. }
  978. discharge2anyreg(fs, e);
  979. freeexp(fs, e);
  980. return condjump(fs, OP_TESTSET, NO_REG, e->u.info, 0, cond);
  981. }
  982. /*
  983. ** Emit code to go through if 'e' is true, jump otherwise.
  984. */
  985. void luaK_goiftrue (FuncState *fs, expdesc *e) {
  986. int pc; /* pc of new jump */
  987. luaK_dischargevars(fs, e);
  988. switch (e->k) {
  989. case VJMP: { /* condition? */
  990. negatecondition(fs, e); /* jump when it is false */
  991. pc = e->u.info; /* save jump position */
  992. break;
  993. }
  994. case VK: case VKFLT: case VKINT: case VKSTR: case VTRUE: {
  995. pc = NO_JUMP; /* always true; do nothing */
  996. break;
  997. }
  998. default: {
  999. pc = jumponcond(fs, e, 0); /* jump when false */
  1000. break;
  1001. }
  1002. }
  1003. luaK_concat(fs, &e->f, pc); /* insert new jump in false list */
  1004. luaK_patchtohere(fs, e->t); /* true list jumps to here (to go through) */
  1005. e->t = NO_JUMP;
  1006. }
  1007. /*
  1008. ** Emit code to go through if 'e' is false, jump otherwise.
  1009. */
  1010. void luaK_goiffalse (FuncState *fs, expdesc *e) {
  1011. int pc; /* pc of new jump */
  1012. luaK_dischargevars(fs, e);
  1013. switch (e->k) {
  1014. case VJMP: {
  1015. pc = e->u.info; /* already jump if true */
  1016. break;
  1017. }
  1018. case VNIL: case VFALSE: {
  1019. pc = NO_JUMP; /* always false; do nothing */
  1020. break;
  1021. }
  1022. default: {
  1023. pc = jumponcond(fs, e, 1); /* jump if true */
  1024. break;
  1025. }
  1026. }
  1027. luaK_concat(fs, &e->t, pc); /* insert new jump in 't' list */
  1028. luaK_patchtohere(fs, e->f); /* false list jumps to here (to go through) */
  1029. e->f = NO_JUMP;
  1030. }
  1031. /*
  1032. ** Code 'not e', doing constant folding.
  1033. */
  1034. static void codenot (FuncState *fs, expdesc *e) {
  1035. switch (e->k) {
  1036. case VNIL: case VFALSE: {
  1037. e->k = VTRUE; /* true == not nil == not false */
  1038. break;
  1039. }
  1040. case VK: case VKFLT: case VKINT: case VKSTR: case VTRUE: {
  1041. e->k = VFALSE; /* false == not "x" == not 0.5 == not 1 == not true */
  1042. break;
  1043. }
  1044. case VJMP: {
  1045. negatecondition(fs, e);
  1046. break;
  1047. }
  1048. case VRELOC:
  1049. case VNONRELOC: {
  1050. discharge2anyreg(fs, e);
  1051. freeexp(fs, e);
  1052. e->u.info = luaK_codeABC(fs, OP_NOT, 0, e->u.info, 0);
  1053. e->k = VRELOC;
  1054. break;
  1055. }
  1056. default: lua_assert(0); /* cannot happen */
  1057. }
  1058. /* interchange true and false lists */
  1059. { int temp = e->f; e->f = e->t; e->t = temp; }
  1060. removevalues(fs, e->f); /* values are useless when negated */
  1061. removevalues(fs, e->t);
  1062. }
  1063. /*
  1064. ** Check whether expression 'e' is a short literal string
  1065. */
  1066. static int isKstr (FuncState *fs, expdesc *e) {
  1067. return (e->k == VK && !hasjumps(e) && e->u.info <= MAXARG_B &&
  1068. ttisshrstring(&fs->f->k[e->u.info]));
  1069. }
  1070. /*
  1071. ** Check whether expression 'e' is a literal integer.
  1072. */
  1073. static int isKint (expdesc *e) {
  1074. return (e->k == VKINT && !hasjumps(e));
  1075. }
  1076. /*
  1077. ** Check whether expression 'e' is a literal integer in
  1078. ** proper range to fit in register C
  1079. */
  1080. static int isCint (expdesc *e) {
  1081. return isKint(e) && (l_castS2U(e->u.ival) <= l_castS2U(MAXARG_C));
  1082. }
  1083. /*
  1084. ** Check whether expression 'e' is a literal integer in
  1085. ** proper range to fit in register sC
  1086. */
  1087. static int isSCint (expdesc *e) {
  1088. return isKint(e) && fitsC(e->u.ival);
  1089. }
  1090. /*
  1091. ** Check whether expression 'e' is a literal integer or float in
  1092. ** proper range to fit in a register (sB or sC).
  1093. */
  1094. static int isSCnumber (expdesc *e, int *pi, int *isfloat) {
  1095. lua_Integer i;
  1096. if (e->k == VKINT)
  1097. i = e->u.ival;
  1098. else if (e->k == VKFLT && luaV_flttointeger(e->u.nval, &i, F2Ieq))
  1099. *isfloat = 1;
  1100. else
  1101. return 0; /* not a number */
  1102. if (!hasjumps(e) && fitsC(i)) {
  1103. *pi = int2sC(cast_int(i));
  1104. return 1;
  1105. }
  1106. else
  1107. return 0;
  1108. }
  1109. /*
  1110. ** Create expression 't[k]'. 't' must have its final result already in a
  1111. ** register or upvalue. Upvalues can only be indexed by literal strings.
  1112. ** Keys can be literal strings in the constant table or arbitrary
  1113. ** values in registers.
  1114. */
  1115. void luaK_indexed (FuncState *fs, expdesc *t, expdesc *k) {
  1116. if (k->k == VKSTR)
  1117. str2K(fs, k);
  1118. lua_assert(!hasjumps(t) &&
  1119. (t->k == VLOCAL || t->k == VNONRELOC || t->k == VUPVAL));
  1120. if (t->k == VUPVAL && !isKstr(fs, k)) /* upvalue indexed by non 'Kstr'? */
  1121. luaK_exp2anyreg(fs, t); /* put it in a register */
  1122. if (t->k == VUPVAL) {
  1123. int temp = t->u.info; /* upvalue index */
  1124. lua_assert(isKstr(fs, k));
  1125. t->u.ind.t = temp; /* (can't do a direct assignment; values overlap) */
  1126. t->u.ind.idx = k->u.info; /* literal short string */
  1127. t->k = VINDEXUP;
  1128. }
  1129. else {
  1130. /* register index of the table */
  1131. t->u.ind.t = (t->k == VLOCAL) ? t->u.var.ridx: t->u.info;
  1132. if (isKstr(fs, k)) {
  1133. t->u.ind.idx = k->u.info; /* literal short string */
  1134. t->k = VINDEXSTR;
  1135. }
  1136. else if (isCint(k)) {
  1137. t->u.ind.idx = cast_int(k->u.ival); /* int. constant in proper range */
  1138. t->k = VINDEXI;
  1139. }
  1140. else {
  1141. t->u.ind.idx = luaK_exp2anyreg(fs, k); /* register */
  1142. t->k = VINDEXED;
  1143. }
  1144. }
  1145. }
  1146. /*
  1147. ** Return false if folding can raise an error.
  1148. ** Bitwise operations need operands convertible to integers; division
  1149. ** operations cannot have 0 as divisor.
  1150. */
  1151. static int validop (int op, TValue *v1, TValue *v2) {
  1152. switch (op) {
  1153. case LUA_OPBAND: case LUA_OPBOR: case LUA_OPBXOR:
  1154. case LUA_OPSHL: case LUA_OPSHR: case LUA_OPBNOT: { /* conversion errors */
  1155. lua_Integer i;
  1156. return (luaV_tointegerns(v1, &i, LUA_FLOORN2I) &&
  1157. luaV_tointegerns(v2, &i, LUA_FLOORN2I));
  1158. }
  1159. case LUA_OPDIV: case LUA_OPIDIV: case LUA_OPMOD: /* division by 0 */
  1160. return (nvalue(v2) != 0);
  1161. default: return 1; /* everything else is valid */
  1162. }
  1163. }
  1164. /*
  1165. ** Try to "constant-fold" an operation; return 1 iff successful.
  1166. ** (In this case, 'e1' has the final result.)
  1167. */
  1168. static int constfolding (FuncState *fs, int op, expdesc *e1,
  1169. const expdesc *e2) {
  1170. TValue v1, v2, res;
  1171. if (!tonumeral(e1, &v1) || !tonumeral(e2, &v2) || !validop(op, &v1, &v2))
  1172. return 0; /* non-numeric operands or not safe to fold */
  1173. luaO_rawarith(fs->ls->L, op, &v1, &v2, &res); /* does operation */
  1174. if (ttisinteger(&res)) {
  1175. e1->k = VKINT;
  1176. e1->u.ival = ivalue(&res);
  1177. }
  1178. else { /* folds neither NaN nor 0.0 (to avoid problems with -0.0) */
  1179. lua_Number n = fltvalue(&res);
  1180. if (luai_numisnan(n) || n == 0)
  1181. return 0;
  1182. e1->k = VKFLT;
  1183. e1->u.nval = n;
  1184. }
  1185. return 1;
  1186. }
  1187. /*
  1188. ** Convert a BinOpr to an OpCode (ORDER OPR - ORDER OP)
  1189. */
  1190. l_sinline OpCode binopr2op (BinOpr opr, BinOpr baser, OpCode base) {
  1191. lua_assert(baser <= opr &&
  1192. ((baser == OPR_ADD && opr <= OPR_SHR) ||
  1193. (baser == OPR_LT && opr <= OPR_LE)));
  1194. return cast(OpCode, (cast_int(opr) - cast_int(baser)) + cast_int(base));
  1195. }
  1196. /*
  1197. ** Convert a UnOpr to an OpCode (ORDER OPR - ORDER OP)
  1198. */
  1199. l_sinline OpCode unopr2op (UnOpr opr) {
  1200. return cast(OpCode, (cast_int(opr) - cast_int(OPR_MINUS)) +
  1201. cast_int(OP_UNM));
  1202. }
  1203. /*
  1204. ** Convert a BinOpr to a tag method (ORDER OPR - ORDER TM)
  1205. */
  1206. l_sinline TMS binopr2TM (BinOpr opr) {
  1207. lua_assert(OPR_ADD <= opr && opr <= OPR_SHR);
  1208. return cast(TMS, (cast_int(opr) - cast_int(OPR_ADD)) + cast_int(TM_ADD));
  1209. }
  1210. /*
  1211. ** Emit code for unary expressions that "produce values"
  1212. ** (everything but 'not').
  1213. ** Expression to produce final result will be encoded in 'e'.
  1214. */
  1215. static void codeunexpval (FuncState *fs, OpCode op, expdesc *e, int line) {
  1216. int r = luaK_exp2anyreg(fs, e); /* opcodes operate only on registers */
  1217. freeexp(fs, e);
  1218. e->u.info = luaK_codeABC(fs, op, 0, r, 0); /* generate opcode */
  1219. e->k = VRELOC; /* all those operations are relocatable */
  1220. luaK_fixline(fs, line);
  1221. }
  1222. /*
  1223. ** Emit code for binary expressions that "produce values"
  1224. ** (everything but logical operators 'and'/'or' and comparison
  1225. ** operators).
  1226. ** Expression to produce final result will be encoded in 'e1'.
  1227. */
  1228. static void finishbinexpval (FuncState *fs, expdesc *e1, expdesc *e2,
  1229. OpCode op, int v2, int flip, int line,
  1230. OpCode mmop, TMS event) {
  1231. int v1 = luaK_exp2anyreg(fs, e1);
  1232. int pc = luaK_codeABCk(fs, op, 0, v1, v2, 0);
  1233. freeexps(fs, e1, e2);
  1234. e1->u.info = pc;
  1235. e1->k = VRELOC; /* all those operations are relocatable */
  1236. luaK_fixline(fs, line);
  1237. luaK_codeABCk(fs, mmop, v1, v2, event, flip); /* to call metamethod */
  1238. luaK_fixline(fs, line);
  1239. }
  1240. /*
  1241. ** Emit code for binary expressions that "produce values" over
  1242. ** two registers.
  1243. */
  1244. static void codebinexpval (FuncState *fs, BinOpr opr,
  1245. expdesc *e1, expdesc *e2, int line) {
  1246. OpCode op = binopr2op(opr, OPR_ADD, OP_ADD);
  1247. int v2 = luaK_exp2anyreg(fs, e2); /* make sure 'e2' is in a register */
  1248. /* 'e1' must be already in a register or it is a constant */
  1249. lua_assert((VNIL <= e1->k && e1->k <= VKSTR) ||
  1250. e1->k == VNONRELOC || e1->k == VRELOC);
  1251. lua_assert(OP_ADD <= op && op <= OP_SHR);
  1252. finishbinexpval(fs, e1, e2, op, v2, 0, line, OP_MMBIN, binopr2TM(opr));
  1253. }
  1254. /*
  1255. ** Code binary operators with immediate operands.
  1256. */
  1257. static void codebini (FuncState *fs, OpCode op,
  1258. expdesc *e1, expdesc *e2, int flip, int line,
  1259. TMS event) {
  1260. int v2 = int2sC(cast_int(e2->u.ival)); /* immediate operand */
  1261. lua_assert(e2->k == VKINT);
  1262. finishbinexpval(fs, e1, e2, op, v2, flip, line, OP_MMBINI, event);
  1263. }
  1264. /*
  1265. ** Code binary operators with K operand.
  1266. */
  1267. static void codebinK (FuncState *fs, BinOpr opr,
  1268. expdesc *e1, expdesc *e2, int flip, int line) {
  1269. TMS event = binopr2TM(opr);
  1270. int v2 = e2->u.info; /* K index */
  1271. OpCode op = binopr2op(opr, OPR_ADD, OP_ADDK);
  1272. finishbinexpval(fs, e1, e2, op, v2, flip, line, OP_MMBINK, event);
  1273. }
  1274. /* Try to code a binary operator negating its second operand.
  1275. ** For the metamethod, 2nd operand must keep its original value.
  1276. */
  1277. static int finishbinexpneg (FuncState *fs, expdesc *e1, expdesc *e2,
  1278. OpCode op, int line, TMS event) {
  1279. if (!isKint(e2))
  1280. return 0; /* not an integer constant */
  1281. else {
  1282. lua_Integer i2 = e2->u.ival;
  1283. if (!(fitsC(i2) && fitsC(-i2)))
  1284. return 0; /* not in the proper range */
  1285. else { /* operating a small integer constant */
  1286. int v2 = cast_int(i2);
  1287. finishbinexpval(fs, e1, e2, op, int2sC(-v2), 0, line, OP_MMBINI, event);
  1288. /* correct metamethod argument */
  1289. SETARG_B(fs->f->code[fs->pc - 1], int2sC(v2));
  1290. return 1; /* successfully coded */
  1291. }
  1292. }
  1293. }
  1294. static void swapexps (expdesc *e1, expdesc *e2) {
  1295. expdesc temp = *e1; *e1 = *e2; *e2 = temp; /* swap 'e1' and 'e2' */
  1296. }
  1297. /*
  1298. ** Code binary operators with no constant operand.
  1299. */
  1300. static void codebinNoK (FuncState *fs, BinOpr opr,
  1301. expdesc *e1, expdesc *e2, int flip, int line) {
  1302. if (flip)
  1303. swapexps(e1, e2); /* back to original order */
  1304. codebinexpval(fs, opr, e1, e2, line); /* use standard operators */
  1305. }
  1306. /*
  1307. ** Code arithmetic operators ('+', '-', ...). If second operand is a
  1308. ** constant in the proper range, use variant opcodes with K operands.
  1309. */
  1310. static void codearith (FuncState *fs, BinOpr opr,
  1311. expdesc *e1, expdesc *e2, int flip, int line) {
  1312. if (tonumeral(e2, NULL) && luaK_exp2K(fs, e2)) /* K operand? */
  1313. codebinK(fs, opr, e1, e2, flip, line);
  1314. else /* 'e2' is neither an immediate nor a K operand */
  1315. codebinNoK(fs, opr, e1, e2, flip, line);
  1316. }
  1317. /*
  1318. ** Code commutative operators ('+', '*'). If first operand is a
  1319. ** numeric constant, change order of operands to try to use an
  1320. ** immediate or K operator.
  1321. */
  1322. static void codecommutative (FuncState *fs, BinOpr op,
  1323. expdesc *e1, expdesc *e2, int line) {
  1324. int flip = 0;
  1325. if (tonumeral(e1, NULL)) { /* is first operand a numeric constant? */
  1326. swapexps(e1, e2); /* change order */
  1327. flip = 1;
  1328. }
  1329. if (op == OPR_ADD && isSCint(e2)) /* immediate operand? */
  1330. codebini(fs, OP_ADDI, e1, e2, flip, line, TM_ADD);
  1331. else
  1332. codearith(fs, op, e1, e2, flip, line);
  1333. }
  1334. /*
  1335. ** Code bitwise operations; they are all commutative, so the function
  1336. ** tries to put an integer constant as the 2nd operand (a K operand).
  1337. */
  1338. static void codebitwise (FuncState *fs, BinOpr opr,
  1339. expdesc *e1, expdesc *e2, int line) {
  1340. int flip = 0;
  1341. if (e1->k == VKINT) {
  1342. swapexps(e1, e2); /* 'e2' will be the constant operand */
  1343. flip = 1;
  1344. }
  1345. if (e2->k == VKINT && luaK_exp2K(fs, e2)) /* K operand? */
  1346. codebinK(fs, opr, e1, e2, flip, line);
  1347. else /* no constants */
  1348. codebinNoK(fs, opr, e1, e2, flip, line);
  1349. }
  1350. /*
  1351. ** Emit code for order comparisons. When using an immediate operand,
  1352. ** 'isfloat' tells whether the original value was a float.
  1353. */
  1354. static void codeorder (FuncState *fs, BinOpr opr, expdesc *e1, expdesc *e2) {
  1355. int r1, r2;
  1356. int im;
  1357. int isfloat = 0;
  1358. OpCode op;
  1359. if (isSCnumber(e2, &im, &isfloat)) {
  1360. /* use immediate operand */
  1361. r1 = luaK_exp2anyreg(fs, e1);
  1362. r2 = im;
  1363. op = binopr2op(opr, OPR_LT, OP_LTI);
  1364. }
  1365. else if (isSCnumber(e1, &im, &isfloat)) {
  1366. /* transform (A < B) to (B > A) and (A <= B) to (B >= A) */
  1367. r1 = luaK_exp2anyreg(fs, e2);
  1368. r2 = im;
  1369. op = binopr2op(opr, OPR_LT, OP_GTI);
  1370. }
  1371. else { /* regular case, compare two registers */
  1372. r1 = luaK_exp2anyreg(fs, e1);
  1373. r2 = luaK_exp2anyreg(fs, e2);
  1374. op = binopr2op(opr, OPR_LT, OP_LT);
  1375. }
  1376. freeexps(fs, e1, e2);
  1377. e1->u.info = condjump(fs, op, r1, r2, isfloat, 1);
  1378. e1->k = VJMP;
  1379. }
  1380. /*
  1381. ** Emit code for equality comparisons ('==', '~=').
  1382. ** 'e1' was already put as RK by 'luaK_infix'.
  1383. */
  1384. static void codeeq (FuncState *fs, BinOpr opr, expdesc *e1, expdesc *e2) {
  1385. int r1, r2;
  1386. int im;
  1387. int isfloat = 0; /* not needed here, but kept for symmetry */
  1388. OpCode op;
  1389. if (e1->k != VNONRELOC) {
  1390. lua_assert(e1->k == VK || e1->k == VKINT || e1->k == VKFLT);
  1391. swapexps(e1, e2);
  1392. }
  1393. r1 = luaK_exp2anyreg(fs, e1); /* 1st expression must be in register */
  1394. if (isSCnumber(e2, &im, &isfloat)) {
  1395. op = OP_EQI;
  1396. r2 = im; /* immediate operand */
  1397. }
  1398. else if (exp2RK(fs, e2)) { /* 2nd expression is constant? */
  1399. op = OP_EQK;
  1400. r2 = e2->u.info; /* constant index */
  1401. }
  1402. else {
  1403. op = OP_EQ; /* will compare two registers */
  1404. r2 = luaK_exp2anyreg(fs, e2);
  1405. }
  1406. freeexps(fs, e1, e2);
  1407. e1->u.info = condjump(fs, op, r1, r2, isfloat, (opr == OPR_EQ));
  1408. e1->k = VJMP;
  1409. }
  1410. /*
  1411. ** Apply prefix operation 'op' to expression 'e'.
  1412. */
  1413. void luaK_prefix (FuncState *fs, UnOpr opr, expdesc *e, int line) {
  1414. static const expdesc ef = {VKINT, {0}, NO_JUMP, NO_JUMP};
  1415. luaK_dischargevars(fs, e);
  1416. switch (opr) {
  1417. case OPR_MINUS: case OPR_BNOT: /* use 'ef' as fake 2nd operand */
  1418. if (constfolding(fs, opr + LUA_OPUNM, e, &ef))
  1419. break;
  1420. /* else */ /* FALLTHROUGH */
  1421. case OPR_LEN:
  1422. codeunexpval(fs, unopr2op(opr), e, line);
  1423. break;
  1424. case OPR_NOT: codenot(fs, e); break;
  1425. default: lua_assert(0);
  1426. }
  1427. }
  1428. /*
  1429. ** Process 1st operand 'v' of binary operation 'op' before reading
  1430. ** 2nd operand.
  1431. */
  1432. void luaK_infix (FuncState *fs, BinOpr op, expdesc *v) {
  1433. luaK_dischargevars(fs, v);
  1434. switch (op) {
  1435. case OPR_AND: {
  1436. luaK_goiftrue(fs, v); /* go ahead only if 'v' is true */
  1437. break;
  1438. }
  1439. case OPR_OR: {
  1440. luaK_goiffalse(fs, v); /* go ahead only if 'v' is false */
  1441. break;
  1442. }
  1443. case OPR_CONCAT: {
  1444. luaK_exp2nextreg(fs, v); /* operand must be on the stack */
  1445. break;
  1446. }
  1447. case OPR_ADD: case OPR_SUB:
  1448. case OPR_MUL: case OPR_DIV: case OPR_IDIV:
  1449. case OPR_MOD: case OPR_POW:
  1450. case OPR_BAND: case OPR_BOR: case OPR_BXOR:
  1451. case OPR_SHL: case OPR_SHR: {
  1452. if (!tonumeral(v, NULL))
  1453. luaK_exp2anyreg(fs, v);
  1454. /* else keep numeral, which may be folded or used as an immediate
  1455. operand */
  1456. break;
  1457. }
  1458. case OPR_EQ: case OPR_NE: {
  1459. if (!tonumeral(v, NULL))
  1460. exp2RK(fs, v);
  1461. /* else keep numeral, which may be an immediate operand */
  1462. break;
  1463. }
  1464. case OPR_LT: case OPR_LE:
  1465. case OPR_GT: case OPR_GE: {
  1466. int dummy, dummy2;
  1467. if (!isSCnumber(v, &dummy, &dummy2))
  1468. luaK_exp2anyreg(fs, v);
  1469. /* else keep numeral, which may be an immediate operand */
  1470. break;
  1471. }
  1472. default: lua_assert(0);
  1473. }
  1474. }
  1475. /*
  1476. ** Create code for '(e1 .. e2)'.
  1477. ** For '(e1 .. e2.1 .. e2.2)' (which is '(e1 .. (e2.1 .. e2.2))',
  1478. ** because concatenation is right associative), merge both CONCATs.
  1479. */
  1480. static void codeconcat (FuncState *fs, expdesc *e1, expdesc *e2, int line) {
  1481. Instruction *ie2 = previousinstruction(fs);
  1482. if (GET_OPCODE(*ie2) == OP_CONCAT) { /* is 'e2' a concatenation? */
  1483. int n = GETARG_B(*ie2); /* # of elements concatenated in 'e2' */
  1484. lua_assert(e1->u.info + 1 == GETARG_A(*ie2));
  1485. freeexp(fs, e2);
  1486. SETARG_A(*ie2, e1->u.info); /* correct first element ('e1') */
  1487. SETARG_B(*ie2, n + 1); /* will concatenate one more element */
  1488. }
  1489. else { /* 'e2' is not a concatenation */
  1490. luaK_codeABC(fs, OP_CONCAT, e1->u.info, 2, 0); /* new concat opcode */
  1491. freeexp(fs, e2);
  1492. luaK_fixline(fs, line);
  1493. }
  1494. }
  1495. /*
  1496. ** Finalize code for binary operation, after reading 2nd operand.
  1497. */
  1498. void luaK_posfix (FuncState *fs, BinOpr opr,
  1499. expdesc *e1, expdesc *e2, int line) {
  1500. luaK_dischargevars(fs, e2);
  1501. if (foldbinop(opr) && constfolding(fs, opr + LUA_OPADD, e1, e2))
  1502. return; /* done by folding */
  1503. switch (opr) {
  1504. case OPR_AND: {
  1505. lua_assert(e1->t == NO_JUMP); /* list closed by 'luaK_infix' */
  1506. luaK_concat(fs, &e2->f, e1->f);
  1507. *e1 = *e2;
  1508. break;
  1509. }
  1510. case OPR_OR: {
  1511. lua_assert(e1->f == NO_JUMP); /* list closed by 'luaK_infix' */
  1512. luaK_concat(fs, &e2->t, e1->t);
  1513. *e1 = *e2;
  1514. break;
  1515. }
  1516. case OPR_CONCAT: { /* e1 .. e2 */
  1517. luaK_exp2nextreg(fs, e2);
  1518. codeconcat(fs, e1, e2, line);
  1519. break;
  1520. }
  1521. case OPR_ADD: case OPR_MUL: {
  1522. codecommutative(fs, opr, e1, e2, line);
  1523. break;
  1524. }
  1525. case OPR_SUB: {
  1526. if (finishbinexpneg(fs, e1, e2, OP_ADDI, line, TM_SUB))
  1527. break; /* coded as (r1 + -I) */
  1528. /* ELSE */
  1529. } /* FALLTHROUGH */
  1530. case OPR_DIV: case OPR_IDIV: case OPR_MOD: case OPR_POW: {
  1531. codearith(fs, opr, e1, e2, 0, line);
  1532. break;
  1533. }
  1534. case OPR_BAND: case OPR_BOR: case OPR_BXOR: {
  1535. codebitwise(fs, opr, e1, e2, line);
  1536. break;
  1537. }
  1538. case OPR_SHL: {
  1539. if (isSCint(e1)) {
  1540. swapexps(e1, e2);
  1541. codebini(fs, OP_SHLI, e1, e2, 1, line, TM_SHL); /* I << r2 */
  1542. }
  1543. else if (finishbinexpneg(fs, e1, e2, OP_SHRI, line, TM_SHL)) {
  1544. /* coded as (r1 >> -I) */;
  1545. }
  1546. else /* regular case (two registers) */
  1547. codebinexpval(fs, opr, e1, e2, line);
  1548. break;
  1549. }
  1550. case OPR_SHR: {
  1551. if (isSCint(e2))
  1552. codebini(fs, OP_SHRI, e1, e2, 0, line, TM_SHR); /* r1 >> I */
  1553. else /* regular case (two registers) */
  1554. codebinexpval(fs, opr, e1, e2, line);
  1555. break;
  1556. }
  1557. case OPR_EQ: case OPR_NE: {
  1558. codeeq(fs, opr, e1, e2);
  1559. break;
  1560. }
  1561. case OPR_GT: case OPR_GE: {
  1562. /* '(a > b)' <=> '(b < a)'; '(a >= b)' <=> '(b <= a)' */
  1563. swapexps(e1, e2);
  1564. opr = cast(BinOpr, (opr - OPR_GT) + OPR_LT);
  1565. } /* FALLTHROUGH */
  1566. case OPR_LT: case OPR_LE: {
  1567. codeorder(fs, opr, e1, e2);
  1568. break;
  1569. }
  1570. default: lua_assert(0);
  1571. }
  1572. }
  1573. /*
  1574. ** Change line information associated with current position, by removing
  1575. ** previous info and adding it again with new line.
  1576. */
  1577. void luaK_fixline (FuncState *fs, int line) {
  1578. removelastlineinfo(fs);
  1579. savelineinfo(fs, fs->f, line);
  1580. }
  1581. void luaK_settablesize (FuncState *fs, int pc, int ra, int asize, int hsize) {
  1582. Instruction *inst = &fs->f->code[pc];
  1583. int rb = (hsize != 0) ? luaO_ceillog2(hsize) + 1 : 0; /* hash size */
  1584. int extra = asize / (MAXARG_C + 1); /* higher bits of array size */
  1585. int rc = asize % (MAXARG_C + 1); /* lower bits of array size */
  1586. int k = (extra > 0); /* true iff needs extra argument */
  1587. *inst = CREATE_ABCk(OP_NEWTABLE, ra, rb, rc, k);
  1588. *(inst + 1) = CREATE_Ax(OP_EXTRAARG, extra);
  1589. }
  1590. /*
  1591. ** Emit a SETLIST instruction.
  1592. ** 'base' is register that keeps table;
  1593. ** 'nelems' is #table plus those to be stored now;
  1594. ** 'tostore' is number of values (in registers 'base + 1',...) to add to
  1595. ** table (or LUA_MULTRET to add up to stack top).
  1596. */
  1597. void luaK_setlist (FuncState *fs, int base, int nelems, int tostore) {
  1598. lua_assert(tostore != 0 && tostore <= LFIELDS_PER_FLUSH);
  1599. if (tostore == LUA_MULTRET)
  1600. tostore = 0;
  1601. if (nelems <= MAXARG_C)
  1602. luaK_codeABC(fs, OP_SETLIST, base, tostore, nelems);
  1603. else {
  1604. int extra = nelems / (MAXARG_C + 1);
  1605. nelems %= (MAXARG_C + 1);
  1606. luaK_codeABCk(fs, OP_SETLIST, base, tostore, nelems, 1);
  1607. codeextraarg(fs, extra);
  1608. }
  1609. fs->freereg = base + 1; /* free registers with list values */
  1610. }
  1611. /*
  1612. ** return the final target of a jump (skipping jumps to jumps)
  1613. */
  1614. static int finaltarget (Instruction *code, int i) {
  1615. int count;
  1616. for (count = 0; count < 100; count++) { /* avoid infinite loops */
  1617. Instruction pc = code[i];
  1618. if (GET_OPCODE(pc) != OP_JMP)
  1619. break;
  1620. else
  1621. i += GETARG_sJ(pc) + 1;
  1622. }
  1623. return i;
  1624. }
  1625. /*
  1626. ** Do a final pass over the code of a function, doing small peephole
  1627. ** optimizations and adjustments.
  1628. */
  1629. void luaK_finish (FuncState *fs) {
  1630. int i;
  1631. Proto *p = fs->f;
  1632. for (i = 0; i < fs->pc; i++) {
  1633. Instruction *pc = &p->code[i];
  1634. lua_assert(i == 0 || isOT(*(pc - 1)) == isIT(*pc));
  1635. switch (GET_OPCODE(*pc)) {
  1636. case OP_RETURN0: case OP_RETURN1: {
  1637. if (!(fs->needclose || p->is_vararg))
  1638. break; /* no extra work */
  1639. /* else use OP_RETURN to do the extra work */
  1640. SET_OPCODE(*pc, OP_RETURN);
  1641. } /* FALLTHROUGH */
  1642. case OP_RETURN: case OP_TAILCALL: {
  1643. if (fs->needclose)
  1644. SETARG_k(*pc, 1); /* signal that it needs to close */
  1645. if (p->is_vararg)
  1646. SETARG_C(*pc, p->numparams + 1); /* signal that it is vararg */
  1647. break;
  1648. }
  1649. case OP_JMP: {
  1650. int target = finaltarget(p->code, i);
  1651. fixjump(fs, i, target);
  1652. break;
  1653. }
  1654. default: break;
  1655. }
  1656. }
  1657. }