// Licensed to the .NET Foundation under one or more agreements. // The .NET Foundation licenses this file to you under the MIT license. // See the LICENSE file in the project root for more information. using System.Diagnostics; using System.Numerics; using System.Runtime.CompilerServices; using System.Runtime.Intrinsics; using System.Runtime.Intrinsics.X86; using Internal.Runtime.CompilerServices; #if BIT64 using nint = System.Int64; using nuint = System.UInt64; #else // BIT64 using nint = System.Int32; using nuint = System.UInt32; #endif // BIT64 namespace System.Text { internal static partial class ASCIIUtility { #if DEBUG static ASCIIUtility() { Debug.Assert(sizeof(nint) == IntPtr.Size && nint.MinValue < 0, "nint is defined incorrectly."); Debug.Assert(sizeof(nuint) == IntPtr.Size && nuint.MinValue == 0, "nuint is defined incorrectly."); } #endif // DEBUG [MethodImpl(MethodImplOptions.AggressiveInlining)] private static bool AllBytesInUInt64AreAscii(ulong value) { // If the high bit of any byte is set, that byte is non-ASCII. return ((value & UInt64HighBitsOnlyMask) == 0); } /// /// Returns iff all chars in are ASCII. /// [MethodImpl(MethodImplOptions.AggressiveInlining)] private static bool AllCharsInUInt32AreAscii(uint value) { return ((value & ~0x007F007Fu) == 0); } /// /// Returns iff all chars in are ASCII. /// [MethodImpl(MethodImplOptions.AggressiveInlining)] private static bool AllCharsInUInt64AreAscii(ulong value) { return ((value & ~0x007F007F_007F007Ful) == 0); } /// /// Given a DWORD which represents two packed chars in machine-endian order, /// iff the first char (in machine-endian order) is ASCII. /// /// /// private static bool FirstCharInUInt32IsAscii(uint value) { return (BitConverter.IsLittleEndian && (value & 0xFF80u) == 0) || (!BitConverter.IsLittleEndian && (value & 0xFF800000u) == 0); } /// /// Returns the index in where the first non-ASCII byte is found. /// Returns if the buffer is empty or all-ASCII. /// /// An ASCII byte is defined as 0x00 - 0x7F, inclusive. [MethodImpl(MethodImplOptions.AggressiveInlining)] public static unsafe nuint GetIndexOfFirstNonAsciiByte(byte* pBuffer, nuint bufferLength) { // If SSE2 is supported, use those specific intrinsics instead of the generic vectorized // code below. This has two benefits: (a) we can take advantage of specific instructions like // pmovmskb which we know are optimized, and (b) we can avoid downclocking the processor while // this method is running. return (Sse2.IsSupported) ? GetIndexOfFirstNonAsciiByte_Sse2(pBuffer, bufferLength) : GetIndexOfFirstNonAsciiByte_Default(pBuffer, bufferLength); } private static unsafe nuint GetIndexOfFirstNonAsciiByte_Default(byte* pBuffer, nuint bufferLength) { // Squirrel away the original buffer reference. This method works by determining the exact // byte reference where non-ASCII data begins, so we need this base value to perform the // final subtraction at the end of the method to get the index into the original buffer. byte* pOriginalBuffer = pBuffer; // Before we drain off byte-by-byte, try a generic vectorized loop. // Only run the loop if we have at least two vectors we can pull out. // Note use of SBYTE instead of BYTE below; we're using the two's-complement // representation of negative integers to act as a surrogate for "is ASCII?". if (Vector.IsHardwareAccelerated && bufferLength >= 2 * (uint)Vector.Count) { uint SizeOfVectorInBytes = (uint)Vector.Count; // JIT will make this a const if (Vector.GreaterThanOrEqualAll(Unsafe.ReadUnaligned>(pBuffer), Vector.Zero)) { // The first several elements of the input buffer were ASCII. Bump up the pointer to the // next aligned boundary, then perform aligned reads from here on out until we find non-ASCII // data or we approach the end of the buffer. It's possible we'll reread data; this is ok. byte* pFinalVectorReadPos = pBuffer + bufferLength - SizeOfVectorInBytes; pBuffer = (byte*)(((nuint)pBuffer + SizeOfVectorInBytes) & ~(nuint)(SizeOfVectorInBytes - 1)); #if DEBUG long numBytesRead = pBuffer - pOriginalBuffer; Debug.Assert(0 < numBytesRead && numBytesRead <= SizeOfVectorInBytes, "We should've made forward progress of at least one byte."); Debug.Assert((nuint)numBytesRead <= bufferLength, "We shouldn't have read past the end of the input buffer."); #endif Debug.Assert(pBuffer <= pFinalVectorReadPos, "Should be able to read at least one vector."); do { Debug.Assert((nuint)pBuffer % SizeOfVectorInBytes == 0, "Vector read should be aligned."); if (Vector.LessThanAny(Unsafe.Read>(pBuffer), Vector.Zero)) { break; // found non-ASCII data } pBuffer += SizeOfVectorInBytes; } while (pBuffer <= pFinalVectorReadPos); // Adjust the remaining buffer length for the number of elements we just consumed. bufferLength -= (nuint)pBuffer; bufferLength += (nuint)pOriginalBuffer; } } // At this point, the buffer length wasn't enough to perform a vectorized search, or we did perform // a vectorized search and encountered non-ASCII data. In either case go down a non-vectorized code // path to drain any remaining ASCII bytes. // // We're going to perform unaligned reads, so prefer 32-bit reads instead of 64-bit reads. // This also allows us to perform more optimized bit twiddling tricks to count the number of ASCII bytes. uint currentUInt32; // Try reading 64 bits at a time in a loop. for (; bufferLength >= 8; bufferLength -= 8) { currentUInt32 = Unsafe.ReadUnaligned(pBuffer); uint nextUInt32 = Unsafe.ReadUnaligned(pBuffer + 4); if (!AllBytesInUInt32AreAscii(currentUInt32 | nextUInt32)) { // One of these two values contains non-ASCII bytes. // Figure out which one it is, then put it in 'current' so that we can drain the ASCII bytes. if (AllBytesInUInt32AreAscii(currentUInt32)) { currentUInt32 = nextUInt32; pBuffer += 4; } goto FoundNonAsciiData; } pBuffer += 8; // consumed 8 ASCII bytes } // From this point forward we don't need to update bufferLength. // Try reading 32 bits. if ((bufferLength & 4) != 0) { currentUInt32 = Unsafe.ReadUnaligned(pBuffer); if (!AllBytesInUInt32AreAscii(currentUInt32)) { goto FoundNonAsciiData; } pBuffer += 4; } // Try reading 16 bits. if ((bufferLength & 2) != 0) { currentUInt32 = Unsafe.ReadUnaligned(pBuffer); if (!AllBytesInUInt32AreAscii(currentUInt32)) { goto FoundNonAsciiData; } pBuffer += 2; } // Try reading 8 bits if ((bufferLength & 1) != 0) { // If the buffer contains non-ASCII data, the comparison below will fail, and // we'll end up not incrementing the buffer reference. if (*(sbyte*)pBuffer >= 0) { pBuffer++; } } Finish: nuint totalNumBytesRead = (nuint)pBuffer - (nuint)pOriginalBuffer; return totalNumBytesRead; FoundNonAsciiData: Debug.Assert(!AllBytesInUInt32AreAscii(currentUInt32), "Shouldn't have reached this point if we have an all-ASCII input."); // The method being called doesn't bother looking at whether the high byte is ASCII. There are only // two scenarios: (a) either one of the earlier bytes is not ASCII and the search terminates before // we get to the high byte; or (b) all of the earlier bytes are ASCII, so the high byte must be // non-ASCII. In both cases we only care about the low 24 bits. pBuffer += CountNumberOfLeadingAsciiBytesFromUInt32WithSomeNonAsciiData(currentUInt32); goto Finish; } private static unsafe nuint GetIndexOfFirstNonAsciiByte_Sse2(byte* pBuffer, nuint bufferLength) { // JIT turns the below into constants uint SizeOfVector128 = (uint)Unsafe.SizeOf>(); nuint MaskOfAllBitsInVector128 = (nuint)(SizeOfVector128 - 1); Debug.Assert(Sse2.IsSupported, "Should've been checked by caller."); Debug.Assert(BitConverter.IsLittleEndian, "SSE2 assumes little-endian."); uint currentMask, secondMask; byte* pOriginalBuffer = pBuffer; // This method is written such that control generally flows top-to-bottom, avoiding // jumps as much as possible in the optimistic case of a large enough buffer and // "all ASCII". If we see non-ASCII data, we jump out of the hot paths to targets // after all the main logic. if (bufferLength < SizeOfVector128) { goto InputBufferLessThanOneVectorInLength; // can't vectorize; drain primitives instead } // Read the first vector unaligned. currentMask = (uint)Sse2.MoveMask(Sse2.LoadVector128(pBuffer)); // unaligned load if (currentMask != 0) { goto FoundNonAsciiDataInCurrentMask; } // If we have less than 32 bytes to process, just go straight to the final unaligned // read. There's no need to mess with the loop logic in the middle of this method. if (bufferLength < 2 * SizeOfVector128) { goto IncrementCurrentOffsetBeforeFinalUnalignedVectorRead; } // Now adjust the read pointer so that future reads are aligned. pBuffer = (byte*)(((nuint)pBuffer + SizeOfVector128) & ~(nuint)MaskOfAllBitsInVector128); #if DEBUG long numBytesRead = pBuffer - pOriginalBuffer; Debug.Assert(0 < numBytesRead && numBytesRead <= SizeOfVector128, "We should've made forward progress of at least one byte."); Debug.Assert((nuint)numBytesRead <= bufferLength, "We shouldn't have read past the end of the input buffer."); #endif // Adjust the remaining length to account for what we just read. bufferLength += (nuint)pOriginalBuffer; bufferLength -= (nuint)pBuffer; // The buffer is now properly aligned. // Read 2 vectors at a time if possible. if (bufferLength >= 2 * SizeOfVector128) { byte* pFinalVectorReadPos = (byte*)((nuint)pBuffer + bufferLength - 2 * SizeOfVector128); // After this point, we no longer need to update the bufferLength value. do { Vector128 firstVector = Sse2.LoadAlignedVector128(pBuffer); Vector128 secondVector = Sse2.LoadAlignedVector128(pBuffer + SizeOfVector128); currentMask = (uint)Sse2.MoveMask(firstVector); secondMask = (uint)Sse2.MoveMask(secondVector); if ((currentMask | secondMask) != 0) { goto FoundNonAsciiDataInInnerLoop; } pBuffer += 2 * SizeOfVector128; } while (pBuffer <= pFinalVectorReadPos); } // We have somewhere between 0 and (2 * vector length) - 1 bytes remaining to read from. // Since the above loop doesn't update bufferLength, we can't rely on its absolute value. // But we _can_ rely on it to tell us how much remaining data must be drained by looking // at what bits of it are set. This works because had we updated it within the loop above, // we would've been adding 2 * SizeOfVector128 on each iteration, but we only care about // bits which are less significant than those that the addition would've acted on. // If there is fewer than one vector length remaining, skip the next aligned read. if ((bufferLength & SizeOfVector128) == 0) { goto DoFinalUnalignedVectorRead; } // At least one full vector's worth of data remains, so we can safely read it. // Remember, at this point pBuffer is still aligned. currentMask = (uint)Sse2.MoveMask(Sse2.LoadAlignedVector128(pBuffer)); if (currentMask != 0) { goto FoundNonAsciiDataInCurrentMask; } IncrementCurrentOffsetBeforeFinalUnalignedVectorRead: pBuffer += SizeOfVector128; DoFinalUnalignedVectorRead: if (((byte)bufferLength & MaskOfAllBitsInVector128) != 0) { // Perform an unaligned read of the last vector. // We need to adjust the pointer because we're re-reading data. pBuffer += (bufferLength & MaskOfAllBitsInVector128) - SizeOfVector128; currentMask = (uint)Sse2.MoveMask(Sse2.LoadVector128(pBuffer)); // unaligned load if (currentMask != 0) { goto FoundNonAsciiDataInCurrentMask; } pBuffer += SizeOfVector128; } Finish: return (nuint)pBuffer - (nuint)pOriginalBuffer; // and we're done! FoundNonAsciiDataInInnerLoop: // If the current (first) mask isn't the mask that contains non-ASCII data, then it must // instead be the second mask. If so, skip the entire first mask and drain ASCII bytes // from the second mask. if (currentMask == 0) { pBuffer += SizeOfVector128; currentMask = secondMask; } FoundNonAsciiDataInCurrentMask: // The mask contains - from the LSB - a 0 for each ASCII byte we saw, and a 1 for each non-ASCII byte. // Tzcnt is the correct operation to count the number of zero bits quickly. If this instruction isn't // available, we'll fall back to a normal loop. Debug.Assert(currentMask != 0, "Shouldn't be here unless we see non-ASCII data."); pBuffer += (uint)BitOperations.TrailingZeroCount(currentMask); goto Finish; FoundNonAsciiDataInCurrentDWord: uint currentDWord; Debug.Assert(!AllBytesInUInt32AreAscii(currentDWord), "Shouldn't be here unless we see non-ASCII data."); pBuffer += CountNumberOfLeadingAsciiBytesFromUInt32WithSomeNonAsciiData(currentDWord); goto Finish; InputBufferLessThanOneVectorInLength: // These code paths get hit if the original input length was less than one vector in size. // We can't perform vectorized reads at this point, so we'll fall back to reading primitives // directly. Note that all of these reads are unaligned. Debug.Assert(bufferLength < SizeOfVector128); // QWORD drain if ((bufferLength & 8) != 0) { if (Bmi1.X64.IsSupported) { // If we can use 64-bit tzcnt to count the number of leading ASCII bytes, prefer it. ulong candidateUInt64 = Unsafe.ReadUnaligned(pBuffer); if (!AllBytesInUInt64AreAscii(candidateUInt64)) { // Clear everything but the high bit of each byte, then tzcnt. // Remember the / 8 at the end to convert bit count to byte count. candidateUInt64 &= UInt64HighBitsOnlyMask; pBuffer += (nuint)(Bmi1.X64.TrailingZeroCount(candidateUInt64) / 8); goto Finish; } } else { // If we can't use 64-bit tzcnt, no worries. We'll just do 2x 32-bit reads instead. currentDWord = Unsafe.ReadUnaligned(pBuffer); uint nextDWord = Unsafe.ReadUnaligned(pBuffer + 4); if (!AllBytesInUInt32AreAscii(currentDWord | nextDWord)) { // At least one of the values wasn't all-ASCII. // We need to figure out which one it was and stick it in the currentMask local. if (AllBytesInUInt32AreAscii(currentDWord)) { currentDWord = nextDWord; // this one is the culprit pBuffer += 4; } goto FoundNonAsciiDataInCurrentDWord; } } pBuffer += 8; // successfully consumed 8 ASCII bytes } // DWORD drain if ((bufferLength & 4) != 0) { currentDWord = Unsafe.ReadUnaligned(pBuffer); if (!AllBytesInUInt32AreAscii(currentDWord)) { goto FoundNonAsciiDataInCurrentDWord; } pBuffer += 4; // successfully consumed 4 ASCII bytes } // WORD drain // (We movzx to a DWORD for ease of manipulation.) if ((bufferLength & 2) != 0) { currentDWord = Unsafe.ReadUnaligned(pBuffer); if (!AllBytesInUInt32AreAscii(currentDWord)) { // We only care about the 0x0080 bit of the value. If it's not set, then we // increment currentOffset by 1. If it's set, we don't increment it at all. pBuffer += (nuint)((nint)(sbyte)currentDWord >> 7) + 1; goto Finish; } pBuffer += 2; // successfully consumed 2 ASCII bytes } // BYTE drain if ((bufferLength & 1) != 0) { // sbyte has non-negative value if byte is ASCII. if (*(sbyte*)(pBuffer) >= 0) { pBuffer++; // successfully consumed a single byte } } goto Finish; } /// /// Returns the index in where the first non-ASCII char is found. /// Returns if the buffer is empty or all-ASCII. /// /// An ASCII char is defined as 0x0000 - 0x007F, inclusive. [MethodImpl(MethodImplOptions.AggressiveInlining)] public static unsafe nuint GetIndexOfFirstNonAsciiChar(char* pBuffer, nuint bufferLength /* in chars */) { // If SSE2 is supported, use those specific intrinsics instead of the generic vectorized // code below. This has two benefits: (a) we can take advantage of specific instructions like // pmovmskb which we know are optimized, and (b) we can avoid downclocking the processor while // this method is running. return (Sse2.IsSupported) ? GetIndexOfFirstNonAsciiChar_Sse2(pBuffer, bufferLength) : GetIndexOfFirstNonAsciiChar_Default(pBuffer, bufferLength); } private static unsafe nuint GetIndexOfFirstNonAsciiChar_Default(char* pBuffer, nuint bufferLength /* in chars */) { // Squirrel away the original buffer reference.This method works by determining the exact // char reference where non-ASCII data begins, so we need this base value to perform the // final subtraction at the end of the method to get the index into the original buffer. char* pOriginalBuffer = pBuffer; Debug.Assert(bufferLength <= nuint.MaxValue / sizeof(char)); // Before we drain off char-by-char, try a generic vectorized loop. // Only run the loop if we have at least two vectors we can pull out. if (Vector.IsHardwareAccelerated && bufferLength >= 2 * (uint)Vector.Count) { uint SizeOfVectorInChars = (uint)Vector.Count; // JIT will make this a const uint SizeOfVectorInBytes = (uint)Vector.Count; // JIT will make this a const Vector maxAscii = new Vector(0x007F); if (Vector.LessThanOrEqualAll(Unsafe.ReadUnaligned>(pBuffer), maxAscii)) { // The first several elements of the input buffer were ASCII. Bump up the pointer to the // next aligned boundary, then perform aligned reads from here on out until we find non-ASCII // data or we approach the end of the buffer. It's possible we'll reread data; this is ok. char* pFinalVectorReadPos = pBuffer + bufferLength - SizeOfVectorInChars; pBuffer = (char*)(((nuint)pBuffer + SizeOfVectorInBytes) & ~(nuint)(SizeOfVectorInBytes - 1)); #if DEBUG long numCharsRead = pBuffer - pOriginalBuffer; Debug.Assert(0 < numCharsRead && numCharsRead <= SizeOfVectorInChars, "We should've made forward progress of at least one char."); Debug.Assert((nuint)numCharsRead <= bufferLength, "We shouldn't have read past the end of the input buffer."); #endif Debug.Assert(pBuffer <= pFinalVectorReadPos, "Should be able to read at least one vector."); do { Debug.Assert((nuint)pBuffer % SizeOfVectorInChars == 0, "Vector read should be aligned."); if (Vector.GreaterThanAny(Unsafe.Read>(pBuffer), maxAscii)) { break; // found non-ASCII data } pBuffer += SizeOfVectorInChars; } while (pBuffer <= pFinalVectorReadPos); // Adjust the remaining buffer length for the number of elements we just consumed. bufferLength -= ((nuint)pBuffer - (nuint)pOriginalBuffer) / sizeof(char); } } // At this point, the buffer length wasn't enough to perform a vectorized search, or we did perform // a vectorized search and encountered non-ASCII data. In either case go down a non-vectorized code // path to drain any remaining ASCII chars. // // We're going to perform unaligned reads, so prefer 32-bit reads instead of 64-bit reads. // This also allows us to perform more optimized bit twiddling tricks to count the number of ASCII chars. uint currentUInt32; // Try reading 64 bits at a time in a loop. for (; bufferLength >= 4; bufferLength -= 4) // 64 bits = 4 * 16-bit chars { currentUInt32 = Unsafe.ReadUnaligned(pBuffer); uint nextUInt32 = Unsafe.ReadUnaligned(pBuffer + 4 / sizeof(char)); if (!AllCharsInUInt32AreAscii(currentUInt32 | nextUInt32)) { // One of these two values contains non-ASCII chars. // Figure out which one it is, then put it in 'current' so that we can drain the ASCII chars. if (AllCharsInUInt32AreAscii(currentUInt32)) { currentUInt32 = nextUInt32; pBuffer += 2; } goto FoundNonAsciiData; } pBuffer += 4; // consumed 4 ASCII chars } // From this point forward we don't need to keep track of the remaining buffer length. // Try reading 32 bits. if ((bufferLength & 2) != 0) // 32 bits = 2 * 16-bit chars { currentUInt32 = Unsafe.ReadUnaligned(pBuffer); if (!AllCharsInUInt32AreAscii(currentUInt32)) { goto FoundNonAsciiData; } pBuffer += 2; } // Try reading 16 bits. // No need to try an 8-bit read after this since we're working with chars. if ((bufferLength & 1) != 0) { // If the buffer contains non-ASCII data, the comparison below will fail, and // we'll end up not incrementing the buffer reference. if (*pBuffer <= 0x007F) { pBuffer++; } } Finish: nuint totalNumBytesRead = (nuint)pBuffer - (nuint)pOriginalBuffer; Debug.Assert(totalNumBytesRead % sizeof(char) == 0, "Total number of bytes read should be even since we're working with chars."); return totalNumBytesRead / sizeof(char); // convert byte count -> char count before returning FoundNonAsciiData: Debug.Assert(!AllCharsInUInt32AreAscii(currentUInt32), "Shouldn't have reached this point if we have an all-ASCII input."); // We don't bother looking at the second char - only the first char. if (FirstCharInUInt32IsAscii(currentUInt32)) { pBuffer++; } goto Finish; } private static unsafe nuint GetIndexOfFirstNonAsciiChar_Sse2(char* pBuffer, nuint bufferLength /* in chars */) { // This method contains logic optimized for both SSE2 and SSE41. Much of the logic in this method // will be elided by JIT once we determine which specific ISAs we support. // Quick check for empty inputs. if (bufferLength == 0) { return 0; } // JIT turns the below into constants uint SizeOfVector128InBytes = (uint)Unsafe.SizeOf>(); uint SizeOfVector128InChars = SizeOfVector128InBytes / sizeof(char); Debug.Assert(Sse2.IsSupported, "Should've been checked by caller."); Debug.Assert(BitConverter.IsLittleEndian, "SSE2 assumes little-endian."); Vector128 firstVector, secondVector; uint currentMask; char* pOriginalBuffer = pBuffer; if (bufferLength < SizeOfVector128InChars) { goto InputBufferLessThanOneVectorInLength; // can't vectorize; drain primitives instead } // This method is written such that control generally flows top-to-bottom, avoiding // jumps as much as possible in the optimistic case of "all ASCII". If we see non-ASCII // data, we jump out of the hot paths to targets at the end of the method. Vector128 asciiMaskForPTEST = Vector128.Create(unchecked((short)0xFF80)); // used for PTEST on supported hardware Vector128 asciiMaskForPMINUW = Vector128.Create((ushort)0x0080); // used for PMINUW on supported hardware Vector128 asciiMaskForPXOR = Vector128.Create(unchecked((short)0x8000)); // used for PXOR Vector128 asciiMaskForPCMPGTW = Vector128.Create(unchecked((short)0x807F)); // used for PCMPGTW Debug.Assert(bufferLength <= nuint.MaxValue / sizeof(char)); // Read the first vector unaligned. firstVector = Sse2.LoadVector128((short*)pBuffer); // unaligned load if (Sse41.IsSupported) { // The SSE41-optimized code path works by forcing the 0x0080 bit in each WORD of the vector to be // set iff the WORD element has value >= 0x0080 (non-ASCII). Then we'll treat it as a BYTE vector // in order to extract the mask. currentMask = (uint)Sse2.MoveMask(Sse41.Min(firstVector.AsUInt16(), asciiMaskForPMINUW).AsByte()); } else { // The SSE2-optimized code path works by forcing each WORD of the vector to be 0xFFFF iff the WORD // element has value >= 0x0080 (non-ASCII). Then we'll treat it as a BYTE vector in order to extract // the mask. currentMask = (uint)Sse2.MoveMask(Sse2.CompareGreaterThan(Sse2.Xor(firstVector, asciiMaskForPXOR), asciiMaskForPCMPGTW).AsByte()); } if (currentMask != 0) { goto FoundNonAsciiDataInCurrentMask; } // If we have less than 32 bytes to process, just go straight to the final unaligned // read. There's no need to mess with the loop logic in the middle of this method. // Adjust the remaining length to account for what we just read. // For the remainder of this code path, bufferLength will be in bytes, not chars. bufferLength <<= 1; // chars to bytes if (bufferLength < 2 * SizeOfVector128InBytes) { goto IncrementCurrentOffsetBeforeFinalUnalignedVectorRead; } // Now adjust the read pointer so that future reads are aligned. pBuffer = (char*)(((nuint)pBuffer + SizeOfVector128InBytes) & ~(nuint)(SizeOfVector128InBytes - 1)); #if DEBUG long numCharsRead = pBuffer - pOriginalBuffer; Debug.Assert(0 < numCharsRead && numCharsRead <= SizeOfVector128InChars, "We should've made forward progress of at least one char."); Debug.Assert((nuint)numCharsRead <= bufferLength, "We shouldn't have read past the end of the input buffer."); #endif // Adjust remaining buffer length. bufferLength += (nuint)pOriginalBuffer; bufferLength -= (nuint)pBuffer; // The buffer is now properly aligned. // Read 2 vectors at a time if possible. if (bufferLength >= 2 * SizeOfVector128InBytes) { char* pFinalVectorReadPos = (char*)((nuint)pBuffer + bufferLength - 2 * SizeOfVector128InBytes); // After this point, we no longer need to update the bufferLength value. do { firstVector = Sse2.LoadAlignedVector128((short*)pBuffer); secondVector = Sse2.LoadAlignedVector128((short*)pBuffer + SizeOfVector128InChars); Vector128 combinedVector = Sse2.Or(firstVector, secondVector); if (Sse41.IsSupported) { // If a non-ASCII bit is set in any WORD of the combined vector, we have seen non-ASCII data. // Jump to the non-ASCII handler to figure out which particular vector contained non-ASCII data. if (!Sse41.TestZ(combinedVector, asciiMaskForPTEST)) { goto FoundNonAsciiDataInFirstOrSecondVector; } } else { // See comment earlier in the method for an explanation of how the below logic works. if (Sse2.MoveMask(Sse2.CompareGreaterThan(Sse2.Xor(combinedVector, asciiMaskForPXOR), asciiMaskForPCMPGTW).AsByte()) != 0) { goto FoundNonAsciiDataInFirstOrSecondVector; } } pBuffer += 2 * SizeOfVector128InChars; } while (pBuffer <= pFinalVectorReadPos); } // We have somewhere between 0 and (2 * vector length) - 1 bytes remaining to read from. // Since the above loop doesn't update bufferLength, we can't rely on its absolute value. // But we _can_ rely on it to tell us how much remaining data must be drained by looking // at what bits of it are set. This works because had we updated it within the loop above, // we would've been adding 2 * SizeOfVector128 on each iteration, but we only care about // bits which are less significant than those that the addition would've acted on. // If there is fewer than one vector length remaining, skip the next aligned read. // Remember, at this point bufferLength is measured in bytes, not chars. if ((bufferLength & SizeOfVector128InBytes) == 0) { goto DoFinalUnalignedVectorRead; } // At least one full vector's worth of data remains, so we can safely read it. // Remember, at this point pBuffer is still aligned. firstVector = Sse2.LoadAlignedVector128((short*)pBuffer); if (Sse41.IsSupported) { // If a non-ASCII bit is set in any WORD of the combined vector, we have seen non-ASCII data. // Jump to the non-ASCII handler to figure out which particular vector contained non-ASCII data. if (!Sse41.TestZ(firstVector, asciiMaskForPTEST)) { goto FoundNonAsciiDataInFirstVector; } } else { // See comment earlier in the method for an explanation of how the below logic works. currentMask = (uint)Sse2.MoveMask(Sse2.CompareGreaterThan(Sse2.Xor(firstVector, asciiMaskForPXOR), asciiMaskForPCMPGTW).AsByte()); if (currentMask != 0) { goto FoundNonAsciiDataInCurrentMask; } } IncrementCurrentOffsetBeforeFinalUnalignedVectorRead: pBuffer += SizeOfVector128InChars; DoFinalUnalignedVectorRead: if (((byte)bufferLength & (SizeOfVector128InBytes - 1)) != 0) { // Perform an unaligned read of the last vector. // We need to adjust the pointer because we're re-reading data. pBuffer = (char*)((byte*)pBuffer + (bufferLength & (SizeOfVector128InBytes - 1)) - SizeOfVector128InBytes); firstVector = Sse2.LoadVector128((short*)pBuffer); // unaligned load if (Sse41.IsSupported) { // If a non-ASCII bit is set in any WORD of the combined vector, we have seen non-ASCII data. // Jump to the non-ASCII handler to figure out which particular vector contained non-ASCII data. if (!Sse41.TestZ(firstVector, asciiMaskForPTEST)) { goto FoundNonAsciiDataInFirstVector; } } else { // See comment earlier in the method for an explanation of how the below logic works. currentMask = (uint)Sse2.MoveMask(Sse2.CompareGreaterThan(Sse2.Xor(firstVector, asciiMaskForPXOR), asciiMaskForPCMPGTW).AsByte()); if (currentMask != 0) { goto FoundNonAsciiDataInCurrentMask; } } pBuffer += SizeOfVector128InChars; } Finish: Debug.Assert(((nuint)pBuffer - (nuint)pOriginalBuffer) % 2 == 0, "Shouldn't have incremented any pointer by an odd byte count."); return ((nuint)pBuffer - (nuint)pOriginalBuffer) / sizeof(char); // and we're done! (remember to adjust for char count) FoundNonAsciiDataInFirstOrSecondVector: // We don't know if the first or the second vector contains non-ASCII data. Check the first // vector, and if that's all-ASCII then the second vector must be the culprit. Either way // we'll make sure the first vector local is the one that contains the non-ASCII data. // See comment earlier in the method for an explanation of how the below logic works. if (Sse41.IsSupported) { if (!Sse41.TestZ(firstVector, asciiMaskForPTEST)) { goto FoundNonAsciiDataInFirstVector; } } else { currentMask = (uint)Sse2.MoveMask(Sse2.CompareGreaterThan(Sse2.Xor(firstVector, asciiMaskForPXOR), asciiMaskForPCMPGTW).AsByte()); if (currentMask != 0) { goto FoundNonAsciiDataInCurrentMask; } } // Wasn't the first vector; must be the second. pBuffer += SizeOfVector128InChars; firstVector = secondVector; FoundNonAsciiDataInFirstVector: // See comment earlier in the method for an explanation of how the below logic works. if (Sse41.IsSupported) { currentMask = (uint)Sse2.MoveMask(Sse41.Min(firstVector.AsUInt16(), asciiMaskForPMINUW).AsByte()); } else { currentMask = (uint)Sse2.MoveMask(Sse2.CompareGreaterThan(Sse2.Xor(firstVector, asciiMaskForPXOR), asciiMaskForPCMPGTW).AsByte()); } FoundNonAsciiDataInCurrentMask: // The mask contains - from the LSB - a 0 for each ASCII byte we saw, and a 1 for each non-ASCII byte. // Tzcnt is the correct operation to count the number of zero bits quickly. If this instruction isn't // available, we'll fall back to a normal loop. (Even though the original vector used WORD elements, // masks work on BYTE elements, and we account for this in the final fixup.) Debug.Assert(currentMask != 0, "Shouldn't be here unless we see non-ASCII data."); pBuffer = (char*)((byte*)pBuffer + (uint)BitOperations.TrailingZeroCount(currentMask)); goto Finish; FoundNonAsciiDataInCurrentDWord: uint currentDWord; Debug.Assert(!AllCharsInUInt32AreAscii(currentDWord), "Shouldn't be here unless we see non-ASCII data."); if (FirstCharInUInt32IsAscii(currentDWord)) { pBuffer++; // skip past the ASCII char } goto Finish; InputBufferLessThanOneVectorInLength: // These code paths get hit if the original input length was less than one vector in size. // We can't perform vectorized reads at this point, so we'll fall back to reading primitives // directly. Note that all of these reads are unaligned. // Reminder: If this code path is hit, bufferLength is still a char count, not a byte count. // We skipped the code path that multiplied the count by sizeof(char). Debug.Assert(bufferLength < SizeOfVector128InChars); // QWORD drain if ((bufferLength & 4) != 0) { if (Bmi1.X64.IsSupported) { // If we can use 64-bit tzcnt to count the number of leading ASCII chars, prefer it. ulong candidateUInt64 = Unsafe.ReadUnaligned(pBuffer); if (!AllCharsInUInt64AreAscii(candidateUInt64)) { // Clear the low 7 bits (the ASCII bits) of each char, then tzcnt. // Remember the / 8 at the end to convert bit count to byte count, // then the & ~1 at the end to treat a match in the high byte of // any char the same as a match in the low byte of that same char. candidateUInt64 &= 0xFF80FF80_FF80FF80ul; pBuffer = (char*)((byte*)pBuffer + ((nuint)(Bmi1.X64.TrailingZeroCount(candidateUInt64) / 8) & ~(nuint)1)); goto Finish; } } else { // If we can't use 64-bit tzcnt, no worries. We'll just do 2x 32-bit reads instead. currentDWord = Unsafe.ReadUnaligned(pBuffer); uint nextDWord = Unsafe.ReadUnaligned(pBuffer + 4 / sizeof(char)); if (!AllCharsInUInt32AreAscii(currentDWord | nextDWord)) { // At least one of the values wasn't all-ASCII. // We need to figure out which one it was and stick it in the currentMask local. if (AllCharsInUInt32AreAscii(currentDWord)) { currentDWord = nextDWord; // this one is the culprit pBuffer += 4 / sizeof(char); } goto FoundNonAsciiDataInCurrentDWord; } } pBuffer += 4; // successfully consumed 4 ASCII chars } // DWORD drain if ((bufferLength & 2) != 0) { currentDWord = Unsafe.ReadUnaligned(pBuffer); if (!AllCharsInUInt32AreAscii(currentDWord)) { goto FoundNonAsciiDataInCurrentDWord; } pBuffer += 2; // successfully consumed 2 ASCII chars } // WORD drain // This is the final drain; there's no need for a BYTE drain since our elemental type is 16-bit char. if ((bufferLength & 1) != 0) { if (*pBuffer <= 0x007F) { pBuffer++; // successfully consumed a single char } } goto Finish; } /// /// Given a QWORD which represents a buffer of 4 ASCII chars in machine-endian order, /// narrows each WORD to a BYTE, then writes the 4-byte result to the output buffer /// also in machine-endian order. /// [MethodImpl(MethodImplOptions.AggressiveInlining)] private static void NarrowFourUtf16CharsToAsciiAndWriteToBuffer(ref byte outputBuffer, ulong value) { Debug.Assert(AllCharsInUInt64AreAscii(value)); if (Bmi2.X64.IsSupported) { // BMI2 will work regardless of the processor's endianness. Unsafe.WriteUnaligned(ref outputBuffer, (uint)Bmi2.X64.ParallelBitExtract(value, 0x00FF00FF_00FF00FFul)); } else { if (BitConverter.IsLittleEndian) { outputBuffer = (byte)value; value >>= 16; Unsafe.Add(ref outputBuffer, 1) = (byte)value; value >>= 16; Unsafe.Add(ref outputBuffer, 2) = (byte)value; value >>= 16; Unsafe.Add(ref outputBuffer, 3) = (byte)value; } else { Unsafe.Add(ref outputBuffer, 3) = (byte)value; value >>= 16; Unsafe.Add(ref outputBuffer, 2) = (byte)value; value >>= 16; Unsafe.Add(ref outputBuffer, 1) = (byte)value; value >>= 16; outputBuffer = (byte)value; } } } /// /// Given a DWORD which represents a buffer of 2 ASCII chars in machine-endian order, /// narrows each WORD to a BYTE, then writes the 2-byte result to the output buffer also in /// machine-endian order. /// [MethodImpl(MethodImplOptions.AggressiveInlining)] private static void NarrowTwoUtf16CharsToAsciiAndWriteToBuffer(ref byte outputBuffer, uint value) { Debug.Assert(AllCharsInUInt32AreAscii(value)); if (BitConverter.IsLittleEndian) { outputBuffer = (byte)value; Unsafe.Add(ref outputBuffer, 1) = (byte)(value >> 16); } else { Unsafe.Add(ref outputBuffer, 1) = (byte)value; outputBuffer = (byte)(value >> 16); } } /// /// Copies as many ASCII characters (U+0000..U+007F) as possible from /// to , stopping when the first non-ASCII character is encountered /// or once elements have been converted. Returns the total number /// of elements that were able to be converted. /// public static unsafe nuint NarrowUtf16ToAscii(char* pUtf16Buffer, byte* pAsciiBuffer, nuint elementCount) { nuint currentOffset = 0; uint utf16Data32BitsHigh = 0, utf16Data32BitsLow = 0; ulong utf16Data64Bits = 0; // If SSE2 is supported, use those specific intrinsics instead of the generic vectorized // code below. This has two benefits: (a) we can take advantage of specific instructions like // pmovmskb, ptest, vpminuw which we know are optimized, and (b) we can avoid downclocking the // processor while this method is running. if (Sse2.IsSupported) { Debug.Assert(BitConverter.IsLittleEndian, "Assume little endian if SSE2 is supported."); if (elementCount >= 2 * (uint)Unsafe.SizeOf>()) { // Since there's overhead to setting up the vectorized code path, we only want to // call into it after a quick probe to ensure the next immediate characters really are ASCII. // If we see non-ASCII data, we'll jump immediately to the draining logic at the end of the method. if (IntPtr.Size >= 8) { utf16Data64Bits = Unsafe.ReadUnaligned(pUtf16Buffer); if (!AllCharsInUInt64AreAscii(utf16Data64Bits)) { goto FoundNonAsciiDataIn64BitRead; } } else { utf16Data32BitsHigh = Unsafe.ReadUnaligned(pUtf16Buffer); utf16Data32BitsLow = Unsafe.ReadUnaligned(pUtf16Buffer + 4 / sizeof(char)); if (!AllCharsInUInt32AreAscii(utf16Data32BitsHigh | utf16Data32BitsLow)) { goto FoundNonAsciiDataIn64BitRead; } } currentOffset = NarrowUtf16ToAscii_Sse2(pUtf16Buffer, pAsciiBuffer, elementCount); } } else if (Vector.IsHardwareAccelerated) { uint SizeOfVector = (uint)Unsafe.SizeOf>(); // JIT will make this a const // Only bother vectorizing if we have enough data to do so. if (elementCount >= 2 * SizeOfVector) { // Since there's overhead to setting up the vectorized code path, we only want to // call into it after a quick probe to ensure the next immediate characters really are ASCII. // If we see non-ASCII data, we'll jump immediately to the draining logic at the end of the method. if (IntPtr.Size >= 8) { utf16Data64Bits = Unsafe.ReadUnaligned(pUtf16Buffer); if (!AllCharsInUInt64AreAscii(utf16Data64Bits)) { goto FoundNonAsciiDataIn64BitRead; } } else { utf16Data32BitsHigh = Unsafe.ReadUnaligned(pUtf16Buffer); utf16Data32BitsLow = Unsafe.ReadUnaligned(pUtf16Buffer + 4 / sizeof(char)); if (!AllCharsInUInt32AreAscii(utf16Data32BitsHigh | utf16Data32BitsLow)) { goto FoundNonAsciiDataIn64BitRead; } } Vector maxAscii = new Vector(0x007F); nuint finalOffsetWhereCanLoop = elementCount - 2 * SizeOfVector; do { Vector utf16VectorHigh = Unsafe.ReadUnaligned>(pUtf16Buffer + currentOffset); Vector utf16VectorLow = Unsafe.ReadUnaligned>(pUtf16Buffer + currentOffset + Vector.Count); if (Vector.GreaterThanAny(Vector.BitwiseOr(utf16VectorHigh, utf16VectorLow), maxAscii)) { break; // found non-ASCII data } // TODO: Is the below logic also valid for big-endian platforms? Vector asciiVector = Vector.Narrow(utf16VectorHigh, utf16VectorLow); Unsafe.WriteUnaligned>(pAsciiBuffer + currentOffset, asciiVector); currentOffset += SizeOfVector; } while (currentOffset <= finalOffsetWhereCanLoop); } } Debug.Assert(currentOffset <= elementCount); nuint remainingElementCount = elementCount - currentOffset; // Try to narrow 64 bits -> 32 bits at a time. // We needn't update remainingElementCount after this point. if (remainingElementCount >= 4) { nuint finalOffsetWhereCanLoop = currentOffset + remainingElementCount - 4; do { if (IntPtr.Size >= 8) { // Only perform QWORD reads on a 64-bit platform. utf16Data64Bits = Unsafe.ReadUnaligned(pUtf16Buffer + currentOffset); if (!AllCharsInUInt64AreAscii(utf16Data64Bits)) { goto FoundNonAsciiDataIn64BitRead; } NarrowFourUtf16CharsToAsciiAndWriteToBuffer(ref pAsciiBuffer[currentOffset], utf16Data64Bits); } else { utf16Data32BitsHigh = Unsafe.ReadUnaligned(pUtf16Buffer + currentOffset); utf16Data32BitsLow = Unsafe.ReadUnaligned(pUtf16Buffer + currentOffset + 4 / sizeof(char)); if (!AllCharsInUInt32AreAscii(utf16Data32BitsHigh | utf16Data32BitsLow)) { goto FoundNonAsciiDataIn64BitRead; } NarrowTwoUtf16CharsToAsciiAndWriteToBuffer(ref pAsciiBuffer[currentOffset], utf16Data32BitsHigh); NarrowTwoUtf16CharsToAsciiAndWriteToBuffer(ref pAsciiBuffer[currentOffset + 2], utf16Data32BitsLow); } currentOffset += 4; } while (currentOffset <= finalOffsetWhereCanLoop); } // Try to narrow 32 bits -> 16 bits. if (((uint)remainingElementCount & 2) != 0) { utf16Data32BitsHigh = Unsafe.ReadUnaligned(pUtf16Buffer + currentOffset); if (!AllCharsInUInt32AreAscii(utf16Data32BitsHigh)) { goto FoundNonAsciiDataInHigh32Bits; } NarrowTwoUtf16CharsToAsciiAndWriteToBuffer(ref pAsciiBuffer[currentOffset], utf16Data32BitsHigh); currentOffset += 2; } // Try to narrow 16 bits -> 8 bits. if (((uint)remainingElementCount & 1) != 0) { utf16Data32BitsHigh = pUtf16Buffer[currentOffset]; if (utf16Data32BitsHigh <= 0x007Fu) { pAsciiBuffer[currentOffset] = (byte)utf16Data32BitsHigh; currentOffset++; } } Finish: return currentOffset; FoundNonAsciiDataIn64BitRead: if (IntPtr.Size >= 8) { // Try checking the first 32 bits of the buffer for non-ASCII data. // Regardless, we'll move the non-ASCII data into the utf16Data32BitsHigh local. if (BitConverter.IsLittleEndian) { utf16Data32BitsHigh = (uint)utf16Data64Bits; } else { utf16Data32BitsHigh = (uint)(utf16Data64Bits >> 32); } if (AllCharsInUInt32AreAscii(utf16Data32BitsHigh)) { NarrowTwoUtf16CharsToAsciiAndWriteToBuffer(ref pAsciiBuffer[currentOffset], utf16Data32BitsHigh); if (BitConverter.IsLittleEndian) { utf16Data32BitsHigh = (uint)(utf16Data64Bits >> 32); } else { utf16Data32BitsHigh = (uint)utf16Data64Bits; } currentOffset += 2; } } else { // Need to determine if the high or the low 32-bit value contained non-ASCII data. // Regardless, we'll move the non-ASCII data into the utf16Data32BitsHigh local. if (AllCharsInUInt32AreAscii(utf16Data32BitsHigh)) { NarrowTwoUtf16CharsToAsciiAndWriteToBuffer(ref pAsciiBuffer[currentOffset], utf16Data32BitsHigh); utf16Data32BitsHigh = utf16Data32BitsLow; currentOffset += 2; } } FoundNonAsciiDataInHigh32Bits: Debug.Assert(!AllCharsInUInt32AreAscii(utf16Data32BitsHigh), "Shouldn't have reached this point if we have an all-ASCII input."); // There's at most one char that needs to be drained. if (FirstCharInUInt32IsAscii(utf16Data32BitsHigh)) { if (!BitConverter.IsLittleEndian) { utf16Data32BitsHigh >>= 16; // move high char down to low char } pAsciiBuffer[currentOffset] = (byte)utf16Data32BitsHigh; currentOffset++; } goto Finish; } private static unsafe nuint NarrowUtf16ToAscii_Sse2(char* pUtf16Buffer, byte* pAsciiBuffer, nuint elementCount) { // This method contains logic optimized for both SSE2 and SSE41. Much of the logic in this method // will be elided by JIT once we determine which specific ISAs we support. // JIT turns the below into constants uint SizeOfVector128 = (uint)Unsafe.SizeOf>(); nuint MaskOfAllBitsInVector128 = (nuint)(SizeOfVector128 - 1); // This method is written such that control generally flows top-to-bottom, avoiding // jumps as much as possible in the optimistic case of "all ASCII". If we see non-ASCII // data, we jump out of the hot paths to targets at the end of the method. Debug.Assert(Sse2.IsSupported); Debug.Assert(BitConverter.IsLittleEndian); Debug.Assert(elementCount >= 2 * SizeOfVector128); Vector128 asciiMaskForPTEST = Vector128.Create(unchecked((short)0xFF80)); // used for PTEST on supported hardware Vector128 asciiMaskForPXOR = Vector128.Create(unchecked((short)0x8000)); // used for PXOR Vector128 asciiMaskForPCMPGTW = Vector128.Create(unchecked((short)0x807F)); // used for PCMPGTW // First, perform an unaligned read of the first part of the input buffer. Vector128 utf16VectorFirst = Sse2.LoadVector128((short*)pUtf16Buffer); // unaligned load // If there's non-ASCII data in the first 8 elements of the vector, there's nothing we can do. // See comments in GetIndexOfFirstNonAsciiChar_Sse2 for information about how this works. if (Sse41.IsSupported) { if (!Sse41.TestZ(utf16VectorFirst, asciiMaskForPTEST)) { return 0; } } else { if (Sse2.MoveMask(Sse2.CompareGreaterThan(Sse2.Xor(utf16VectorFirst, asciiMaskForPXOR), asciiMaskForPCMPGTW).AsByte()) != 0) { return 0; } } // Turn the 8 ASCII chars we just read into 8 ASCII bytes, then copy it to the destination. Vector128 asciiVector = Sse2.PackUnsignedSaturate(utf16VectorFirst, utf16VectorFirst); Sse2.StoreScalar((ulong*)pAsciiBuffer, asciiVector.AsUInt64()); // ulong* calculated here is UNALIGNED nuint currentOffsetInElements = SizeOfVector128 / 2; // we processed 8 elements so far // We're going to get the best performance when we have aligned writes, so we'll take the // hit of potentially unaligned reads in order to hit this sweet spot. // pAsciiBuffer points to the start of the destination buffer, immediately before where we wrote // the 8 bytes previously. If the 0x08 bit is set at the pinned address, then the 8 bytes we wrote // previously mean that the 0x08 bit is *not* set at address &pAsciiBuffer[SizeOfVector128 / 2]. In // that case we can immediately back up to the previous aligned boundary and start the main loop. // If the 0x08 bit is *not* set at the pinned address, then it means the 0x08 bit *is* set at // address &pAsciiBuffer[SizeOfVector128 / 2], and we should perform one more 8-byte write to bump // just past the next aligned boundary address. if (((uint)pAsciiBuffer & (SizeOfVector128 / 2)) == 0) { // We need to perform one more partial vector write before we can get the alignment we want. utf16VectorFirst = Sse2.LoadVector128((short*)pUtf16Buffer + currentOffsetInElements); // unaligned load // See comments earlier in this method for information about how this works. if (Sse41.IsSupported) { if (!Sse41.TestZ(utf16VectorFirst, asciiMaskForPTEST)) { goto Finish; } } else { if (Sse2.MoveMask(Sse2.CompareGreaterThan(Sse2.Xor(utf16VectorFirst, asciiMaskForPXOR), asciiMaskForPCMPGTW).AsByte()) != 0) { goto Finish; } } // Turn the 8 ASCII chars we just read into 8 ASCII bytes, then copy it to the destination. asciiVector = Sse2.PackUnsignedSaturate(utf16VectorFirst, utf16VectorFirst); Sse2.StoreScalar((ulong*)(pAsciiBuffer + currentOffsetInElements), asciiVector.AsUInt64()); // ulong* calculated here is UNALIGNED } // Calculate how many elements we wrote in order to get pAsciiBuffer to its next alignment // point, then use that as the base offset going forward. currentOffsetInElements = SizeOfVector128 - ((nuint)pAsciiBuffer & MaskOfAllBitsInVector128); Debug.Assert(0 < currentOffsetInElements && currentOffsetInElements <= SizeOfVector128, "We wrote at least 1 byte but no more than a whole vector."); Debug.Assert(currentOffsetInElements <= elementCount, "Shouldn't have overrun the destination buffer."); Debug.Assert(elementCount - currentOffsetInElements >= SizeOfVector128, "We should be able to run at least one whole vector."); nuint finalOffsetWhereCanRunLoop = elementCount - SizeOfVector128; do { // In a loop, perform two unaligned reads, narrow to a single vector, then aligned write one vector. utf16VectorFirst = Sse2.LoadVector128((short*)pUtf16Buffer + currentOffsetInElements); // unaligned load Vector128 utf16VectorSecond = Sse2.LoadVector128((short*)pUtf16Buffer + currentOffsetInElements + SizeOfVector128 / sizeof(short)); // unaligned load Vector128 combinedVector = Sse2.Or(utf16VectorFirst, utf16VectorSecond); // See comments in GetIndexOfFirstNonAsciiChar_Sse2 for information about how this works. if (Sse41.IsSupported) { if (!Sse41.TestZ(combinedVector, asciiMaskForPTEST)) { goto FoundNonAsciiDataInLoop; } } else { if (Sse2.MoveMask(Sse2.CompareGreaterThan(Sse2.Xor(combinedVector, asciiMaskForPXOR), asciiMaskForPCMPGTW).AsByte()) != 0) { goto FoundNonAsciiDataInLoop; } } // Build up the UTF-8 vector and perform the store. asciiVector = Sse2.PackUnsignedSaturate(utf16VectorFirst, utf16VectorSecond); Debug.Assert(((nuint)pAsciiBuffer + currentOffsetInElements) % SizeOfVector128 == 0, "Write should be aligned."); Sse2.StoreAligned(pAsciiBuffer + currentOffsetInElements, asciiVector); // aligned currentOffsetInElements += SizeOfVector128; } while (currentOffsetInElements <= finalOffsetWhereCanRunLoop); Finish: // There might be some ASCII data left over. That's fine - we'll let our caller handle the final drain. return currentOffsetInElements; FoundNonAsciiDataInLoop: // Can we at least narrow the high vector? // See comments in GetIndexOfFirstNonAsciiChar_Sse2 for information about how this works. if (Sse41.IsSupported) { if (!Sse41.TestZ(utf16VectorFirst, asciiMaskForPTEST)) { goto Finish; // found non-ASCII data } } else { if (Sse2.MoveMask(Sse2.CompareGreaterThan(Sse2.Xor(utf16VectorFirst, asciiMaskForPXOR), asciiMaskForPCMPGTW).AsByte()) != 0) { goto Finish; // found non-ASCII data } } // First part was all ASCII, narrow and aligned write. Note we're only filling in the low half of the vector. asciiVector = Sse2.PackUnsignedSaturate(utf16VectorFirst, utf16VectorFirst); Debug.Assert(((nuint)pAsciiBuffer + currentOffsetInElements) % sizeof(ulong) == 0, "Destination should be ulong-aligned."); Sse2.StoreScalar((ulong*)(pAsciiBuffer + currentOffsetInElements), asciiVector.AsUInt64()); // ulong* calculated here is aligned currentOffsetInElements += SizeOfVector128 / 2; goto Finish; } /// /// Copies as many ASCII bytes (00..7F) as possible from /// to , stopping when the first non-ASCII byte is encountered /// or once elements have been converted. Returns the total number /// of elements that were able to be converted. /// public static unsafe nuint WidenAsciiToUtf16(byte* pAsciiBuffer, char* pUtf16Buffer, nuint elementCount) { nuint currentOffset = 0; // If SSE2 is supported, use those specific intrinsics instead of the generic vectorized // code below. This has two benefits: (a) we can take advantage of specific instructions like // pmovmskb which we know are optimized, and (b) we can avoid downclocking the processor while // this method is running. if (Sse2.IsSupported) { if (elementCount >= 2 * (uint)Unsafe.SizeOf>()) { currentOffset = WidenAsciiToUtf16_Sse2(pAsciiBuffer, pUtf16Buffer, elementCount); } } else if (Vector.IsHardwareAccelerated) { uint SizeOfVector = (uint)Unsafe.SizeOf>(); // JIT will make this a const // Only bother vectorizing if we have enough data to do so. if (elementCount >= SizeOfVector) { // Note use of SBYTE instead of BYTE below; we're using the two's-complement // representation of negative integers to act as a surrogate for "is ASCII?". nuint finalOffsetWhereCanLoop = elementCount - SizeOfVector; do { Vector asciiVector = Unsafe.ReadUnaligned>(pAsciiBuffer + currentOffset); if (Vector.LessThanAny(asciiVector, Vector.Zero)) { break; // found non-ASCII data } Vector.Widen(Vector.AsVectorByte(asciiVector), out Vector utf16LowVector, out Vector utf16HighVector); // TODO: Is the below logic also valid for big-endian platforms? Unsafe.WriteUnaligned>(pUtf16Buffer + currentOffset, utf16LowVector); Unsafe.WriteUnaligned>(pUtf16Buffer + currentOffset + Vector.Count, utf16HighVector); currentOffset += SizeOfVector; } while (currentOffset <= finalOffsetWhereCanLoop); } } Debug.Assert(currentOffset <= elementCount); nuint remainingElementCount = elementCount - currentOffset; // Try to widen 32 bits -> 64 bits at a time. // We needn't update remainingElementCount after this point. uint asciiData; if (remainingElementCount >= 4) { nuint finalOffsetWhereCanLoop = currentOffset + remainingElementCount - 4; do { asciiData = Unsafe.ReadUnaligned(pAsciiBuffer + currentOffset); if (!AllBytesInUInt32AreAscii(asciiData)) { goto FoundNonAsciiData; } WidenFourAsciiBytesToUtf16AndWriteToBuffer(ref pUtf16Buffer[currentOffset], asciiData); currentOffset += 4; } while (currentOffset <= finalOffsetWhereCanLoop); } // Try to widen 16 bits -> 32 bits. if (((uint)remainingElementCount & 2) != 0) { asciiData = Unsafe.ReadUnaligned(pAsciiBuffer + currentOffset); if (!AllBytesInUInt32AreAscii(asciiData)) { goto FoundNonAsciiData; } if (BitConverter.IsLittleEndian) { pUtf16Buffer[currentOffset] = (char)(byte)asciiData; pUtf16Buffer[currentOffset + 1] = (char)(asciiData >> 8); } else { pUtf16Buffer[currentOffset + 1] = (char)(byte)asciiData; pUtf16Buffer[currentOffset] = (char)(asciiData >> 8); } currentOffset += 2; } // Try to widen 8 bits -> 16 bits. if (((uint)remainingElementCount & 1) != 0) { asciiData = pAsciiBuffer[currentOffset]; if (((byte)asciiData & 0x80) != 0) { goto Finish; } pUtf16Buffer[currentOffset] = (char)asciiData; currentOffset += 1; } Finish: return currentOffset; FoundNonAsciiData: Debug.Assert(!AllBytesInUInt32AreAscii(asciiData), "Shouldn't have reached this point if we have an all-ASCII input."); // Drain ASCII bytes one at a time. while (((byte)asciiData & 0x80) == 0) { pUtf16Buffer[currentOffset] = (char)(byte)asciiData; currentOffset += 1; asciiData >>= 8; } goto Finish; } private static unsafe nuint WidenAsciiToUtf16_Sse2(byte* pAsciiBuffer, char* pUtf16Buffer, nuint elementCount) { // JIT turns the below into constants uint SizeOfVector128 = (uint)Unsafe.SizeOf>(); nuint MaskOfAllBitsInVector128 = (nuint)(SizeOfVector128 - 1); // This method is written such that control generally flows top-to-bottom, avoiding // jumps as much as possible in the optimistic case of "all ASCII". If we see non-ASCII // data, we jump out of the hot paths to targets at the end of the method. Debug.Assert(Sse2.IsSupported); Debug.Assert(BitConverter.IsLittleEndian); Debug.Assert(elementCount >= 2 * SizeOfVector128); // We're going to get the best performance when we have aligned writes, so we'll take the // hit of potentially unaligned reads in order to hit this sweet spot. Vector128 asciiVector; Vector128 utf16FirstHalfVector; uint mask; // First, perform an unaligned read of the first part of the input buffer. asciiVector = Sse2.LoadVector128(pAsciiBuffer); // unaligned load mask = (uint)Sse2.MoveMask(asciiVector); // If there's non-ASCII data in the first 8 elements of the vector, there's nothing we can do. if ((byte)mask != 0) { return 0; } // Then perform an unaligned write of the first part of the input buffer. Vector128 zeroVector = Vector128.Zero; utf16FirstHalfVector = Sse2.UnpackLow(asciiVector, zeroVector); Sse2.Store((byte*)pUtf16Buffer, utf16FirstHalfVector); // unaligned // Calculate how many elements we wrote in order to get pOutputBuffer to its next alignment // point, then use that as the base offset going forward. Remember the >> 1 to account for // that we wrote chars, not bytes. This means we may re-read data in the next iteration of // the loop, but this is ok. nuint currentOffset = (SizeOfVector128 >> 1) - (((nuint)pUtf16Buffer >> 1) & (MaskOfAllBitsInVector128 >> 1)); Debug.Assert(0 < currentOffset && currentOffset <= SizeOfVector128 / sizeof(char)); nuint finalOffsetWhereCanRunLoop = elementCount - SizeOfVector128; do { // In a loop, perform an unaligned read, widen to two vectors, then aligned write the two vectors. asciiVector = Sse2.LoadVector128(pAsciiBuffer + currentOffset); // unaligned load mask = (uint)Sse2.MoveMask(asciiVector); if (mask != 0) { // non-ASCII byte somewhere goto NonAsciiDataSeenInInnerLoop; } byte* pStore = (byte*)(pUtf16Buffer + currentOffset); Sse2.StoreAligned(pStore, Sse2.UnpackLow(asciiVector, zeroVector)); pStore += SizeOfVector128; Sse2.StoreAligned(pStore, Sse2.UnpackHigh(asciiVector, zeroVector)); currentOffset += SizeOfVector128; } while (currentOffset <= finalOffsetWhereCanRunLoop); Finish: return currentOffset; NonAsciiDataSeenInInnerLoop: // Can we at least widen the first part of the vector? if ((byte)mask == 0) { // First part was all ASCII, widen utf16FirstHalfVector = Sse2.UnpackLow(asciiVector, zeroVector); Sse2.StoreAligned((byte*)(pUtf16Buffer + currentOffset), utf16FirstHalfVector); currentOffset += SizeOfVector128 / 2; } goto Finish; } /// /// Given a DWORD which represents a buffer of 4 bytes, widens the buffer into 4 WORDs and /// writes them to the output buffer with machine endianness. /// [MethodImpl(MethodImplOptions.AggressiveInlining)] private static void WidenFourAsciiBytesToUtf16AndWriteToBuffer(ref char outputBuffer, uint value) { Debug.Assert(AllBytesInUInt32AreAscii(value)); if (Bmi2.X64.IsSupported) { // BMI2 will work regardless of the processor's endianness. Unsafe.WriteUnaligned(ref Unsafe.As(ref outputBuffer), Bmi2.X64.ParallelBitDeposit(value, 0x00FF00FF_00FF00FFul)); } else { if (BitConverter.IsLittleEndian) { outputBuffer = (char)(byte)value; value >>= 8; Unsafe.Add(ref outputBuffer, 1) = (char)(byte)value; value >>= 8; Unsafe.Add(ref outputBuffer, 2) = (char)(byte)value; value >>= 8; Unsafe.Add(ref outputBuffer, 3) = (char)value; } else { Unsafe.Add(ref outputBuffer, 3) = (char)(byte)value; value >>= 8; Unsafe.Add(ref outputBuffer, 2) = (char)(byte)value; value >>= 8; Unsafe.Add(ref outputBuffer, 1) = (char)(byte)value; value >>= 8; outputBuffer = (char)value; } } } } }