| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255 |
- // Licensed to the .NET Foundation under one or more agreements.
- // The .NET Foundation licenses this file to you under the MIT license.
- // See the LICENSE file in the project root for more information.
- using System.Diagnostics;
- using System.Numerics;
- using System.Runtime.CompilerServices;
- using System.Runtime.InteropServices;
- using Internal.Runtime.CompilerServices;
- #if BIT64
- using nuint = System.UInt64;
- #else
- using nuint = System.UInt32;
- #endif
- namespace System
- {
- internal static partial class Marvin
- {
- /// <summary>
- /// Compute a Marvin hash and collapse it into a 32-bit hash.
- /// </summary>
- [MethodImpl(MethodImplOptions.AggressiveInlining)]
- public static int ComputeHash32(ReadOnlySpan<byte> data, ulong seed) => ComputeHash32(ref MemoryMarshal.GetReference(data), (uint)data.Length, (uint)seed, (uint)(seed >> 32));
- /// <summary>
- /// Compute a Marvin hash and collapse it into a 32-bit hash.
- /// </summary>
- public static int ComputeHash32(ref byte data, uint count, uint p0, uint p1)
- {
- // Control flow of this method generally flows top-to-bottom, trying to
- // minimize the number of branches taken for large (>= 8 bytes, 4 chars) inputs.
- // If small inputs (< 8 bytes, 4 chars) are given, this jumps to a "small inputs"
- // handler at the end of the method.
- if (count < 8)
- {
- // We can't run the main loop, but we might still have 4 or more bytes available to us.
- // If so, jump to the 4 .. 7 bytes logic immediately after the main loop.
- if (count >= 4)
- {
- goto Between4And7BytesRemain;
- }
- else
- {
- goto InputTooSmallToEnterMainLoop;
- }
- }
- // Main loop - read 8 bytes at a time.
- // The block function is unrolled 2x in this loop.
- uint loopCount = count / 8;
- Debug.Assert(loopCount > 0, "Shouldn't reach this code path for small inputs.");
- do
- {
- // Most x86 processors have two dispatch ports for reads, so we can read 2x 32-bit
- // values in parallel. We opt for this instead of a single 64-bit read since the
- // typical use case for Marvin32 is computing String hash codes, and the particular
- // layout of String instances means the starting data is never 8-byte aligned when
- // running in a 64-bit process.
- p0 += Unsafe.ReadUnaligned<uint>(ref data);
- uint nextUInt32 = Unsafe.ReadUnaligned<uint>(ref Unsafe.AddByteOffset(ref data, 4));
- // One block round for each of the 32-bit integers we just read, 2x rounds total.
- Block(ref p0, ref p1);
- p0 += nextUInt32;
- Block(ref p0, ref p1);
- // Bump the data reference pointer and decrement the loop count.
- // Decrementing by 1 every time and comparing against zero allows the JIT to produce
- // better codegen compared to a standard 'for' loop with an incrementing counter.
- // Requires https://github.com/dotnet/coreclr/issues/7566 to be addressed first
- // before we can realize the full benefits of this.
- data = ref Unsafe.AddByteOffset(ref data, 8);
- } while (--loopCount > 0);
- // n.b. We've not been updating the original 'count' parameter, so its actual value is
- // still the original data length. However, we can still rely on its least significant
- // 3 bits to tell us how much data remains (0 .. 7 bytes) after the loop above is
- // completed.
- if ((count & 0b_0100) == 0)
- {
- goto DoFinalPartialRead;
- }
- Between4And7BytesRemain:
- // If after finishing the main loop we still have 4 or more leftover bytes, or if we had
- // 4 .. 7 bytes to begin with and couldn't enter the loop in the first place, we need to
- // consume 4 bytes immediately and send them through one round of the block function.
- Debug.Assert(count >= 4, "Only should've gotten here if the original count was >= 4.");
- p0 += Unsafe.ReadUnaligned<uint>(ref data);
- Block(ref p0, ref p1);
- DoFinalPartialRead:
- // Finally, we have 0 .. 3 bytes leftover. Since we know the original data length was at
- // least 4 bytes (smaller lengths are handled at the end of this routine), we can safely
- // read the 4 bytes at the end of the buffer without reading past the beginning of the
- // original buffer. This necessarily means the data we're about to read will overlap with
- // some data we've already processed, but we can handle that below.
- Debug.Assert(count >= 4, "Only should've gotten here if the original count was >= 4.");
- // Read the last 4 bytes of the buffer.
- uint partialResult = Unsafe.ReadUnaligned<uint>(ref Unsafe.Add(ref Unsafe.AddByteOffset(ref data, (nuint)count & 7), -4));
- // The 'partialResult' local above contains any data we have yet to read, plus some number
- // of bytes which we've already read from the buffer. An example of this is given below
- // for little-endian architectures. In this table, AA BB CC are the bytes which we still
- // need to consume, and ## are bytes which we want to throw away since we've already
- // consumed them as part of a previous read.
- //
- // (partialResult contains) (we want it to contain)
- // count mod 4 = 0 -> [ ## ## ## ## | ] -> 0x####_#### -> 0x0000_0080
- // count mod 4 = 1 -> [ ## ## ## ## | AA ] -> 0xAA##_#### -> 0x0000_80AA
- // count mod 4 = 2 -> [ ## ## ## ## | AA BB ] -> 0xBBAA_#### -> 0x0080_BBAA
- // count mod 4 = 3 -> [ ## ## ## ## | AA BB CC ] -> 0xCCBB_AA## -> 0x80CC_BBAA
- count = ~count << 3;
- if (BitConverter.IsLittleEndian)
- {
- partialResult >>= 8; // make some room for the 0x80 byte
- partialResult |= 0x8000_0000u; // put the 0x80 byte at the beginning
- partialResult >>= (int)count & 0x1F; // shift out all previously consumed bytes
- }
- else
- {
- partialResult <<= 8; // make some room for the 0x80 byte
- partialResult |= 0x80u; // put the 0x80 byte at the end
- partialResult <<= (int)count & 0x1F; // shift out all previously consumed bytes
- }
- DoFinalRoundsAndReturn:
- // Now that we've computed the final partial result, merge it in and run two rounds of
- // the block function to finish out the Marvin algorithm.
- p0 += partialResult;
- Block(ref p0, ref p1);
- Block(ref p0, ref p1);
- return (int)(p1 ^ p0);
- InputTooSmallToEnterMainLoop:
- // We had only 0 .. 3 bytes to begin with, so we can't perform any 32-bit reads.
- // This means that we're going to be building up the final result right away and
- // will only ever run two rounds total of the block function. Let's initialize
- // the partial result to "no data".
- if (BitConverter.IsLittleEndian)
- {
- partialResult = 0x80u;
- }
- else
- {
- partialResult = 0x80000000u;
- }
- if ((count & 0b_0001) != 0)
- {
- // If the buffer is 1 or 3 bytes in length, let's read a single byte now
- // and merge it into our partial result. This will result in partialResult
- // having one of the two values below, where AA BB CC are the buffer bytes.
- //
- // (little-endian / big-endian)
- // [ AA ] -> 0x0000_80AA / 0xAA80_0000
- // [ AA BB CC ] -> 0x0000_80CC / 0xCC80_0000
- partialResult = Unsafe.AddByteOffset(ref data, (nuint)count & 2);
- if (BitConverter.IsLittleEndian)
- {
- partialResult |= 0x8000;
- }
- else
- {
- partialResult <<= 24;
- partialResult |= 0x800000u;
- }
- }
- if ((count & 0b_0010) != 0)
- {
- // If the buffer is 2 or 3 bytes in length, let's read a single ushort now
- // and merge it into the partial result. This will result in partialResult
- // having one of the two values below, where AA BB CC are the buffer bytes.
- //
- // (little-endian / big-endian)
- // [ AA BB ] -> 0x0080_BBAA / 0xAABB_8000
- // [ AA BB CC ] -> 0x80CC_BBAA / 0xAABB_CC80 (carried over from above)
- if (BitConverter.IsLittleEndian)
- {
- partialResult <<= 16;
- partialResult |= (uint)Unsafe.ReadUnaligned<ushort>(ref data);
- }
- else
- {
- partialResult |= (uint)Unsafe.ReadUnaligned<ushort>(ref data);
- partialResult = BitOperations.RotateLeft(partialResult, 16);
- }
- }
- // Everything is consumed! Go perform the final rounds and return.
- goto DoFinalRoundsAndReturn;
- }
- [MethodImpl(MethodImplOptions.AggressiveInlining)]
- private static void Block(ref uint rp0, ref uint rp1)
- {
- uint p0 = rp0;
- uint p1 = rp1;
- p1 ^= p0;
- p0 = BitOperations.RotateLeft(p0, 20);
- p0 += p1;
- p1 = BitOperations.RotateLeft(p1, 9);
- p1 ^= p0;
- p0 = BitOperations.RotateLeft(p0, 27);
- p0 += p1;
- p1 = BitOperations.RotateLeft(p1, 19);
- rp0 = p0;
- rp1 = p1;
- }
- public static ulong DefaultSeed { get; } = GenerateSeed();
- private static unsafe ulong GenerateSeed()
- {
- ulong seed;
- Interop.GetRandomBytes((byte*)&seed, sizeof(ulong));
- return seed;
- }
- }
- }
|