RC2CryptoServiceProvider.cs 6.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221
  1. //
  2. // System.Security.Cryptography.RC2CryptoServiceProvider.cs
  3. //
  4. // Authors:
  5. // Andrew Birkett ([email protected])
  6. // Sebastien Pouliot ([email protected])
  7. //
  8. // Portions (C) 2002 Motus Technologies Inc. (http://www.motus.com)
  9. //
  10. using System;
  11. namespace System.Security.Cryptography {
  12. // References:
  13. // a. IETF RFC2286: A Description of the RC2(r) Encryption Algorithm
  14. // http://www.ietf.org/rfc/rfc2268.txt
  15. public sealed class RC2CryptoServiceProvider : RC2 {
  16. public RC2CryptoServiceProvider()
  17. {
  18. }
  19. public override ICryptoTransform CreateDecryptor(byte[] rgbKey, byte[] rgbIV)
  20. {
  21. Key = rgbKey;
  22. IV = rgbIV;
  23. return new RC2Transform (this, false);
  24. }
  25. public override ICryptoTransform CreateEncryptor(byte[] rgbKey, byte[] rgbIV)
  26. {
  27. Key = rgbKey;
  28. IV = rgbIV;
  29. return new RC2Transform (this, true);
  30. }
  31. [MonoTODO]
  32. public override void GenerateIV()
  33. {
  34. IVValue = new byte[BlockSizeValue / 8];
  35. for (int i=0; i < IVValue.Length; i++) IVValue[i] = 0;
  36. }
  37. [MonoTODO]
  38. public override void GenerateKey()
  39. {
  40. KeyValue = new byte[KeySizeValue / 8];
  41. for (int i=0; i < KeyValue.Length; i++) KeyValue[i] = 0;
  42. }
  43. }
  44. internal class RC2Transform : SymmetricTransform
  45. {
  46. public RC2Transform (RC2 rc2Algo, bool encryption) : base (rc2Algo, encryption, rc2Algo.IV)
  47. {
  48. R = new UInt32 [4];
  49. KeySetup (rc2Algo.Key, rc2Algo.EffectiveKeySize);
  50. }
  51. private void KeySetup (byte[] key, int t1)
  52. {
  53. // Expand key into a byte array, then convert to word
  54. // array since we always access the key in 16bit chunks.
  55. byte[] L = new byte [128];
  56. int t = key.Length;
  57. int t8 = ((t1 + 7) >> 3); // divide by 8
  58. int tm = 255 % (2 << (8 + t1 - 8*t8 - 1));
  59. Array.Copy (key, 0, L, 0, t);
  60. for (int i=t; i < 128; i++)
  61. L [i] = (byte) (pitable [(L [i-1] + L [i-t]) & 0xff]);
  62. L [128-t8] = pitable [L [128-t8] & tm];
  63. for (int i=127-t8; i >= 0; i--)
  64. L [i] = pitable [L [i+1] ^ L [i+t8]];
  65. K = new UInt32 [64];
  66. int pos = 0;
  67. for (int i=0; i < 64; i++)
  68. K [i] = (UInt32) (L [pos++] + L [pos++] * 256);
  69. }
  70. protected override void ECB (byte[] input, byte[] output)
  71. {
  72. // unrolled loop, eliminated mul
  73. R [0] = (UInt32) (input [0] + (input [1] << 8));
  74. R [1] = (UInt32) (input [2] + (input [3] << 8));
  75. R [2] = (UInt32) (input [4] + (input [5] << 8));
  76. R [3] = (UInt32) (input [6] + (input [7] << 8));
  77. if (encrypt) {
  78. j = 0;
  79. Mix(); Mix(); Mix(); Mix(); Mix();
  80. Mash();
  81. Mix(); Mix(); Mix(); Mix(); Mix(); Mix();
  82. Mash();
  83. Mix(); Mix(); Mix(); Mix(); Mix();
  84. }
  85. else {
  86. j = 63;
  87. RMix(); RMix(); RMix(); RMix(); RMix();
  88. RMash();
  89. RMix(); RMix(); RMix(); RMix(); RMix(); RMix();
  90. RMash();
  91. RMix(); RMix(); RMix(); RMix(); RMix();
  92. }
  93. // unrolled loop
  94. output[0] = (byte) (R [0] & 0xff);
  95. output[1] = (byte) ((R [0] >> 8) & 0xff);
  96. output[2] = (byte) (R [1] & 0xff);
  97. output[3] = (byte) ((R [1] >> 8) & 0xff);
  98. output[4] = (byte) (R [2] & 0xff);
  99. output[5] = (byte) ((R [2] >> 8) & 0xff);
  100. output[6] = (byte) (R [3] & 0xff);
  101. output[7] = (byte) ((R [3] >> 8) & 0xff);
  102. }
  103. static public byte[] pitable = {
  104. 0xd9, 0x78, 0xf9, 0xc4, 0x19, 0xdd, 0xb5, 0xed,
  105. 0x28, 0xe9, 0xfd, 0x79, 0x4a, 0xa0, 0xd8, 0x9d,
  106. 0xc6, 0x7e, 0x37, 0x83, 0x2b, 0x76, 0x53, 0x8e,
  107. 0x62, 0x4c, 0x64, 0x88, 0x44, 0x8b, 0xfb, 0xa2,
  108. 0x17, 0x9a, 0x59, 0xf5, 0x87, 0xb3, 0x4f, 0x13,
  109. 0x61, 0x45, 0x6d, 0x8d, 0x09, 0x81, 0x7d, 0x32,
  110. 0xbd, 0x8f, 0x40, 0xeb, 0x86, 0xb7, 0x7b, 0x0b,
  111. 0xf0, 0x95, 0x21, 0x22, 0x5c, 0x6b, 0x4e, 0x82,
  112. 0x54, 0xd6, 0x65, 0x93, 0xce, 0x60, 0xb2, 0x1c,
  113. 0x73, 0x56, 0xc0, 0x14, 0xa7, 0x8c, 0xf1, 0xdc,
  114. 0x12, 0x75, 0xca, 0x1f, 0x3b, 0xbe, 0xe4, 0xd1,
  115. 0x42, 0x3d, 0xd4, 0x30, 0xa3, 0x3c, 0xb6, 0x26,
  116. 0x6f, 0xbf, 0x0e, 0xda, 0x46, 0x69, 0x07, 0x57,
  117. 0x27, 0xf2, 0x1d, 0x9b, 0xbc, 0x94, 0x43, 0x03,
  118. 0xf8, 0x11, 0xc7, 0xf6, 0x90, 0xef, 0x3e, 0xe7,
  119. 0x06, 0xc3, 0xd5, 0x2f, 0xc8, 0x66, 0x1e, 0xd7,
  120. 0x08, 0xe8, 0xea, 0xde, 0x80, 0x52, 0xee, 0xf7,
  121. 0x84, 0xaa, 0x72, 0xac, 0x35, 0x4d, 0x6a, 0x2a,
  122. 0x96, 0x1a, 0xd2, 0x71, 0x5a, 0x15, 0x49, 0x74,
  123. 0x4b, 0x9f, 0xd0, 0x5e, 0x04, 0x18, 0xa4, 0xec,
  124. 0xc2, 0xe0, 0x41, 0x6e, 0x0f, 0x51, 0xcb, 0xcc,
  125. 0x24, 0x91, 0xaf, 0x50, 0xa1, 0xf4, 0x70, 0x39,
  126. 0x99, 0x7c, 0x3a, 0x85, 0x23, 0xb8, 0xb4, 0x7a,
  127. 0xfc, 0x02, 0x36, 0x5b, 0x25, 0x55, 0x97, 0x31,
  128. 0x2d, 0x5d, 0xfa, 0x98, 0xe3, 0x8a, 0x92, 0xae,
  129. 0x05, 0xdf, 0x29, 0x10, 0x67, 0x6c, 0xba, 0xc9,
  130. 0xd3, 0x00, 0xe6, 0xcf, 0xe1, 0x9e, 0xa8, 0x2c,
  131. 0x63, 0x16, 0x01, 0x3f, 0x58, 0xe2, 0x89, 0xa9,
  132. 0x0d, 0x38, 0x34, 0x1b, 0xab, 0x33, 0xff, 0xb0,
  133. 0xbb, 0x48, 0x0c, 0x5f, 0xb9, 0xb1, 0xcd, 0x2e,
  134. 0xc5, 0xf3, 0xdb, 0x47, 0xe5, 0xa5, 0x9c, 0x77,
  135. 0x0a, 0xa6, 0x20, 0x68, 0xfe, 0x7f, 0xc1, 0xad };
  136. // The expanded key (in bottom 16 bits of each word)
  137. public UInt32[] K;
  138. // The state (again in bottom 16 bits, although we only
  139. // clear the top 16 bits if needed)
  140. private UInt32[] R;
  141. // Key indexer
  142. private int j;
  143. private void Mix()
  144. {
  145. R[0] += K[j] + (R[3] & R[2]) + ((~R[3]) & R[1]);
  146. R[0] = (R[0] << 1) | (R[0]>>15 & 0x1);
  147. R[1] += K[j+1] + (R[0] & R[3]) + ((~R[0]) & R[2]);
  148. R[1] = (R[1] << 2) | (R[1]>>14 & 0x3);
  149. R[2] += K[j+2] + (R[1] & R[0]) + ((~R[1]) & R[3]);
  150. R[2] = (R[2] << 3) | (R[2]>>13 & 0x7);
  151. R[3] += K[j+3] + (R[2] & R[1]) + ((~R[2]) & R[0]);
  152. R[3] = (R[3] << 5) | (R[3]>>11 & 0x1f);
  153. j += 4;
  154. }
  155. private void RMix()
  156. {
  157. R[3] &= 0xffff;
  158. R[3] = (R[3] >> 5) | ((R[3] & 0x1f) << 11);
  159. R[3] -= K[j] + (R[2] & R[1]) + ((~R[2]) & R[0]);
  160. R[2] &= 0xffff;
  161. R[2] = (R[2] >> 3) | ((R[2] & 0x7) << 13);
  162. R[2] -= K[j-1] + (R[1] & R[0]) + ((~R[1]) & R[3]);
  163. R[1] &= 0xffff;
  164. R[1] = (R[1] >> 2) | ((R[1] & 0x3) << 14);
  165. R[1] -= K[j-2] + (R[0] & R[3]) + ((~R[0]) & R[2]);
  166. R[0] &= 0xffff;
  167. R[0] = (R[0] >> 1) | ((R[0] & 0x1) << 15);
  168. R[0] -= K[j-3] + (R[3] & R[2]) + ((~R[3]) & R[1]);
  169. j -= 4;
  170. }
  171. private void Mash ()
  172. {
  173. R [0] += K [R [3] & 63];
  174. R [1] += K [R [0] & 63];
  175. R [2] += K [R [1] & 63];
  176. R [3] += K [R [2] & 63];
  177. }
  178. private void RMash ()
  179. {
  180. R [3] -= K [R [2] & 63];
  181. R [2] -= K [R [1] & 63];
  182. R [1] -= K [R [0] & 63];
  183. R [0] -= K [R [3] & 63];
  184. }
  185. }
  186. }