// Licensed to the .NET Foundation under one or more agreements. // The .NET Foundation licenses this file to you under the MIT license. // See the LICENSE file in the project root for more information. using System.Runtime.CompilerServices; using System.Runtime.InteropServices; using System.Runtime.Intrinsics.X86; using Internal.Runtime.CompilerServices; // Some routines inspired by the Stanford Bit Twiddling Hacks by Sean Eron Anderson: // http://graphics.stanford.edu/~seander/bithacks.html namespace System { internal static class BitOps { // C# no-alloc optimization that directly wraps the data section of the dll (similar to string constants) // https://github.com/dotnet/roslyn/pull/24621 private static ReadOnlySpan s_TrailingZeroCountDeBruijn => new byte[32] { 00, 01, 28, 02, 29, 14, 24, 03, 30, 22, 20, 15, 25, 17, 04, 08, 31, 27, 13, 23, 21, 19, 16, 07, 26, 12, 18, 06, 11, 05, 10, 09 }; private static ReadOnlySpan s_Log2DeBruijn => new byte[32] { 00, 09, 01, 10, 13, 21, 02, 29, 11, 14, 16, 18, 22, 25, 03, 30, 08, 12, 20, 28, 15, 17, 24, 07, 19, 27, 23, 06, 26, 05, 04, 31 }; /// /// Count the number of trailing zero bits in an integer value. /// Similar in behavior to the x86 instruction TZCNT. /// /// The value. [MethodImpl(MethodImplOptions.AggressiveInlining)] public static int TrailingZeroCount(int value) => TrailingZeroCount((uint)value); /// /// Count the number of trailing zero bits in an integer value. /// Similar in behavior to the x86 instruction TZCNT. /// /// The value. [MethodImpl(MethodImplOptions.AggressiveInlining)] public static int TrailingZeroCount(uint value) { if (Bmi1.IsSupported) { // Note that TZCNT contract specifies 0->32 return (int)Bmi1.TrailingZeroCount(value); } // Software fallback has behavior 0->0, so special-case to match intrinsic path 0->32 if (value == 0) { return 32; } // uint.MaxValue >> 27 is always in range [0 - 31] so we use Unsafe.AddByteOffset to avoid bounds check return Unsafe.AddByteOffset( // Using deBruijn sequence, k=2, n=5 (2^5=32) : 0b_0000_0111_0111_1100_1011_0101_0011_0001u ref MemoryMarshal.GetReference(s_TrailingZeroCountDeBruijn), // long -> IntPtr cast on 32-bit platforms is expensive - it does overflow checks not needed here (IntPtr)(int)(((uint)((value & -value) * 0x077CB531u)) >> 27)); // shift over long also expensive on 32-bit } /// /// Count the number of trailing zero bits in a mask. /// Similar in behavior to the x86 instruction TZCNT. /// /// The value. [MethodImpl(MethodImplOptions.AggressiveInlining)] public static int TrailingZeroCount(long value) => TrailingZeroCount((ulong)value); /// /// Count the number of trailing zero bits in a mask. /// Similar in behavior to the x86 instruction TZCNT. /// /// The value. [MethodImpl(MethodImplOptions.AggressiveInlining)] public static int TrailingZeroCount(ulong value) { if (Bmi1.X64.IsSupported) { // Note that TZCNT contract specifies 0->64 return (int)Bmi1.X64.TrailingZeroCount(value); } uint lo = (uint)value; if (lo == 0) { return 32 + TrailingZeroCount((uint)(value >> 32)); } return TrailingZeroCount(lo); } /// /// Count the number of leading zero bits in a mask. /// Similar in behavior to the x86 instruction LZCNT. /// /// The value. [MethodImpl(MethodImplOptions.AggressiveInlining)] public static int LeadingZeroCount(uint value) { if (Lzcnt.IsSupported) { // Note that LZCNT contract specifies 0->32 return (int)Lzcnt.LeadingZeroCount(value); } // Software fallback has behavior 0->0, so special-case to match intrinsic path 0->32 if (value == 0) { return 32; } return 31 - Log2(value); } /// /// Count the number of leading zero bits in a mask. /// Similar in behavior to the x86 instruction LZCNT. /// /// The value. [MethodImpl(MethodImplOptions.AggressiveInlining)] public static int LeadingZeroCount(ulong value) { if (Lzcnt.X64.IsSupported) { // Note that LZCNT contract specifies 0->64 return (int)Lzcnt.X64.LeadingZeroCount(value); } uint hi = (uint)(value >> 32); if (hi == 0) { return 32 + LeadingZeroCount((uint)value); } return LeadingZeroCount(hi); } /// /// Returns the integer (floor) log of the specified value, base 2. /// Note that by convention, input value 0 returns 0 since Log(0) is undefined. /// /// The value. [MethodImpl(MethodImplOptions.AggressiveInlining)] public static int Log2(uint value) { // value lzcnt actual expected // ..0000 32 0 0 (by convention, guard clause) // ..0001 31 31-31 0 // ..0010 30 31-30 1 // 0010.. 2 31-2 29 // 0100.. 1 31-1 30 // 1000.. 0 31-0 31 if (Lzcnt.IsSupported) { // Enforce conventional contract 0->0 (since Log(0) is undefined) if (value == 0) { return 0; } // Note that LZCNT contract specifies 0->32 return 31 - (int)Lzcnt.LeadingZeroCount(value); } // Already has contract 0->0, without branching return Log2SoftwareFallback(value); } /// /// Returns the integer (floor) log of the specified value, base 2. /// Note that by convention, input value 0 returns 0 since Log(0) is undefined. /// Does not incur branching. /// /// The value. private static int Log2SoftwareFallback(uint value) { // No AggressiveInlining due to large method size value |= value >> 01; value |= value >> 02; value |= value >> 04; value |= value >> 08; value |= value >> 16; // uint.MaxValue >> 27 is always in range [0 - 31] so we use Unsafe.AddByteOffset to avoid bounds check return Unsafe.AddByteOffset( // Using deBruijn sequence, k=2, n=5 (2^5=32) : 0b_0000_0111_1100_0100_1010_1100_1101_1101u ref MemoryMarshal.GetReference(s_Log2DeBruijn), // long -> IntPtr cast on 32-bit platforms is expensive - it does overflow checks not needed here (IntPtr)(int)((value * 0x07C4ACDDu) >> 27)); } /// /// Returns the integer (floor) log of the specified value, base 2. /// Note that by convention, input value 0 returns 0 since Log(0) is undefined. /// /// The value. [MethodImpl(MethodImplOptions.AggressiveInlining)] public static int Log2(ulong value) { if (Lzcnt.X64.IsSupported) { // Enforce conventional contract 0->0 (since Log(0) is undefined) if (value == 0) { return 0; } // Note that LZCNT contract specifies 0->64 return 63 - (int)Lzcnt.X64.LeadingZeroCount(value); } uint hi = (uint)(value >> 32); if (hi == 0) { return Log2((uint)value); } return 32 + Log2(hi); } } }