// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// See the LICENSE file in the project root for more information.
using System.Diagnostics;
using System.Numerics;
using System.Runtime.CompilerServices;
using System.Runtime.Intrinsics;
using System.Runtime.Intrinsics.X86;
using Internal.Runtime.CompilerServices;
#if BIT64
using nint = System.Int64;
using nuint = System.UInt64;
#else // BIT64
using nint = System.Int32;
using nuint = System.UInt32;
#endif // BIT64
namespace System.Text
{
internal static partial class ASCIIUtility
{
#if DEBUG
static ASCIIUtility()
{
Debug.Assert(sizeof(nint) == IntPtr.Size && nint.MinValue < 0, "nint is defined incorrectly.");
Debug.Assert(sizeof(nuint) == IntPtr.Size && nuint.MinValue == 0, "nuint is defined incorrectly.");
}
#endif // DEBUG
[MethodImpl(MethodImplOptions.AggressiveInlining)]
private static bool AllBytesInUInt64AreAscii(ulong value)
{
// If the high bit of any byte is set, that byte is non-ASCII.
return ((value & UInt64HighBitsOnlyMask) == 0);
}
///
/// Returns iff all chars in are ASCII.
///
[MethodImpl(MethodImplOptions.AggressiveInlining)]
private static bool AllCharsInUInt32AreAscii(uint value)
{
return ((value & ~0x007F007Fu) == 0);
}
///
/// Returns iff all chars in are ASCII.
///
[MethodImpl(MethodImplOptions.AggressiveInlining)]
private static bool AllCharsInUInt64AreAscii(ulong value)
{
return ((value & ~0x007F007F_007F007Ful) == 0);
}
///
/// Given a DWORD which represents two packed chars in machine-endian order,
/// iff the first char (in machine-endian order) is ASCII.
///
///
///
private static bool FirstCharInUInt32IsAscii(uint value)
{
return (BitConverter.IsLittleEndian && (value & 0xFF80u) == 0)
|| (!BitConverter.IsLittleEndian && (value & 0xFF800000u) == 0);
}
///
/// Returns the index in where the first non-ASCII byte is found.
/// Returns if the buffer is empty or all-ASCII.
///
/// An ASCII byte is defined as 0x00 - 0x7F, inclusive.
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static unsafe nuint GetIndexOfFirstNonAsciiByte(byte* pBuffer, nuint bufferLength)
{
// If SSE2 is supported, use those specific intrinsics instead of the generic vectorized
// code below. This has two benefits: (a) we can take advantage of specific instructions like
// pmovmskb which we know are optimized, and (b) we can avoid downclocking the processor while
// this method is running.
return (Sse2.IsSupported)
? GetIndexOfFirstNonAsciiByte_Sse2(pBuffer, bufferLength)
: GetIndexOfFirstNonAsciiByte_Default(pBuffer, bufferLength);
}
private static unsafe nuint GetIndexOfFirstNonAsciiByte_Default(byte* pBuffer, nuint bufferLength)
{
// Squirrel away the original buffer reference. This method works by determining the exact
// byte reference where non-ASCII data begins, so we need this base value to perform the
// final subtraction at the end of the method to get the index into the original buffer.
byte* pOriginalBuffer = pBuffer;
// Before we drain off byte-by-byte, try a generic vectorized loop.
// Only run the loop if we have at least two vectors we can pull out.
// Note use of SBYTE instead of BYTE below; we're using the two's-complement
// representation of negative integers to act as a surrogate for "is ASCII?".
if (Vector.IsHardwareAccelerated && bufferLength >= 2 * (uint)Vector.Count)
{
uint SizeOfVectorInBytes = (uint)Vector.Count; // JIT will make this a const
if (Vector.GreaterThanOrEqualAll(Unsafe.ReadUnaligned>(pBuffer), Vector.Zero))
{
// The first several elements of the input buffer were ASCII. Bump up the pointer to the
// next aligned boundary, then perform aligned reads from here on out until we find non-ASCII
// data or we approach the end of the buffer. It's possible we'll reread data; this is ok.
byte* pFinalVectorReadPos = pBuffer + bufferLength - SizeOfVectorInBytes;
pBuffer = (byte*)(((nuint)pBuffer + SizeOfVectorInBytes) & ~(nuint)(SizeOfVectorInBytes - 1));
#if DEBUG
long numBytesRead = pBuffer - pOriginalBuffer;
Debug.Assert(0 < numBytesRead && numBytesRead <= SizeOfVectorInBytes, "We should've made forward progress of at least one byte.");
Debug.Assert((nuint)numBytesRead <= bufferLength, "We shouldn't have read past the end of the input buffer.");
#endif
Debug.Assert(pBuffer <= pFinalVectorReadPos, "Should be able to read at least one vector.");
do
{
Debug.Assert((nuint)pBuffer % SizeOfVectorInBytes == 0, "Vector read should be aligned.");
if (Vector.LessThanAny(Unsafe.Read>(pBuffer), Vector.Zero))
{
break; // found non-ASCII data
}
pBuffer += SizeOfVectorInBytes;
} while (pBuffer <= pFinalVectorReadPos);
// Adjust the remaining buffer length for the number of elements we just consumed.
bufferLength -= (nuint)pBuffer;
bufferLength += (nuint)pOriginalBuffer;
}
}
// At this point, the buffer length wasn't enough to perform a vectorized search, or we did perform
// a vectorized search and encountered non-ASCII data. In either case go down a non-vectorized code
// path to drain any remaining ASCII bytes.
//
// We're going to perform unaligned reads, so prefer 32-bit reads instead of 64-bit reads.
// This also allows us to perform more optimized bit twiddling tricks to count the number of ASCII bytes.
uint currentUInt32;
// Try reading 64 bits at a time in a loop.
for (; bufferLength >= 8; bufferLength -= 8)
{
currentUInt32 = Unsafe.ReadUnaligned(pBuffer);
uint nextUInt32 = Unsafe.ReadUnaligned(pBuffer + 4);
if (!AllBytesInUInt32AreAscii(currentUInt32 | nextUInt32))
{
// One of these two values contains non-ASCII bytes.
// Figure out which one it is, then put it in 'current' so that we can drain the ASCII bytes.
if (AllBytesInUInt32AreAscii(currentUInt32))
{
currentUInt32 = nextUInt32;
pBuffer += 4;
}
goto FoundNonAsciiData;
}
pBuffer += 8; // consumed 8 ASCII bytes
}
// From this point forward we don't need to update bufferLength.
// Try reading 32 bits.
if ((bufferLength & 4) != 0)
{
currentUInt32 = Unsafe.ReadUnaligned(pBuffer);
if (!AllBytesInUInt32AreAscii(currentUInt32))
{
goto FoundNonAsciiData;
}
pBuffer += 4;
}
// Try reading 16 bits.
if ((bufferLength & 2) != 0)
{
currentUInt32 = Unsafe.ReadUnaligned(pBuffer);
if (!AllBytesInUInt32AreAscii(currentUInt32))
{
goto FoundNonAsciiData;
}
pBuffer += 2;
}
// Try reading 8 bits
if ((bufferLength & 1) != 0)
{
// If the buffer contains non-ASCII data, the comparison below will fail, and
// we'll end up not incrementing the buffer reference.
if (*(sbyte*)pBuffer >= 0)
{
pBuffer++;
}
}
Finish:
nuint totalNumBytesRead = (nuint)pBuffer - (nuint)pOriginalBuffer;
return totalNumBytesRead;
FoundNonAsciiData:
Debug.Assert(!AllBytesInUInt32AreAscii(currentUInt32), "Shouldn't have reached this point if we have an all-ASCII input.");
// The method being called doesn't bother looking at whether the high byte is ASCII. There are only
// two scenarios: (a) either one of the earlier bytes is not ASCII and the search terminates before
// we get to the high byte; or (b) all of the earlier bytes are ASCII, so the high byte must be
// non-ASCII. In both cases we only care about the low 24 bits.
pBuffer += CountNumberOfLeadingAsciiBytesFromUInt32WithSomeNonAsciiData(currentUInt32);
goto Finish;
}
private static unsafe nuint GetIndexOfFirstNonAsciiByte_Sse2(byte* pBuffer, nuint bufferLength)
{
// JIT turns the below into constants
uint SizeOfVector128 = (uint)Unsafe.SizeOf>();
nuint MaskOfAllBitsInVector128 = (nuint)(SizeOfVector128 - 1);
Debug.Assert(Sse2.IsSupported, "Should've been checked by caller.");
Debug.Assert(BitConverter.IsLittleEndian, "SSE2 assumes little-endian.");
uint currentMask, secondMask;
byte* pOriginalBuffer = pBuffer;
// This method is written such that control generally flows top-to-bottom, avoiding
// jumps as much as possible in the optimistic case of a large enough buffer and
// "all ASCII". If we see non-ASCII data, we jump out of the hot paths to targets
// after all the main logic.
if (bufferLength < SizeOfVector128)
{
goto InputBufferLessThanOneVectorInLength; // can't vectorize; drain primitives instead
}
// Read the first vector unaligned.
currentMask = (uint)Sse2.MoveMask(Sse2.LoadVector128(pBuffer)); // unaligned load
if (currentMask != 0)
{
goto FoundNonAsciiDataInCurrentMask;
}
// If we have less than 32 bytes to process, just go straight to the final unaligned
// read. There's no need to mess with the loop logic in the middle of this method.
if (bufferLength < 2 * SizeOfVector128)
{
goto IncrementCurrentOffsetBeforeFinalUnalignedVectorRead;
}
// Now adjust the read pointer so that future reads are aligned.
pBuffer = (byte*)(((nuint)pBuffer + SizeOfVector128) & ~(nuint)MaskOfAllBitsInVector128);
#if DEBUG
long numBytesRead = pBuffer - pOriginalBuffer;
Debug.Assert(0 < numBytesRead && numBytesRead <= SizeOfVector128, "We should've made forward progress of at least one byte.");
Debug.Assert((nuint)numBytesRead <= bufferLength, "We shouldn't have read past the end of the input buffer.");
#endif
// Adjust the remaining length to account for what we just read.
bufferLength += (nuint)pOriginalBuffer;
bufferLength -= (nuint)pBuffer;
// The buffer is now properly aligned.
// Read 2 vectors at a time if possible.
if (bufferLength >= 2 * SizeOfVector128)
{
byte* pFinalVectorReadPos = (byte*)((nuint)pBuffer + bufferLength - 2 * SizeOfVector128);
// After this point, we no longer need to update the bufferLength value.
do
{
Vector128 firstVector = Sse2.LoadAlignedVector128(pBuffer);
Vector128 secondVector = Sse2.LoadAlignedVector128(pBuffer + SizeOfVector128);
currentMask = (uint)Sse2.MoveMask(firstVector);
secondMask = (uint)Sse2.MoveMask(secondVector);
if ((currentMask | secondMask) != 0)
{
goto FoundNonAsciiDataInInnerLoop;
}
pBuffer += 2 * SizeOfVector128;
} while (pBuffer <= pFinalVectorReadPos);
}
// We have somewhere between 0 and (2 * vector length) - 1 bytes remaining to read from.
// Since the above loop doesn't update bufferLength, we can't rely on its absolute value.
// But we _can_ rely on it to tell us how much remaining data must be drained by looking
// at what bits of it are set. This works because had we updated it within the loop above,
// we would've been adding 2 * SizeOfVector128 on each iteration, but we only care about
// bits which are less significant than those that the addition would've acted on.
// If there is fewer than one vector length remaining, skip the next aligned read.
if ((bufferLength & SizeOfVector128) == 0)
{
goto DoFinalUnalignedVectorRead;
}
// At least one full vector's worth of data remains, so we can safely read it.
// Remember, at this point pBuffer is still aligned.
currentMask = (uint)Sse2.MoveMask(Sse2.LoadAlignedVector128(pBuffer));
if (currentMask != 0)
{
goto FoundNonAsciiDataInCurrentMask;
}
IncrementCurrentOffsetBeforeFinalUnalignedVectorRead:
pBuffer += SizeOfVector128;
DoFinalUnalignedVectorRead:
if (((byte)bufferLength & MaskOfAllBitsInVector128) != 0)
{
// Perform an unaligned read of the last vector.
// We need to adjust the pointer because we're re-reading data.
pBuffer += (bufferLength & MaskOfAllBitsInVector128) - SizeOfVector128;
currentMask = (uint)Sse2.MoveMask(Sse2.LoadVector128(pBuffer)); // unaligned load
if (currentMask != 0)
{
goto FoundNonAsciiDataInCurrentMask;
}
pBuffer += SizeOfVector128;
}
Finish:
return (nuint)pBuffer - (nuint)pOriginalBuffer; // and we're done!
FoundNonAsciiDataInInnerLoop:
// If the current (first) mask isn't the mask that contains non-ASCII data, then it must
// instead be the second mask. If so, skip the entire first mask and drain ASCII bytes
// from the second mask.
if (currentMask == 0)
{
pBuffer += SizeOfVector128;
currentMask = secondMask;
}
FoundNonAsciiDataInCurrentMask:
// The mask contains - from the LSB - a 0 for each ASCII byte we saw, and a 1 for each non-ASCII byte.
// Tzcnt is the correct operation to count the number of zero bits quickly. If this instruction isn't
// available, we'll fall back to a normal loop.
Debug.Assert(currentMask != 0, "Shouldn't be here unless we see non-ASCII data.");
pBuffer += (uint)BitOperations.TrailingZeroCount(currentMask);
goto Finish;
FoundNonAsciiDataInCurrentDWord:
uint currentDWord;
Debug.Assert(!AllBytesInUInt32AreAscii(currentDWord), "Shouldn't be here unless we see non-ASCII data.");
pBuffer += CountNumberOfLeadingAsciiBytesFromUInt32WithSomeNonAsciiData(currentDWord);
goto Finish;
InputBufferLessThanOneVectorInLength:
// These code paths get hit if the original input length was less than one vector in size.
// We can't perform vectorized reads at this point, so we'll fall back to reading primitives
// directly. Note that all of these reads are unaligned.
Debug.Assert(bufferLength < SizeOfVector128);
// QWORD drain
if ((bufferLength & 8) != 0)
{
if (Bmi1.X64.IsSupported)
{
// If we can use 64-bit tzcnt to count the number of leading ASCII bytes, prefer it.
ulong candidateUInt64 = Unsafe.ReadUnaligned(pBuffer);
if (!AllBytesInUInt64AreAscii(candidateUInt64))
{
// Clear everything but the high bit of each byte, then tzcnt.
// Remember the / 8 at the end to convert bit count to byte count.
candidateUInt64 &= UInt64HighBitsOnlyMask;
pBuffer += (nuint)(Bmi1.X64.TrailingZeroCount(candidateUInt64) / 8);
goto Finish;
}
}
else
{
// If we can't use 64-bit tzcnt, no worries. We'll just do 2x 32-bit reads instead.
currentDWord = Unsafe.ReadUnaligned(pBuffer);
uint nextDWord = Unsafe.ReadUnaligned(pBuffer + 4);
if (!AllBytesInUInt32AreAscii(currentDWord | nextDWord))
{
// At least one of the values wasn't all-ASCII.
// We need to figure out which one it was and stick it in the currentMask local.
if (AllBytesInUInt32AreAscii(currentDWord))
{
currentDWord = nextDWord; // this one is the culprit
pBuffer += 4;
}
goto FoundNonAsciiDataInCurrentDWord;
}
}
pBuffer += 8; // successfully consumed 8 ASCII bytes
}
// DWORD drain
if ((bufferLength & 4) != 0)
{
currentDWord = Unsafe.ReadUnaligned(pBuffer);
if (!AllBytesInUInt32AreAscii(currentDWord))
{
goto FoundNonAsciiDataInCurrentDWord;
}
pBuffer += 4; // successfully consumed 4 ASCII bytes
}
// WORD drain
// (We movzx to a DWORD for ease of manipulation.)
if ((bufferLength & 2) != 0)
{
currentDWord = Unsafe.ReadUnaligned(pBuffer);
if (!AllBytesInUInt32AreAscii(currentDWord))
{
// We only care about the 0x0080 bit of the value. If it's not set, then we
// increment currentOffset by 1. If it's set, we don't increment it at all.
pBuffer += (nuint)((nint)(sbyte)currentDWord >> 7) + 1;
goto Finish;
}
pBuffer += 2; // successfully consumed 2 ASCII bytes
}
// BYTE drain
if ((bufferLength & 1) != 0)
{
// sbyte has non-negative value if byte is ASCII.
if (*(sbyte*)(pBuffer) >= 0)
{
pBuffer++; // successfully consumed a single byte
}
}
goto Finish;
}
///
/// Returns the index in where the first non-ASCII char is found.
/// Returns if the buffer is empty or all-ASCII.
///
/// An ASCII char is defined as 0x0000 - 0x007F, inclusive.
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static unsafe nuint GetIndexOfFirstNonAsciiChar(char* pBuffer, nuint bufferLength /* in chars */)
{
// If SSE2 is supported, use those specific intrinsics instead of the generic vectorized
// code below. This has two benefits: (a) we can take advantage of specific instructions like
// pmovmskb which we know are optimized, and (b) we can avoid downclocking the processor while
// this method is running.
return (Sse2.IsSupported)
? GetIndexOfFirstNonAsciiChar_Sse2(pBuffer, bufferLength)
: GetIndexOfFirstNonAsciiChar_Default(pBuffer, bufferLength);
}
private static unsafe nuint GetIndexOfFirstNonAsciiChar_Default(char* pBuffer, nuint bufferLength /* in chars */)
{
// Squirrel away the original buffer reference.This method works by determining the exact
// char reference where non-ASCII data begins, so we need this base value to perform the
// final subtraction at the end of the method to get the index into the original buffer.
char* pOriginalBuffer = pBuffer;
Debug.Assert(bufferLength <= nuint.MaxValue / sizeof(char));
// Before we drain off char-by-char, try a generic vectorized loop.
// Only run the loop if we have at least two vectors we can pull out.
if (Vector.IsHardwareAccelerated && bufferLength >= 2 * (uint)Vector.Count)
{
uint SizeOfVectorInChars = (uint)Vector.Count; // JIT will make this a const
uint SizeOfVectorInBytes = (uint)Vector.Count; // JIT will make this a const
Vector maxAscii = new Vector(0x007F);
if (Vector.LessThanOrEqualAll(Unsafe.ReadUnaligned>(pBuffer), maxAscii))
{
// The first several elements of the input buffer were ASCII. Bump up the pointer to the
// next aligned boundary, then perform aligned reads from here on out until we find non-ASCII
// data or we approach the end of the buffer. It's possible we'll reread data; this is ok.
char* pFinalVectorReadPos = pBuffer + bufferLength - SizeOfVectorInChars;
pBuffer = (char*)(((nuint)pBuffer + SizeOfVectorInBytes) & ~(nuint)(SizeOfVectorInBytes - 1));
#if DEBUG
long numCharsRead = pBuffer - pOriginalBuffer;
Debug.Assert(0 < numCharsRead && numCharsRead <= SizeOfVectorInChars, "We should've made forward progress of at least one char.");
Debug.Assert((nuint)numCharsRead <= bufferLength, "We shouldn't have read past the end of the input buffer.");
#endif
Debug.Assert(pBuffer <= pFinalVectorReadPos, "Should be able to read at least one vector.");
do
{
Debug.Assert((nuint)pBuffer % SizeOfVectorInChars == 0, "Vector read should be aligned.");
if (Vector.GreaterThanAny(Unsafe.Read>(pBuffer), maxAscii))
{
break; // found non-ASCII data
}
pBuffer += SizeOfVectorInChars;
} while (pBuffer <= pFinalVectorReadPos);
// Adjust the remaining buffer length for the number of elements we just consumed.
bufferLength -= ((nuint)pBuffer - (nuint)pOriginalBuffer) / sizeof(char);
}
}
// At this point, the buffer length wasn't enough to perform a vectorized search, or we did perform
// a vectorized search and encountered non-ASCII data. In either case go down a non-vectorized code
// path to drain any remaining ASCII chars.
//
// We're going to perform unaligned reads, so prefer 32-bit reads instead of 64-bit reads.
// This also allows us to perform more optimized bit twiddling tricks to count the number of ASCII chars.
uint currentUInt32;
// Try reading 64 bits at a time in a loop.
for (; bufferLength >= 4; bufferLength -= 4) // 64 bits = 4 * 16-bit chars
{
currentUInt32 = Unsafe.ReadUnaligned(pBuffer);
uint nextUInt32 = Unsafe.ReadUnaligned(pBuffer + 4 / sizeof(char));
if (!AllCharsInUInt32AreAscii(currentUInt32 | nextUInt32))
{
// One of these two values contains non-ASCII chars.
// Figure out which one it is, then put it in 'current' so that we can drain the ASCII chars.
if (AllCharsInUInt32AreAscii(currentUInt32))
{
currentUInt32 = nextUInt32;
pBuffer += 2;
}
goto FoundNonAsciiData;
}
pBuffer += 4; // consumed 4 ASCII chars
}
// From this point forward we don't need to keep track of the remaining buffer length.
// Try reading 32 bits.
if ((bufferLength & 2) != 0) // 32 bits = 2 * 16-bit chars
{
currentUInt32 = Unsafe.ReadUnaligned(pBuffer);
if (!AllCharsInUInt32AreAscii(currentUInt32))
{
goto FoundNonAsciiData;
}
pBuffer += 2;
}
// Try reading 16 bits.
// No need to try an 8-bit read after this since we're working with chars.
if ((bufferLength & 1) != 0)
{
// If the buffer contains non-ASCII data, the comparison below will fail, and
// we'll end up not incrementing the buffer reference.
if (*pBuffer <= 0x007F)
{
pBuffer++;
}
}
Finish:
nuint totalNumBytesRead = (nuint)pBuffer - (nuint)pOriginalBuffer;
Debug.Assert(totalNumBytesRead % sizeof(char) == 0, "Total number of bytes read should be even since we're working with chars.");
return totalNumBytesRead / sizeof(char); // convert byte count -> char count before returning
FoundNonAsciiData:
Debug.Assert(!AllCharsInUInt32AreAscii(currentUInt32), "Shouldn't have reached this point if we have an all-ASCII input.");
// We don't bother looking at the second char - only the first char.
if (FirstCharInUInt32IsAscii(currentUInt32))
{
pBuffer++;
}
goto Finish;
}
private static unsafe nuint GetIndexOfFirstNonAsciiChar_Sse2(char* pBuffer, nuint bufferLength /* in chars */)
{
// This method contains logic optimized for both SSE2 and SSE41. Much of the logic in this method
// will be elided by JIT once we determine which specific ISAs we support.
// Quick check for empty inputs.
if (bufferLength == 0)
{
return 0;
}
// JIT turns the below into constants
uint SizeOfVector128InBytes = (uint)Unsafe.SizeOf>();
uint SizeOfVector128InChars = SizeOfVector128InBytes / sizeof(char);
Debug.Assert(Sse2.IsSupported, "Should've been checked by caller.");
Debug.Assert(BitConverter.IsLittleEndian, "SSE2 assumes little-endian.");
Vector128 firstVector, secondVector;
uint currentMask;
char* pOriginalBuffer = pBuffer;
if (bufferLength < SizeOfVector128InChars)
{
goto InputBufferLessThanOneVectorInLength; // can't vectorize; drain primitives instead
}
// This method is written such that control generally flows top-to-bottom, avoiding
// jumps as much as possible in the optimistic case of "all ASCII". If we see non-ASCII
// data, we jump out of the hot paths to targets at the end of the method.
Vector128 asciiMaskForPTEST = Vector128.Create(unchecked((short)0xFF80)); // used for PTEST on supported hardware
Vector128 asciiMaskForPMINUW = Vector128.Create((ushort)0x0080); // used for PMINUW on supported hardware
Vector128 asciiMaskForPXOR = Vector128.Create(unchecked((short)0x8000)); // used for PXOR
Vector128 asciiMaskForPCMPGTW = Vector128.Create(unchecked((short)0x807F)); // used for PCMPGTW
Debug.Assert(bufferLength <= nuint.MaxValue / sizeof(char));
// Read the first vector unaligned.
firstVector = Sse2.LoadVector128((short*)pBuffer); // unaligned load
if (Sse41.IsSupported)
{
// The SSE41-optimized code path works by forcing the 0x0080 bit in each WORD of the vector to be
// set iff the WORD element has value >= 0x0080 (non-ASCII). Then we'll treat it as a BYTE vector
// in order to extract the mask.
currentMask = (uint)Sse2.MoveMask(Sse41.Min(firstVector.AsUInt16(), asciiMaskForPMINUW).AsByte());
}
else
{
// The SSE2-optimized code path works by forcing each WORD of the vector to be 0xFFFF iff the WORD
// element has value >= 0x0080 (non-ASCII). Then we'll treat it as a BYTE vector in order to extract
// the mask.
currentMask = (uint)Sse2.MoveMask(Sse2.CompareGreaterThan(Sse2.Xor(firstVector, asciiMaskForPXOR), asciiMaskForPCMPGTW).AsByte());
}
if (currentMask != 0)
{
goto FoundNonAsciiDataInCurrentMask;
}
// If we have less than 32 bytes to process, just go straight to the final unaligned
// read. There's no need to mess with the loop logic in the middle of this method.
// Adjust the remaining length to account for what we just read.
// For the remainder of this code path, bufferLength will be in bytes, not chars.
bufferLength <<= 1; // chars to bytes
if (bufferLength < 2 * SizeOfVector128InBytes)
{
goto IncrementCurrentOffsetBeforeFinalUnalignedVectorRead;
}
// Now adjust the read pointer so that future reads are aligned.
pBuffer = (char*)(((nuint)pBuffer + SizeOfVector128InBytes) & ~(nuint)(SizeOfVector128InBytes - 1));
#if DEBUG
long numCharsRead = pBuffer - pOriginalBuffer;
Debug.Assert(0 < numCharsRead && numCharsRead <= SizeOfVector128InChars, "We should've made forward progress of at least one char.");
Debug.Assert((nuint)numCharsRead <= bufferLength, "We shouldn't have read past the end of the input buffer.");
#endif
// Adjust remaining buffer length.
bufferLength += (nuint)pOriginalBuffer;
bufferLength -= (nuint)pBuffer;
// The buffer is now properly aligned.
// Read 2 vectors at a time if possible.
if (bufferLength >= 2 * SizeOfVector128InBytes)
{
char* pFinalVectorReadPos = (char*)((nuint)pBuffer + bufferLength - 2 * SizeOfVector128InBytes);
// After this point, we no longer need to update the bufferLength value.
do
{
firstVector = Sse2.LoadAlignedVector128((short*)pBuffer);
secondVector = Sse2.LoadAlignedVector128((short*)pBuffer + SizeOfVector128InChars);
Vector128 combinedVector = Sse2.Or(firstVector, secondVector);
if (Sse41.IsSupported)
{
// If a non-ASCII bit is set in any WORD of the combined vector, we have seen non-ASCII data.
// Jump to the non-ASCII handler to figure out which particular vector contained non-ASCII data.
if (!Sse41.TestZ(combinedVector, asciiMaskForPTEST))
{
goto FoundNonAsciiDataInFirstOrSecondVector;
}
}
else
{
// See comment earlier in the method for an explanation of how the below logic works.
if (Sse2.MoveMask(Sse2.CompareGreaterThan(Sse2.Xor(combinedVector, asciiMaskForPXOR), asciiMaskForPCMPGTW).AsByte()) != 0)
{
goto FoundNonAsciiDataInFirstOrSecondVector;
}
}
pBuffer += 2 * SizeOfVector128InChars;
} while (pBuffer <= pFinalVectorReadPos);
}
// We have somewhere between 0 and (2 * vector length) - 1 bytes remaining to read from.
// Since the above loop doesn't update bufferLength, we can't rely on its absolute value.
// But we _can_ rely on it to tell us how much remaining data must be drained by looking
// at what bits of it are set. This works because had we updated it within the loop above,
// we would've been adding 2 * SizeOfVector128 on each iteration, but we only care about
// bits which are less significant than those that the addition would've acted on.
// If there is fewer than one vector length remaining, skip the next aligned read.
// Remember, at this point bufferLength is measured in bytes, not chars.
if ((bufferLength & SizeOfVector128InBytes) == 0)
{
goto DoFinalUnalignedVectorRead;
}
// At least one full vector's worth of data remains, so we can safely read it.
// Remember, at this point pBuffer is still aligned.
firstVector = Sse2.LoadAlignedVector128((short*)pBuffer);
if (Sse41.IsSupported)
{
// If a non-ASCII bit is set in any WORD of the combined vector, we have seen non-ASCII data.
// Jump to the non-ASCII handler to figure out which particular vector contained non-ASCII data.
if (!Sse41.TestZ(firstVector, asciiMaskForPTEST))
{
goto FoundNonAsciiDataInFirstVector;
}
}
else
{
// See comment earlier in the method for an explanation of how the below logic works.
currentMask = (uint)Sse2.MoveMask(Sse2.CompareGreaterThan(Sse2.Xor(firstVector, asciiMaskForPXOR), asciiMaskForPCMPGTW).AsByte());
if (currentMask != 0)
{
goto FoundNonAsciiDataInCurrentMask;
}
}
IncrementCurrentOffsetBeforeFinalUnalignedVectorRead:
pBuffer += SizeOfVector128InChars;
DoFinalUnalignedVectorRead:
if (((byte)bufferLength & (SizeOfVector128InBytes - 1)) != 0)
{
// Perform an unaligned read of the last vector.
// We need to adjust the pointer because we're re-reading data.
pBuffer = (char*)((byte*)pBuffer + (bufferLength & (SizeOfVector128InBytes - 1)) - SizeOfVector128InBytes);
firstVector = Sse2.LoadVector128((short*)pBuffer); // unaligned load
if (Sse41.IsSupported)
{
// If a non-ASCII bit is set in any WORD of the combined vector, we have seen non-ASCII data.
// Jump to the non-ASCII handler to figure out which particular vector contained non-ASCII data.
if (!Sse41.TestZ(firstVector, asciiMaskForPTEST))
{
goto FoundNonAsciiDataInFirstVector;
}
}
else
{
// See comment earlier in the method for an explanation of how the below logic works.
currentMask = (uint)Sse2.MoveMask(Sse2.CompareGreaterThan(Sse2.Xor(firstVector, asciiMaskForPXOR), asciiMaskForPCMPGTW).AsByte());
if (currentMask != 0)
{
goto FoundNonAsciiDataInCurrentMask;
}
}
pBuffer += SizeOfVector128InChars;
}
Finish:
Debug.Assert(((nuint)pBuffer - (nuint)pOriginalBuffer) % 2 == 0, "Shouldn't have incremented any pointer by an odd byte count.");
return ((nuint)pBuffer - (nuint)pOriginalBuffer) / sizeof(char); // and we're done! (remember to adjust for char count)
FoundNonAsciiDataInFirstOrSecondVector:
// We don't know if the first or the second vector contains non-ASCII data. Check the first
// vector, and if that's all-ASCII then the second vector must be the culprit. Either way
// we'll make sure the first vector local is the one that contains the non-ASCII data.
// See comment earlier in the method for an explanation of how the below logic works.
if (Sse41.IsSupported)
{
if (!Sse41.TestZ(firstVector, asciiMaskForPTEST))
{
goto FoundNonAsciiDataInFirstVector;
}
}
else
{
currentMask = (uint)Sse2.MoveMask(Sse2.CompareGreaterThan(Sse2.Xor(firstVector, asciiMaskForPXOR), asciiMaskForPCMPGTW).AsByte());
if (currentMask != 0)
{
goto FoundNonAsciiDataInCurrentMask;
}
}
// Wasn't the first vector; must be the second.
pBuffer += SizeOfVector128InChars;
firstVector = secondVector;
FoundNonAsciiDataInFirstVector:
// See comment earlier in the method for an explanation of how the below logic works.
if (Sse41.IsSupported)
{
currentMask = (uint)Sse2.MoveMask(Sse41.Min(firstVector.AsUInt16(), asciiMaskForPMINUW).AsByte());
}
else
{
currentMask = (uint)Sse2.MoveMask(Sse2.CompareGreaterThan(Sse2.Xor(firstVector, asciiMaskForPXOR), asciiMaskForPCMPGTW).AsByte());
}
FoundNonAsciiDataInCurrentMask:
// The mask contains - from the LSB - a 0 for each ASCII byte we saw, and a 1 for each non-ASCII byte.
// Tzcnt is the correct operation to count the number of zero bits quickly. If this instruction isn't
// available, we'll fall back to a normal loop. (Even though the original vector used WORD elements,
// masks work on BYTE elements, and we account for this in the final fixup.)
Debug.Assert(currentMask != 0, "Shouldn't be here unless we see non-ASCII data.");
pBuffer = (char*)((byte*)pBuffer + (uint)BitOperations.TrailingZeroCount(currentMask));
goto Finish;
FoundNonAsciiDataInCurrentDWord:
uint currentDWord;
Debug.Assert(!AllCharsInUInt32AreAscii(currentDWord), "Shouldn't be here unless we see non-ASCII data.");
if (FirstCharInUInt32IsAscii(currentDWord))
{
pBuffer++; // skip past the ASCII char
}
goto Finish;
InputBufferLessThanOneVectorInLength:
// These code paths get hit if the original input length was less than one vector in size.
// We can't perform vectorized reads at this point, so we'll fall back to reading primitives
// directly. Note that all of these reads are unaligned.
// Reminder: If this code path is hit, bufferLength is still a char count, not a byte count.
// We skipped the code path that multiplied the count by sizeof(char).
Debug.Assert(bufferLength < SizeOfVector128InChars);
// QWORD drain
if ((bufferLength & 4) != 0)
{
if (Bmi1.X64.IsSupported)
{
// If we can use 64-bit tzcnt to count the number of leading ASCII chars, prefer it.
ulong candidateUInt64 = Unsafe.ReadUnaligned(pBuffer);
if (!AllCharsInUInt64AreAscii(candidateUInt64))
{
// Clear the low 7 bits (the ASCII bits) of each char, then tzcnt.
// Remember the / 8 at the end to convert bit count to byte count,
// then the & ~1 at the end to treat a match in the high byte of
// any char the same as a match in the low byte of that same char.
candidateUInt64 &= 0xFF80FF80_FF80FF80ul;
pBuffer = (char*)((byte*)pBuffer + ((nuint)(Bmi1.X64.TrailingZeroCount(candidateUInt64) / 8) & ~(nuint)1));
goto Finish;
}
}
else
{
// If we can't use 64-bit tzcnt, no worries. We'll just do 2x 32-bit reads instead.
currentDWord = Unsafe.ReadUnaligned(pBuffer);
uint nextDWord = Unsafe.ReadUnaligned(pBuffer + 4 / sizeof(char));
if (!AllCharsInUInt32AreAscii(currentDWord | nextDWord))
{
// At least one of the values wasn't all-ASCII.
// We need to figure out which one it was and stick it in the currentMask local.
if (AllCharsInUInt32AreAscii(currentDWord))
{
currentDWord = nextDWord; // this one is the culprit
pBuffer += 4 / sizeof(char);
}
goto FoundNonAsciiDataInCurrentDWord;
}
}
pBuffer += 4; // successfully consumed 4 ASCII chars
}
// DWORD drain
if ((bufferLength & 2) != 0)
{
currentDWord = Unsafe.ReadUnaligned(pBuffer);
if (!AllCharsInUInt32AreAscii(currentDWord))
{
goto FoundNonAsciiDataInCurrentDWord;
}
pBuffer += 2; // successfully consumed 2 ASCII chars
}
// WORD drain
// This is the final drain; there's no need for a BYTE drain since our elemental type is 16-bit char.
if ((bufferLength & 1) != 0)
{
if (*pBuffer <= 0x007F)
{
pBuffer++; // successfully consumed a single char
}
}
goto Finish;
}
///
/// Given a QWORD which represents a buffer of 4 ASCII chars in machine-endian order,
/// narrows each WORD to a BYTE, then writes the 4-byte result to the output buffer
/// also in machine-endian order.
///
[MethodImpl(MethodImplOptions.AggressiveInlining)]
private static void NarrowFourUtf16CharsToAsciiAndWriteToBuffer(ref byte outputBuffer, ulong value)
{
Debug.Assert(AllCharsInUInt64AreAscii(value));
if (Bmi2.X64.IsSupported)
{
// BMI2 will work regardless of the processor's endianness.
Unsafe.WriteUnaligned(ref outputBuffer, (uint)Bmi2.X64.ParallelBitExtract(value, 0x00FF00FF_00FF00FFul));
}
else
{
if (BitConverter.IsLittleEndian)
{
outputBuffer = (byte)value;
value >>= 16;
Unsafe.Add(ref outputBuffer, 1) = (byte)value;
value >>= 16;
Unsafe.Add(ref outputBuffer, 2) = (byte)value;
value >>= 16;
Unsafe.Add(ref outputBuffer, 3) = (byte)value;
}
else
{
Unsafe.Add(ref outputBuffer, 3) = (byte)value;
value >>= 16;
Unsafe.Add(ref outputBuffer, 2) = (byte)value;
value >>= 16;
Unsafe.Add(ref outputBuffer, 1) = (byte)value;
value >>= 16;
outputBuffer = (byte)value;
}
}
}
///
/// Given a DWORD which represents a buffer of 2 ASCII chars in machine-endian order,
/// narrows each WORD to a BYTE, then writes the 2-byte result to the output buffer also in
/// machine-endian order.
///
[MethodImpl(MethodImplOptions.AggressiveInlining)]
private static void NarrowTwoUtf16CharsToAsciiAndWriteToBuffer(ref byte outputBuffer, uint value)
{
Debug.Assert(AllCharsInUInt32AreAscii(value));
if (BitConverter.IsLittleEndian)
{
outputBuffer = (byte)value;
Unsafe.Add(ref outputBuffer, 1) = (byte)(value >> 16);
}
else
{
Unsafe.Add(ref outputBuffer, 1) = (byte)value;
outputBuffer = (byte)(value >> 16);
}
}
///
/// Copies as many ASCII characters (U+0000..U+007F) as possible from
/// to , stopping when the first non-ASCII character is encountered
/// or once elements have been converted. Returns the total number
/// of elements that were able to be converted.
///
public static unsafe nuint NarrowUtf16ToAscii(char* pUtf16Buffer, byte* pAsciiBuffer, nuint elementCount)
{
nuint currentOffset = 0;
uint utf16Data32BitsHigh = 0, utf16Data32BitsLow = 0;
ulong utf16Data64Bits = 0;
// If SSE2 is supported, use those specific intrinsics instead of the generic vectorized
// code below. This has two benefits: (a) we can take advantage of specific instructions like
// pmovmskb, ptest, vpminuw which we know are optimized, and (b) we can avoid downclocking the
// processor while this method is running.
if (Sse2.IsSupported)
{
Debug.Assert(BitConverter.IsLittleEndian, "Assume little endian if SSE2 is supported.");
if (elementCount >= 2 * (uint)Unsafe.SizeOf>())
{
// Since there's overhead to setting up the vectorized code path, we only want to
// call into it after a quick probe to ensure the next immediate characters really are ASCII.
// If we see non-ASCII data, we'll jump immediately to the draining logic at the end of the method.
if (IntPtr.Size >= 8)
{
utf16Data64Bits = Unsafe.ReadUnaligned(pUtf16Buffer);
if (!AllCharsInUInt64AreAscii(utf16Data64Bits))
{
goto FoundNonAsciiDataIn64BitRead;
}
}
else
{
utf16Data32BitsHigh = Unsafe.ReadUnaligned(pUtf16Buffer);
utf16Data32BitsLow = Unsafe.ReadUnaligned(pUtf16Buffer + 4 / sizeof(char));
if (!AllCharsInUInt32AreAscii(utf16Data32BitsHigh | utf16Data32BitsLow))
{
goto FoundNonAsciiDataIn64BitRead;
}
}
currentOffset = NarrowUtf16ToAscii_Sse2(pUtf16Buffer, pAsciiBuffer, elementCount);
}
}
else if (Vector.IsHardwareAccelerated)
{
uint SizeOfVector = (uint)Unsafe.SizeOf>(); // JIT will make this a const
// Only bother vectorizing if we have enough data to do so.
if (elementCount >= 2 * SizeOfVector)
{
// Since there's overhead to setting up the vectorized code path, we only want to
// call into it after a quick probe to ensure the next immediate characters really are ASCII.
// If we see non-ASCII data, we'll jump immediately to the draining logic at the end of the method.
if (IntPtr.Size >= 8)
{
utf16Data64Bits = Unsafe.ReadUnaligned(pUtf16Buffer);
if (!AllCharsInUInt64AreAscii(utf16Data64Bits))
{
goto FoundNonAsciiDataIn64BitRead;
}
}
else
{
utf16Data32BitsHigh = Unsafe.ReadUnaligned(pUtf16Buffer);
utf16Data32BitsLow = Unsafe.ReadUnaligned(pUtf16Buffer + 4 / sizeof(char));
if (!AllCharsInUInt32AreAscii(utf16Data32BitsHigh | utf16Data32BitsLow))
{
goto FoundNonAsciiDataIn64BitRead;
}
}
Vector maxAscii = new Vector(0x007F);
nuint finalOffsetWhereCanLoop = elementCount - 2 * SizeOfVector;
do
{
Vector utf16VectorHigh = Unsafe.ReadUnaligned>(pUtf16Buffer + currentOffset);
Vector utf16VectorLow = Unsafe.ReadUnaligned>(pUtf16Buffer + currentOffset + Vector.Count);
if (Vector.GreaterThanAny(Vector.BitwiseOr(utf16VectorHigh, utf16VectorLow), maxAscii))
{
break; // found non-ASCII data
}
// TODO: Is the below logic also valid for big-endian platforms?
Vector asciiVector = Vector.Narrow(utf16VectorHigh, utf16VectorLow);
Unsafe.WriteUnaligned>(pAsciiBuffer + currentOffset, asciiVector);
currentOffset += SizeOfVector;
} while (currentOffset <= finalOffsetWhereCanLoop);
}
}
Debug.Assert(currentOffset <= elementCount);
nuint remainingElementCount = elementCount - currentOffset;
// Try to narrow 64 bits -> 32 bits at a time.
// We needn't update remainingElementCount after this point.
if (remainingElementCount >= 4)
{
nuint finalOffsetWhereCanLoop = currentOffset + remainingElementCount - 4;
do
{
if (IntPtr.Size >= 8)
{
// Only perform QWORD reads on a 64-bit platform.
utf16Data64Bits = Unsafe.ReadUnaligned(pUtf16Buffer + currentOffset);
if (!AllCharsInUInt64AreAscii(utf16Data64Bits))
{
goto FoundNonAsciiDataIn64BitRead;
}
NarrowFourUtf16CharsToAsciiAndWriteToBuffer(ref pAsciiBuffer[currentOffset], utf16Data64Bits);
}
else
{
utf16Data32BitsHigh = Unsafe.ReadUnaligned(pUtf16Buffer + currentOffset);
utf16Data32BitsLow = Unsafe.ReadUnaligned(pUtf16Buffer + currentOffset + 4 / sizeof(char));
if (!AllCharsInUInt32AreAscii(utf16Data32BitsHigh | utf16Data32BitsLow))
{
goto FoundNonAsciiDataIn64BitRead;
}
NarrowTwoUtf16CharsToAsciiAndWriteToBuffer(ref pAsciiBuffer[currentOffset], utf16Data32BitsHigh);
NarrowTwoUtf16CharsToAsciiAndWriteToBuffer(ref pAsciiBuffer[currentOffset + 2], utf16Data32BitsLow);
}
currentOffset += 4;
} while (currentOffset <= finalOffsetWhereCanLoop);
}
// Try to narrow 32 bits -> 16 bits.
if (((uint)remainingElementCount & 2) != 0)
{
utf16Data32BitsHigh = Unsafe.ReadUnaligned(pUtf16Buffer + currentOffset);
if (!AllCharsInUInt32AreAscii(utf16Data32BitsHigh))
{
goto FoundNonAsciiDataInHigh32Bits;
}
NarrowTwoUtf16CharsToAsciiAndWriteToBuffer(ref pAsciiBuffer[currentOffset], utf16Data32BitsHigh);
currentOffset += 2;
}
// Try to narrow 16 bits -> 8 bits.
if (((uint)remainingElementCount & 1) != 0)
{
utf16Data32BitsHigh = pUtf16Buffer[currentOffset];
if (utf16Data32BitsHigh <= 0x007Fu)
{
pAsciiBuffer[currentOffset] = (byte)utf16Data32BitsHigh;
currentOffset++;
}
}
Finish:
return currentOffset;
FoundNonAsciiDataIn64BitRead:
if (IntPtr.Size >= 8)
{
// Try checking the first 32 bits of the buffer for non-ASCII data.
// Regardless, we'll move the non-ASCII data into the utf16Data32BitsHigh local.
if (BitConverter.IsLittleEndian)
{
utf16Data32BitsHigh = (uint)utf16Data64Bits;
}
else
{
utf16Data32BitsHigh = (uint)(utf16Data64Bits >> 32);
}
if (AllCharsInUInt32AreAscii(utf16Data32BitsHigh))
{
NarrowTwoUtf16CharsToAsciiAndWriteToBuffer(ref pAsciiBuffer[currentOffset], utf16Data32BitsHigh);
if (BitConverter.IsLittleEndian)
{
utf16Data32BitsHigh = (uint)(utf16Data64Bits >> 32);
}
else
{
utf16Data32BitsHigh = (uint)utf16Data64Bits;
}
currentOffset += 2;
}
}
else
{
// Need to determine if the high or the low 32-bit value contained non-ASCII data.
// Regardless, we'll move the non-ASCII data into the utf16Data32BitsHigh local.
if (AllCharsInUInt32AreAscii(utf16Data32BitsHigh))
{
NarrowTwoUtf16CharsToAsciiAndWriteToBuffer(ref pAsciiBuffer[currentOffset], utf16Data32BitsHigh);
utf16Data32BitsHigh = utf16Data32BitsLow;
currentOffset += 2;
}
}
FoundNonAsciiDataInHigh32Bits:
Debug.Assert(!AllCharsInUInt32AreAscii(utf16Data32BitsHigh), "Shouldn't have reached this point if we have an all-ASCII input.");
// There's at most one char that needs to be drained.
if (FirstCharInUInt32IsAscii(utf16Data32BitsHigh))
{
if (!BitConverter.IsLittleEndian)
{
utf16Data32BitsHigh >>= 16; // move high char down to low char
}
pAsciiBuffer[currentOffset] = (byte)utf16Data32BitsHigh;
currentOffset++;
}
goto Finish;
}
private static unsafe nuint NarrowUtf16ToAscii_Sse2(char* pUtf16Buffer, byte* pAsciiBuffer, nuint elementCount)
{
// This method contains logic optimized for both SSE2 and SSE41. Much of the logic in this method
// will be elided by JIT once we determine which specific ISAs we support.
// JIT turns the below into constants
uint SizeOfVector128 = (uint)Unsafe.SizeOf>();
nuint MaskOfAllBitsInVector128 = (nuint)(SizeOfVector128 - 1);
// This method is written such that control generally flows top-to-bottom, avoiding
// jumps as much as possible in the optimistic case of "all ASCII". If we see non-ASCII
// data, we jump out of the hot paths to targets at the end of the method.
Debug.Assert(Sse2.IsSupported);
Debug.Assert(BitConverter.IsLittleEndian);
Debug.Assert(elementCount >= 2 * SizeOfVector128);
Vector128 asciiMaskForPTEST = Vector128.Create(unchecked((short)0xFF80)); // used for PTEST on supported hardware
Vector128 asciiMaskForPXOR = Vector128.Create(unchecked((short)0x8000)); // used for PXOR
Vector128 asciiMaskForPCMPGTW = Vector128.Create(unchecked((short)0x807F)); // used for PCMPGTW
// First, perform an unaligned read of the first part of the input buffer.
Vector128 utf16VectorFirst = Sse2.LoadVector128((short*)pUtf16Buffer); // unaligned load
// If there's non-ASCII data in the first 8 elements of the vector, there's nothing we can do.
// See comments in GetIndexOfFirstNonAsciiChar_Sse2 for information about how this works.
if (Sse41.IsSupported)
{
if (!Sse41.TestZ(utf16VectorFirst, asciiMaskForPTEST))
{
return 0;
}
}
else
{
if (Sse2.MoveMask(Sse2.CompareGreaterThan(Sse2.Xor(utf16VectorFirst, asciiMaskForPXOR), asciiMaskForPCMPGTW).AsByte()) != 0)
{
return 0;
}
}
// Turn the 8 ASCII chars we just read into 8 ASCII bytes, then copy it to the destination.
Vector128 asciiVector = Sse2.PackUnsignedSaturate(utf16VectorFirst, utf16VectorFirst);
Sse2.StoreScalar((ulong*)pAsciiBuffer, asciiVector.AsUInt64()); // ulong* calculated here is UNALIGNED
nuint currentOffsetInElements = SizeOfVector128 / 2; // we processed 8 elements so far
// We're going to get the best performance when we have aligned writes, so we'll take the
// hit of potentially unaligned reads in order to hit this sweet spot.
// pAsciiBuffer points to the start of the destination buffer, immediately before where we wrote
// the 8 bytes previously. If the 0x08 bit is set at the pinned address, then the 8 bytes we wrote
// previously mean that the 0x08 bit is *not* set at address &pAsciiBuffer[SizeOfVector128 / 2]. In
// that case we can immediately back up to the previous aligned boundary and start the main loop.
// If the 0x08 bit is *not* set at the pinned address, then it means the 0x08 bit *is* set at
// address &pAsciiBuffer[SizeOfVector128 / 2], and we should perform one more 8-byte write to bump
// just past the next aligned boundary address.
if (((uint)pAsciiBuffer & (SizeOfVector128 / 2)) == 0)
{
// We need to perform one more partial vector write before we can get the alignment we want.
utf16VectorFirst = Sse2.LoadVector128((short*)pUtf16Buffer + currentOffsetInElements); // unaligned load
// See comments earlier in this method for information about how this works.
if (Sse41.IsSupported)
{
if (!Sse41.TestZ(utf16VectorFirst, asciiMaskForPTEST))
{
goto Finish;
}
}
else
{
if (Sse2.MoveMask(Sse2.CompareGreaterThan(Sse2.Xor(utf16VectorFirst, asciiMaskForPXOR), asciiMaskForPCMPGTW).AsByte()) != 0)
{
goto Finish;
}
}
// Turn the 8 ASCII chars we just read into 8 ASCII bytes, then copy it to the destination.
asciiVector = Sse2.PackUnsignedSaturate(utf16VectorFirst, utf16VectorFirst);
Sse2.StoreScalar((ulong*)(pAsciiBuffer + currentOffsetInElements), asciiVector.AsUInt64()); // ulong* calculated here is UNALIGNED
}
// Calculate how many elements we wrote in order to get pAsciiBuffer to its next alignment
// point, then use that as the base offset going forward.
currentOffsetInElements = SizeOfVector128 - ((nuint)pAsciiBuffer & MaskOfAllBitsInVector128);
Debug.Assert(0 < currentOffsetInElements && currentOffsetInElements <= SizeOfVector128, "We wrote at least 1 byte but no more than a whole vector.");
Debug.Assert(currentOffsetInElements <= elementCount, "Shouldn't have overrun the destination buffer.");
Debug.Assert(elementCount - currentOffsetInElements >= SizeOfVector128, "We should be able to run at least one whole vector.");
nuint finalOffsetWhereCanRunLoop = elementCount - SizeOfVector128;
do
{
// In a loop, perform two unaligned reads, narrow to a single vector, then aligned write one vector.
utf16VectorFirst = Sse2.LoadVector128((short*)pUtf16Buffer + currentOffsetInElements); // unaligned load
Vector128 utf16VectorSecond = Sse2.LoadVector128((short*)pUtf16Buffer + currentOffsetInElements + SizeOfVector128 / sizeof(short)); // unaligned load
Vector128 combinedVector = Sse2.Or(utf16VectorFirst, utf16VectorSecond);
// See comments in GetIndexOfFirstNonAsciiChar_Sse2 for information about how this works.
if (Sse41.IsSupported)
{
if (!Sse41.TestZ(combinedVector, asciiMaskForPTEST))
{
goto FoundNonAsciiDataInLoop;
}
}
else
{
if (Sse2.MoveMask(Sse2.CompareGreaterThan(Sse2.Xor(combinedVector, asciiMaskForPXOR), asciiMaskForPCMPGTW).AsByte()) != 0)
{
goto FoundNonAsciiDataInLoop;
}
}
// Build up the UTF-8 vector and perform the store.
asciiVector = Sse2.PackUnsignedSaturate(utf16VectorFirst, utf16VectorSecond);
Debug.Assert(((nuint)pAsciiBuffer + currentOffsetInElements) % SizeOfVector128 == 0, "Write should be aligned.");
Sse2.StoreAligned(pAsciiBuffer + currentOffsetInElements, asciiVector); // aligned
currentOffsetInElements += SizeOfVector128;
} while (currentOffsetInElements <= finalOffsetWhereCanRunLoop);
Finish:
// There might be some ASCII data left over. That's fine - we'll let our caller handle the final drain.
return currentOffsetInElements;
FoundNonAsciiDataInLoop:
// Can we at least narrow the high vector?
// See comments in GetIndexOfFirstNonAsciiChar_Sse2 for information about how this works.
if (Sse41.IsSupported)
{
if (!Sse41.TestZ(utf16VectorFirst, asciiMaskForPTEST))
{
goto Finish; // found non-ASCII data
}
}
else
{
if (Sse2.MoveMask(Sse2.CompareGreaterThan(Sse2.Xor(utf16VectorFirst, asciiMaskForPXOR), asciiMaskForPCMPGTW).AsByte()) != 0)
{
goto Finish; // found non-ASCII data
}
}
// First part was all ASCII, narrow and aligned write. Note we're only filling in the low half of the vector.
asciiVector = Sse2.PackUnsignedSaturate(utf16VectorFirst, utf16VectorFirst);
Debug.Assert(((nuint)pAsciiBuffer + currentOffsetInElements) % sizeof(ulong) == 0, "Destination should be ulong-aligned.");
Sse2.StoreScalar((ulong*)(pAsciiBuffer + currentOffsetInElements), asciiVector.AsUInt64()); // ulong* calculated here is aligned
currentOffsetInElements += SizeOfVector128 / 2;
goto Finish;
}
///
/// Copies as many ASCII bytes (00..7F) as possible from
/// to , stopping when the first non-ASCII byte is encountered
/// or once elements have been converted. Returns the total number
/// of elements that were able to be converted.
///
public static unsafe nuint WidenAsciiToUtf16(byte* pAsciiBuffer, char* pUtf16Buffer, nuint elementCount)
{
nuint currentOffset = 0;
// If SSE2 is supported, use those specific intrinsics instead of the generic vectorized
// code below. This has two benefits: (a) we can take advantage of specific instructions like
// pmovmskb which we know are optimized, and (b) we can avoid downclocking the processor while
// this method is running.
if (Sse2.IsSupported)
{
if (elementCount >= 2 * (uint)Unsafe.SizeOf>())
{
currentOffset = WidenAsciiToUtf16_Sse2(pAsciiBuffer, pUtf16Buffer, elementCount);
}
}
else if (Vector.IsHardwareAccelerated)
{
uint SizeOfVector = (uint)Unsafe.SizeOf>(); // JIT will make this a const
// Only bother vectorizing if we have enough data to do so.
if (elementCount >= SizeOfVector)
{
// Note use of SBYTE instead of BYTE below; we're using the two's-complement
// representation of negative integers to act as a surrogate for "is ASCII?".
nuint finalOffsetWhereCanLoop = elementCount - SizeOfVector;
do
{
Vector asciiVector = Unsafe.ReadUnaligned>(pAsciiBuffer + currentOffset);
if (Vector.LessThanAny(asciiVector, Vector.Zero))
{
break; // found non-ASCII data
}
Vector.Widen(Vector.AsVectorByte(asciiVector), out Vector utf16LowVector, out Vector utf16HighVector);
// TODO: Is the below logic also valid for big-endian platforms?
Unsafe.WriteUnaligned>(pUtf16Buffer + currentOffset, utf16LowVector);
Unsafe.WriteUnaligned>(pUtf16Buffer + currentOffset + Vector.Count, utf16HighVector);
currentOffset += SizeOfVector;
} while (currentOffset <= finalOffsetWhereCanLoop);
}
}
Debug.Assert(currentOffset <= elementCount);
nuint remainingElementCount = elementCount - currentOffset;
// Try to widen 32 bits -> 64 bits at a time.
// We needn't update remainingElementCount after this point.
uint asciiData;
if (remainingElementCount >= 4)
{
nuint finalOffsetWhereCanLoop = currentOffset + remainingElementCount - 4;
do
{
asciiData = Unsafe.ReadUnaligned(pAsciiBuffer + currentOffset);
if (!AllBytesInUInt32AreAscii(asciiData))
{
goto FoundNonAsciiData;
}
WidenFourAsciiBytesToUtf16AndWriteToBuffer(ref pUtf16Buffer[currentOffset], asciiData);
currentOffset += 4;
} while (currentOffset <= finalOffsetWhereCanLoop);
}
// Try to widen 16 bits -> 32 bits.
if (((uint)remainingElementCount & 2) != 0)
{
asciiData = Unsafe.ReadUnaligned(pAsciiBuffer + currentOffset);
if (!AllBytesInUInt32AreAscii(asciiData))
{
goto FoundNonAsciiData;
}
if (BitConverter.IsLittleEndian)
{
pUtf16Buffer[currentOffset] = (char)(byte)asciiData;
pUtf16Buffer[currentOffset + 1] = (char)(asciiData >> 8);
}
else
{
pUtf16Buffer[currentOffset + 1] = (char)(byte)asciiData;
pUtf16Buffer[currentOffset] = (char)(asciiData >> 8);
}
currentOffset += 2;
}
// Try to widen 8 bits -> 16 bits.
if (((uint)remainingElementCount & 1) != 0)
{
asciiData = pAsciiBuffer[currentOffset];
if (((byte)asciiData & 0x80) != 0)
{
goto Finish;
}
pUtf16Buffer[currentOffset] = (char)asciiData;
currentOffset += 1;
}
Finish:
return currentOffset;
FoundNonAsciiData:
Debug.Assert(!AllBytesInUInt32AreAscii(asciiData), "Shouldn't have reached this point if we have an all-ASCII input.");
// Drain ASCII bytes one at a time.
while (((byte)asciiData & 0x80) == 0)
{
pUtf16Buffer[currentOffset] = (char)(byte)asciiData;
currentOffset += 1;
asciiData >>= 8;
}
goto Finish;
}
private static unsafe nuint WidenAsciiToUtf16_Sse2(byte* pAsciiBuffer, char* pUtf16Buffer, nuint elementCount)
{
// JIT turns the below into constants
uint SizeOfVector128 = (uint)Unsafe.SizeOf>();
nuint MaskOfAllBitsInVector128 = (nuint)(SizeOfVector128 - 1);
// This method is written such that control generally flows top-to-bottom, avoiding
// jumps as much as possible in the optimistic case of "all ASCII". If we see non-ASCII
// data, we jump out of the hot paths to targets at the end of the method.
Debug.Assert(Sse2.IsSupported);
Debug.Assert(BitConverter.IsLittleEndian);
Debug.Assert(elementCount >= 2 * SizeOfVector128);
// We're going to get the best performance when we have aligned writes, so we'll take the
// hit of potentially unaligned reads in order to hit this sweet spot.
Vector128 asciiVector;
Vector128 utf16FirstHalfVector;
uint mask;
// First, perform an unaligned read of the first part of the input buffer.
asciiVector = Sse2.LoadVector128(pAsciiBuffer); // unaligned load
mask = (uint)Sse2.MoveMask(asciiVector);
// If there's non-ASCII data in the first 8 elements of the vector, there's nothing we can do.
if ((byte)mask != 0)
{
return 0;
}
// Then perform an unaligned write of the first part of the input buffer.
Vector128 zeroVector = Vector128.Zero;
utf16FirstHalfVector = Sse2.UnpackLow(asciiVector, zeroVector);
Sse2.Store((byte*)pUtf16Buffer, utf16FirstHalfVector); // unaligned
// Calculate how many elements we wrote in order to get pOutputBuffer to its next alignment
// point, then use that as the base offset going forward. Remember the >> 1 to account for
// that we wrote chars, not bytes. This means we may re-read data in the next iteration of
// the loop, but this is ok.
nuint currentOffset = (SizeOfVector128 >> 1) - (((nuint)pUtf16Buffer >> 1) & (MaskOfAllBitsInVector128 >> 1));
Debug.Assert(0 < currentOffset && currentOffset <= SizeOfVector128 / sizeof(char));
nuint finalOffsetWhereCanRunLoop = elementCount - SizeOfVector128;
do
{
// In a loop, perform an unaligned read, widen to two vectors, then aligned write the two vectors.
asciiVector = Sse2.LoadVector128(pAsciiBuffer + currentOffset); // unaligned load
mask = (uint)Sse2.MoveMask(asciiVector);
if (mask != 0)
{
// non-ASCII byte somewhere
goto NonAsciiDataSeenInInnerLoop;
}
byte* pStore = (byte*)(pUtf16Buffer + currentOffset);
Sse2.StoreAligned(pStore, Sse2.UnpackLow(asciiVector, zeroVector));
pStore += SizeOfVector128;
Sse2.StoreAligned(pStore, Sse2.UnpackHigh(asciiVector, zeroVector));
currentOffset += SizeOfVector128;
} while (currentOffset <= finalOffsetWhereCanRunLoop);
Finish:
return currentOffset;
NonAsciiDataSeenInInnerLoop:
// Can we at least widen the first part of the vector?
if ((byte)mask == 0)
{
// First part was all ASCII, widen
utf16FirstHalfVector = Sse2.UnpackLow(asciiVector, zeroVector);
Sse2.StoreAligned((byte*)(pUtf16Buffer + currentOffset), utf16FirstHalfVector);
currentOffset += SizeOfVector128 / 2;
}
goto Finish;
}
///
/// Given a DWORD which represents a buffer of 4 bytes, widens the buffer into 4 WORDs and
/// writes them to the output buffer with machine endianness.
///
[MethodImpl(MethodImplOptions.AggressiveInlining)]
private static void WidenFourAsciiBytesToUtf16AndWriteToBuffer(ref char outputBuffer, uint value)
{
Debug.Assert(AllBytesInUInt32AreAscii(value));
if (Bmi2.X64.IsSupported)
{
// BMI2 will work regardless of the processor's endianness.
Unsafe.WriteUnaligned(ref Unsafe.As(ref outputBuffer), Bmi2.X64.ParallelBitDeposit(value, 0x00FF00FF_00FF00FFul));
}
else
{
if (BitConverter.IsLittleEndian)
{
outputBuffer = (char)(byte)value;
value >>= 8;
Unsafe.Add(ref outputBuffer, 1) = (char)(byte)value;
value >>= 8;
Unsafe.Add(ref outputBuffer, 2) = (char)(byte)value;
value >>= 8;
Unsafe.Add(ref outputBuffer, 3) = (char)value;
}
else
{
Unsafe.Add(ref outputBuffer, 3) = (char)(byte)value;
value >>= 8;
Unsafe.Add(ref outputBuffer, 2) = (char)(byte)value;
value >>= 8;
Unsafe.Add(ref outputBuffer, 1) = (char)(byte)value;
value >>= 8;
outputBuffer = (char)value;
}
}
}
}
}