| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643 |
- //
- // BigInteger.cs - Big Integer implementation
- //
- // Authors:
- // Chew Keong TAN
- // Sebastien Pouliot ([email protected])
- //
- // Copyright (c) 2002 Chew Keong TAN
- // All rights reserved.
- //
- // Modifications from original
- // - Removed all reference to Random class (not secure enough)
- // - Moved all static Test function into BigIntegerTest.cs (for NUnit)
- //
- //************************************************************************************
- // BigInteger Class Version 1.03
- //
- // Copyright (c) 2002 Chew Keong TAN
- // All rights reserved.
- //
- // Permission is hereby granted, free of charge, to any person obtaining a
- // copy of this software and associated documentation files (the
- // "Software"), to deal in the Software without restriction, including
- // without limitation the rights to use, copy, modify, merge, publish,
- // distribute, and/or sell copies of the Software, and to permit persons
- // to whom the Software is furnished to do so, provided that the above
- // copyright notice(s) and this permission notice appear in all copies of
- // the Software and that both the above copyright notice(s) and this
- // permission notice appear in supporting documentation.
- //
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
- // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
- // MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT
- // OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
- // HOLDERS INCLUDED IN THIS NOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL
- // INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING
- // FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
- // NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION
- // WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
- //
- //
- // Disclaimer
- // ----------
- // Although reasonable care has been taken to ensure the correctness of this
- // implementation, this code should never be used in any application without
- // proper verification and testing. I disclaim all liability and responsibility
- // to any person or entity with respect to any loss or damage caused, or alleged
- // to be caused, directly or indirectly, by the use of this BigInteger class.
- //
- // Comments, bugs and suggestions to
- // (http://www.codeproject.com/csharp/biginteger.asp)
- //
- //
- // Overloaded Operators +, -, *, /, %, >>, <<, ==, !=, >, <, >=, <=, &, |, ^, ++, --, ~
- //
- // Features
- // --------
- // 1) Arithmetic operations involving large signed integers (2's complement).
- // 2) Primality test using Fermat little theorm, Rabin Miller's method,
- // Solovay Strassen's method and Lucas strong pseudoprime.
- // 3) Modulo exponential with Barrett's reduction.
- // 4) Inverse modulo.
- // 5) Pseudo prime generation.
- // 6) Co-prime generation.
- //
- //
- // Known Problem
- // -------------
- // This pseudoprime passes my implementation of
- // primality test but failed in JDK's isProbablePrime test.
- //
- // byte[] pseudoPrime1 = { (byte)0x00,
- // (byte)0x85, (byte)0x84, (byte)0x64, (byte)0xFD, (byte)0x70, (byte)0x6A,
- // (byte)0x9F, (byte)0xF0, (byte)0x94, (byte)0x0C, (byte)0x3E, (byte)0x2C,
- // (byte)0x74, (byte)0x34, (byte)0x05, (byte)0xC9, (byte)0x55, (byte)0xB3,
- // (byte)0x85, (byte)0x32, (byte)0x98, (byte)0x71, (byte)0xF9, (byte)0x41,
- // (byte)0x21, (byte)0x5F, (byte)0x02, (byte)0x9E, (byte)0xEA, (byte)0x56,
- // (byte)0x8D, (byte)0x8C, (byte)0x44, (byte)0xCC, (byte)0xEE, (byte)0xEE,
- // (byte)0x3D, (byte)0x2C, (byte)0x9D, (byte)0x2C, (byte)0x12, (byte)0x41,
- // (byte)0x1E, (byte)0xF1, (byte)0xC5, (byte)0x32, (byte)0xC3, (byte)0xAA,
- // (byte)0x31, (byte)0x4A, (byte)0x52, (byte)0xD8, (byte)0xE8, (byte)0xAF,
- // (byte)0x42, (byte)0xF4, (byte)0x72, (byte)0xA1, (byte)0x2A, (byte)0x0D,
- // (byte)0x97, (byte)0xB1, (byte)0x31, (byte)0xB3,
- // };
- //
- //
- // Change Log
- // ----------
- // 1) September 23, 2002 (Version 1.03)
- // - Fixed operator- to give correct data length.
- // - Added Lucas sequence generation.
- // - Added Strong Lucas Primality test.
- // - Added integer square root method.
- // - Added setBit/unsetBit methods.
- // - New isProbablePrime() method which do not require the
- // confident parameter.
- //
- // 2) August 29, 2002 (Version 1.02)
- // - Fixed bug in the exponentiation of negative numbers.
- // - Faster modular exponentiation using Barrett reduction.
- // - Added getBytes() method.
- // - Fixed bug in ToHexString method.
- // - Added overloading of ^ operator.
- // - Faster computation of Jacobi symbol.
- //
- // 3) August 19, 2002 (Version 1.01)
- // - Big integer is stored and manipulated as unsigned integers (4 bytes) instead of
- // individual bytes this gives significant performance improvement.
- // - Updated Fermat's Little Theorem test to use a^(p-1) mod p = 1
- // - Added isProbablePrime method.
- // - Updated documentation.
- //
- // 4) August 9, 2002 (Version 1.0)
- // - Initial Release.
- //
- //
- // References
- // [1] D. E. Knuth, "Seminumerical Algorithms", The Art of Computer Programming Vol. 2,
- // 3rd Edition, Addison-Wesley, 1998.
- //
- // [2] K. H. Rosen, "Elementary Number Theory and Its Applications", 3rd Ed,
- // Addison-Wesley, 1993.
- //
- // [3] B. Schneier, "Applied Cryptography", 2nd Ed, John Wiley & Sons, 1996.
- //
- // [4] A. Menezes, P. van Oorschot, and S. Vanstone, "Handbook of Applied Cryptography",
- // CRC Press, 1996, www.cacr.math.uwaterloo.ca/hac
- //
- // [5] A. Bosselaers, R. Govaerts, and J. Vandewalle, "Comparison of Three Modular
- // Reduction Functions," Proc. CRYPTO'93, pp.175-186.
- //
- // [6] R. Baillie and S. S. Wagstaff Jr, "Lucas Pseudoprimes", Mathematics of Computation,
- // Vol. 35, No. 152, Oct 1980, pp. 1391-1417.
- //
- // [7] H. C. Williams, "Édouard Lucas and Primality Testing", Canadian Mathematical
- // Society Series of Monographs and Advance Texts, vol. 22, John Wiley & Sons, New York,
- // NY, 1998.
- //
- // [8] P. Ribenboim, "The new book of prime number records", 3rd edition, Springer-Verlag,
- // New York, NY, 1995.
- //
- // [9] M. Joye and J.-J. Quisquater, "Efficient computation of full Lucas sequences",
- // Electronics Letters, 32(6), 1996, pp 537-538.
- //
- //************************************************************************************
- using System;
- namespace System.Security.Cryptography {
- internal class BigRandom {
- RandomNumberGenerator rng;
- public BigRandom ()
- {
- rng = RandomNumberGenerator.Create ();
- }
- public void Get (uint[] data)
- {
- byte[] random = new byte [4 * data.Length];
- rng.GetBytes (random);
- int n = 0;
- for (int i=0; i < data.Length; i++) {
- data[i] = BitConverter.ToUInt32 (random, n);
- n+=4;
- }
- }
- public int GetInt (int maxValue)
- {
- // calculate mask
- int mask = Int32.MaxValue;
- while ((mask & maxValue) == maxValue)
- mask >>= 1;
- // undo last iteration
- mask <<= 1;
- mask |= 0x01;
- byte[] data = new byte [4];
- int result = -1;
- while ((result < 0) || (result > maxValue)) {
- rng.GetBytes (data);
- result = (BitConverter.ToInt32 (data, 0) & mask);
- }
- return result;
- }
- public byte GetByte()
- {
- byte[] data = new byte [1];
- rng.GetBytes (data);
- return data [0];
- }
- }
- internal class BigInteger {
- // maximum length of the BigInteger in uint (4 bytes)
- // change this to suit the required level of precision.
- //private const int maxLength = 70;
- // FIXME: actually this limit us to approx. 2048 bits keypair for RSA
- private const int maxLength = 140;
- private BigRandom random;
- // primes smaller than 2000 to test the generated prime number
- public static readonly int[] primesBelow2000 = {
- 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97,
- 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199,
- 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293,
- 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397,
- 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499,
- 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599,
- 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691,
- 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797,
- 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887,
- 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997,
- 1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097,
- 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, 1171, 1181, 1187, 1193,
- 1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289, 1291, 1297,
- 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, 1381, 1399,
- 1409, 1423, 1427, 1429, 1433, 1439, 1447, 1451, 1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, 1499,
- 1511, 1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, 1597,
- 1601, 1607, 1609, 1613, 1619, 1621, 1627, 1637, 1657, 1663, 1667, 1669, 1693, 1697, 1699,
- 1709, 1721, 1723, 1733, 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789,
- 1801, 1811, 1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877, 1879, 1889,
- 1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, 1979, 1987, 1993, 1997, 1999 };
- private uint[] data = null; // stores bytes from the Big Integer
- public int dataLength; // number of actual chars used
- // Constructor (Default value for BigInteger is 0
- public BigInteger()
- {
- data = new uint[maxLength];
- dataLength = 1;
- }
- // Constructor (Default value provided by long)
- public BigInteger(long value)
- {
- data = new uint[maxLength];
- long tempVal = value;
- // copy bytes from long to BigInteger without any assumption of
- // the length of the long datatype
- dataLength = 0;
- while(value != 0 && dataLength < maxLength) {
- data[dataLength] = (uint)(value & 0xFFFFFFFF);
- value >>= 32;
- dataLength++;
- }
- if(tempVal > 0) { // overflow check for +ve value
- if(value != 0 || (data[maxLength-1] & 0x80000000) != 0)
- throw(new ArithmeticException("Positive overflow in constructor."));
- }
- else if(tempVal < 0) { // underflow check for -ve value
- if(value != -1 || (data[dataLength-1] & 0x80000000) == 0)
- throw(new ArithmeticException("Negative underflow in constructor."));
- }
- if(dataLength == 0)
- dataLength = 1;
- }
- // Constructor (Default value provided by ulong)
- public BigInteger(ulong value)
- {
- data = new uint[maxLength];
- // copy bytes from ulong to BigInteger without any assumption of
- // the length of the ulong datatype
- dataLength = 0;
- while(value != 0 && dataLength < maxLength) {
- data[dataLength] = (uint)(value & 0xFFFFFFFF);
- value >>= 32;
- dataLength++;
- }
- if(value != 0 || (data[maxLength-1] & 0x80000000) != 0)
- throw(new ArithmeticException("Positive overflow in constructor."));
- if(dataLength == 0)
- dataLength = 1;
- }
- // Constructor (Default value provided by BigInteger)
- public BigInteger(BigInteger bi)
- {
- data = new uint[maxLength];
- dataLength = bi.dataLength;
- for(int i = 0; i < dataLength; i++)
- data[i] = bi.data[i];
- }
- // Constructor (Default value provided by a string of digits of the
- // specified base)
- // Example (base 10)
- // -----------------
- // To initialize "a" with the default value of 1234 in base 10
- // BigInteger a = new BigInteger("1234", 10)
- //
- // To initialize "a" with the default value of -1234
- // BigInteger a = new BigInteger("-1234", 10)
- //
- // Example (base 16)
- // -----------------
- // To initialize "a" with the default value of 0x1D4F in base 16
- // BigInteger a = new BigInteger("1D4F", 16)
- //
- // To initialize "a" with the default value of -0x1D4F
- // BigInteger a = new BigInteger("-1D4F", 16)
- //
- // Note that string values are specified in the <sign><magnitude>
- // format.
- public BigInteger(string value, int radix)
- {
- BigInteger multiplier = new BigInteger(1);
- BigInteger result = new BigInteger();
- value = (value.ToUpper()).Trim();
- int limit = 0;
- if(value[0] == '-')
- limit = 1;
- for(int i = value.Length - 1; i >= limit ; i--) {
- int posVal = (int)value[i];
- if(posVal >= '0' && posVal <= '9')
- posVal -= '0';
- else if(posVal >= 'A' && posVal <= 'Z')
- posVal = (posVal - 'A') + 10;
- else
- posVal = 9999999; // arbitrary large
- if(posVal >= radix)
- throw(new ArithmeticException("Invalid string in constructor."));
- else {
- if(value[0] == '-')
- posVal = -posVal;
- result = result + (multiplier * posVal);
- if((i - 1) >= limit)
- multiplier = multiplier * radix;
- }
- }
- if(value[0] == '-') { // negative values
- if((result.data[maxLength-1] & 0x80000000) == 0)
- throw(new ArithmeticException("Negative underflow in constructor."));
- }
- else { // positive values
- if((result.data[maxLength-1] & 0x80000000) != 0)
- throw(new ArithmeticException("Positive overflow in constructor."));
- }
- data = new uint[maxLength];
- for(int i = 0; i < result.dataLength; i++)
- data[i] = result.data[i];
- dataLength = result.dataLength;
- }
- // Constructor (Default value provided by an array of bytes)
- //
- // The lowest index of the input byte array (i.e [0]) should contain the
- // most significant byte of the number, and the highest index should
- // contain the least significant byte.
- //
- // E.g.
- // To initialize "a" with the default value of 0x1D4F in base 16
- // byte[] temp = { 0x1D, 0x4F };
- // BigInteger a = new BigInteger(temp)
- //
- // Note that this method of initialization does not allow the
- // sign to be specified.
- public BigInteger(byte[] inData)
- {
- dataLength = inData.Length >> 2;
- int leftOver = inData.Length & 0x3;
- if(leftOver != 0) // length not multiples of 4
- dataLength++;
- if(dataLength > maxLength)
- throw(new ArithmeticException("Byte overflow in constructor."));
- data = new uint[maxLength];
- for(int i = inData.Length - 1, j = 0; i >= 3; i -= 4, j++) {
- data[j] = (uint)((inData[i-3] << 24) + (inData[i-2] << 16) +
- (inData[i-1] << 8) + inData[i]);
- }
- if(leftOver == 1)
- data[dataLength-1] = (uint)inData[0];
- else if(leftOver == 2)
- data[dataLength-1] = (uint)((inData[0] << 8) + inData[1]);
- else if(leftOver == 3)
- data[dataLength-1] = (uint)((inData[0] << 16) + (inData[1] << 8) + inData[2]);
- while(dataLength > 1 && data[dataLength-1] == 0)
- dataLength--;
- //Console.WriteLine("Len = " + dataLength);
- }
- // Constructor (Default value provided by an array of bytes of the
- // specified length.)
- public BigInteger(byte[] inData, int inLen)
- {
- dataLength = inLen >> 2;
- int leftOver = inLen & 0x3;
- if(leftOver != 0) // length not multiples of 4
- dataLength++;
- if(dataLength > maxLength || inLen > inData.Length)
- throw(new ArithmeticException("Byte overflow in constructor."));
- data = new uint[maxLength];
- for(int i = inLen - 1, j = 0; i >= 3; i -= 4, j++) {
- data[j] = (uint)((inData[i-3] << 24) + (inData[i-2] << 16) +
- (inData[i-1] << 8) + inData[i]);
- }
- if(leftOver == 1)
- data[dataLength-1] = (uint)inData[0];
- else if(leftOver == 2)
- data[dataLength-1] = (uint)((inData[0] << 8) + inData[1]);
- else if(leftOver == 3)
- data[dataLength-1] = (uint)((inData[0] << 16) + (inData[1] << 8) + inData[2]);
- if(dataLength == 0)
- dataLength = 1;
- while(dataLength > 1 && data[dataLength-1] == 0)
- dataLength--;
- //Console.WriteLine("Len = " + dataLength);
- }
- // Constructor (Default value provided by an array of unsigned integers)
- public BigInteger(uint[] inData)
- {
- dataLength = inData.Length;
- if(dataLength > maxLength)
- throw(new ArithmeticException("Byte overflow in constructor."));
- data = new uint[maxLength];
- for(int i = dataLength - 1, j = 0; i >= 0; i--, j++)
- data[j] = inData[i];
- while(dataLength > 1 && data[dataLength-1] == 0)
- dataLength--;
- //Console.WriteLine("Len = " + dataLength);
- }
- private BigRandom rng {
- get {
- if (random == null)
- random = new BigRandom ();
- return random;
- }
- }
- // Overloading of the typecast operator.
- // For BigInteger bi = 10;
- public static implicit operator BigInteger (long value)
- {
- return (new BigInteger (value));
- }
- public static implicit operator BigInteger (ulong value)
- {
- return (new BigInteger (value));
- }
- public static implicit operator BigInteger (int value)
- {
- return (new BigInteger ( (long)value));
- }
- public static implicit operator BigInteger (uint value)
- {
- return (new BigInteger ( (ulong)value));
- }
- // Overloading of addition operator
- public static BigInteger operator + (BigInteger bi1, BigInteger bi2)
- {
- BigInteger result = new BigInteger ();
- result.dataLength = (bi1.dataLength > bi2.dataLength) ? bi1.dataLength : bi2.dataLength;
- long carry = 0;
- for(int i = 0; i < result.dataLength; i++) {
- long sum = (long)bi1.data[i] + (long)bi2.data[i] + carry;
- carry = sum >> 32;
- result.data[i] = (uint)(sum & 0xFFFFFFFF);
- }
- if(carry != 0 && result.dataLength < maxLength) {
- result.data[result.dataLength] = (uint)(carry);
- result.dataLength++;
- }
- while(result.dataLength > 1 && result.data[result.dataLength-1] == 0)
- result.dataLength--;
- // overflow check
- int lastPos = maxLength - 1;
- if((bi1.data[lastPos] & 0x80000000) == (bi2.data[lastPos] & 0x80000000) &&
- (result.data[lastPos] & 0x80000000) != (bi1.data[lastPos] & 0x80000000)) {
- throw (new ArithmeticException());
- }
- return result;
- }
- // Overloading of the unary ++ operator
- public static BigInteger operator ++ (BigInteger bi1)
- {
- BigInteger result = new BigInteger (bi1);
- long val, carry = 1;
- int index = 0;
- while(carry != 0 && index < maxLength) {
- val = (long)(result.data[index]);
- val++;
- result.data[index] = (uint)(val & 0xFFFFFFFF);
- carry = val >> 32;
- index++;
- }
- if(index > result.dataLength)
- result.dataLength = index;
- else {
- while(result.dataLength > 1 && result.data[result.dataLength-1] == 0)
- result.dataLength--;
- }
- // overflow check
- int lastPos = maxLength - 1;
- // overflow if initial value was +ve but ++ caused a sign
- // change to negative.
- if((bi1.data[lastPos] & 0x80000000) == 0 &&
- (result.data[lastPos] & 0x80000000) != (bi1.data[lastPos] & 0x80000000)) {
- throw (new ArithmeticException("Overflow in ++."));
- }
- return result;
- }
- // Overloading of subtraction operator
- public static BigInteger operator - (BigInteger bi1, BigInteger bi2)
- {
- BigInteger result = new BigInteger ();
- result.dataLength = (bi1.dataLength > bi2.dataLength) ? bi1.dataLength : bi2.dataLength;
- long carryIn = 0;
- for(int i = 0; i < result.dataLength; i++) {
- long diff;
- diff = (long)bi1.data[i] - (long)bi2.data[i] - carryIn;
- result.data[i] = (uint)(diff & 0xFFFFFFFF);
- if(diff < 0)
- carryIn = 1;
- else
- carryIn = 0;
- }
- // roll over to negative
- if(carryIn != 0) {
- for(int i = result.dataLength; i < maxLength; i++)
- result.data[i] = 0xFFFFFFFF;
- result.dataLength = maxLength;
- }
- // fixed in v1.03 to give correct datalength for a - (-b)
- while(result.dataLength > 1 && result.data[result.dataLength-1] == 0)
- result.dataLength--;
- // overflow check
- int lastPos = maxLength - 1;
- if((bi1.data[lastPos] & 0x80000000) != (bi2.data[lastPos] & 0x80000000) &&
- (result.data[lastPos] & 0x80000000) != (bi1.data[lastPos] & 0x80000000)) {
- throw (new ArithmeticException());
- }
- return result;
- }
- // Overloading of the unary -- operator
- public static BigInteger operator -- (BigInteger bi1)
- {
- BigInteger result = new BigInteger (bi1);
- long val;
- bool carryIn = true;
- int index = 0;
- while(carryIn && index < maxLength) {
- val = (long)(result.data[index]);
- val--;
- result.data[index] = (uint)(val & 0xFFFFFFFF);
- if(val >= 0)
- carryIn = false;
- index++;
- }
- if(index > result.dataLength)
- result.dataLength = index;
- while(result.dataLength > 1 && result.data[result.dataLength-1] == 0)
- result.dataLength--;
- // overflow check
- int lastPos = maxLength - 1;
- // overflow if initial value was -ve but -- caused a sign
- // change to positive.
- if((bi1.data[lastPos] & 0x80000000) != 0 &&
- (result.data[lastPos] & 0x80000000) != (bi1.data[lastPos] & 0x80000000)) {
- throw (new ArithmeticException("Underflow in --."));
- }
- return result;
- }
- // Overloading of multiplication operator
- public static BigInteger operator * (BigInteger bi1, BigInteger bi2)
- {
- int lastPos = maxLength-1;
- bool bi1Neg = false, bi2Neg = false;
- // take the absolute value of the inputs
- try {
- if((bi1.data[lastPos] & 0x80000000) != 0) { // bi1 negative
- bi1Neg = true; bi1 = -bi1;
- }
- if((bi2.data[lastPos] & 0x80000000) != 0) { // bi2 negative
- bi2Neg = true; bi2 = -bi2;
- }
- }
- catch(Exception) {}
- BigInteger result = new BigInteger();
- // multiply the absolute values
- try {
- for(int i = 0; i < bi1.dataLength; i++) {
- if(bi1.data[i] == 0) continue;
- ulong mcarry = 0;
- for(int j = 0, k = i; j < bi2.dataLength; j++, k++) {
- // k = i + j
- ulong val = ((ulong)bi1.data[i] * (ulong)bi2.data[j]) +
- (ulong)result.data[k] + mcarry;
- result.data[k] = (uint)(val & 0xFFFFFFFF);
- mcarry = (val >> 32);
- }
- if(mcarry != 0)
- result.data[i+bi2.dataLength] = (uint)mcarry;
- }
- }
- catch(Exception) {
- throw(new ArithmeticException("Multiplication overflow."));
- }
- result.dataLength = bi1.dataLength + bi2.dataLength;
- if(result.dataLength > maxLength)
- result.dataLength = maxLength;
- while(result.dataLength > 1 && result.data[result.dataLength-1] == 0)
- result.dataLength--;
- // overflow check (result is -ve)
- if((result.data[lastPos] & 0x80000000) != 0) {
- if(bi1Neg != bi2Neg && result.data[lastPos] == 0x80000000) { // different sign
- // handle the special case where multiplication produces
- // a max negative number in 2's complement.
- if(result.dataLength == 1)
- return result;
- else {
- bool isMaxNeg = true;
- for(int i = 0; i < result.dataLength - 1 && isMaxNeg; i++) {
- if(result.data[i] != 0)
- isMaxNeg = false;
- }
- if(isMaxNeg)
- return result;
- }
- }
- throw(new ArithmeticException("Multiplication overflow."));
- }
- // if input has different signs, then result is -ve
- if(bi1Neg != bi2Neg)
- return -result;
- return result;
- }
- // Overloading of unary << operators
- public static BigInteger operator << (BigInteger bi1, int shiftVal)
- {
- BigInteger result = new BigInteger (bi1);
- result.dataLength = shiftLeft(result.data, shiftVal);
- return result;
- }
- // least significant bits at lower part of buffer
- private static int shiftLeft (uint[] buffer, int shiftVal)
- {
- int shiftAmount = 32;
- int bufLen = buffer.Length;
- while(bufLen > 1 && buffer[bufLen-1] == 0)
- bufLen--;
- for(int count = shiftVal; count > 0;) {
- if(count < shiftAmount)
- shiftAmount = count;
- //Console.WriteLine("shiftAmount = {0}", shiftAmount);
- ulong carry = 0;
- for(int i = 0; i < bufLen; i++) {
- ulong val = ((ulong)buffer[i]) << shiftAmount;
- val |= carry;
- buffer[i] = (uint)(val & 0xFFFFFFFF);
- carry = val >> 32;
- }
- if(carry != 0) {
- if(bufLen + 1 <= buffer.Length) {
- buffer[bufLen] = (uint)carry;
- bufLen++;
- }
- }
- count -= shiftAmount;
- }
- return bufLen;
- }
- // Overloading of unary >> operators
- public static BigInteger operator >> (BigInteger bi1, int shiftVal)
- {
- BigInteger result = new BigInteger(bi1);
- result.dataLength = shiftRight(result.data, shiftVal);
- if((bi1.data[maxLength-1] & 0x80000000) != 0) { // negative
- for(int i = maxLength - 1; i >= result.dataLength; i--)
- result.data[i] = 0xFFFFFFFF;
- uint mask = 0x80000000;
- for(int i = 0; i < 32; i++) {
- if((result.data[result.dataLength-1] & mask) != 0)
- break;
- result.data[result.dataLength-1] |= mask;
- mask >>= 1;
- }
- result.dataLength = maxLength;
- }
- return result;
- }
- private static int shiftRight (uint[] buffer, int shiftVal)
- {
- int shiftAmount = 32;
- int invShift = 0;
- int bufLen = buffer.Length;
- while(bufLen > 1 && buffer[bufLen-1] == 0)
- bufLen--;
- //Console.WriteLine("bufLen = " + bufLen + " buffer.Length = " + buffer.Length);
- for(int count = shiftVal; count > 0;) {
- if(count < shiftAmount) {
- shiftAmount = count;
- invShift = 32 - shiftAmount;
- }
- //Console.WriteLine("shiftAmount = {0}", shiftAmount);
- ulong carry = 0;
- for(int i = bufLen - 1; i >= 0; i--) {
- ulong val = ((ulong)buffer[i]) >> shiftAmount;
- val |= carry;
- carry = ((ulong)buffer[i]) << invShift;
- buffer[i] = (uint)(val);
- }
- count -= shiftAmount;
- }
- while(bufLen > 1 && buffer[bufLen-1] == 0)
- bufLen--;
- return bufLen;
- }
- // Overloading of the NOT operator (1's complement)
- public static BigInteger operator ~ (BigInteger bi1)
- {
- BigInteger result = new BigInteger (bi1);
- for(int i = 0; i < maxLength; i++)
- result.data[i] = (uint)(~(bi1.data[i]));
- result.dataLength = maxLength;
- while(result.dataLength > 1 && result.data[result.dataLength-1] == 0)
- result.dataLength--;
- return result;
- }
- // Overloading of the NEGATE operator (2's complement)
- public static BigInteger operator - (BigInteger bi1)
- {
- // handle neg of zero separately since it'll cause an overflow
- // if we proceed.
- if(bi1.dataLength == 1 && bi1.data[0] == 0)
- return (new BigInteger ());
- BigInteger result = new BigInteger (bi1);
- // 1's complement
- for(int i = 0; i < maxLength; i++)
- result.data[i] = (uint)(~(bi1.data[i]));
- // add one to result of 1's complement
- long val, carry = 1;
- int index = 0;
- while(carry != 0 && index < maxLength) {
- val = (long)(result.data[index]);
- val++;
- result.data[index] = (uint)(val & 0xFFFFFFFF);
- carry = val >> 32;
- index++;
- }
- if((bi1.data[maxLength-1] & 0x80000000) == (result.data[maxLength-1] & 0x80000000))
- throw (new ArithmeticException("Overflow in negation.\n"));
- result.dataLength = maxLength;
- while(result.dataLength > 1 && result.data[result.dataLength-1] == 0)
- result.dataLength--;
- return result;
- }
- // Overloading of equality operator
- public static bool operator == (BigInteger bi1, BigInteger bi2)
- {
- return bi1.Equals (bi2);
- }
- public static bool operator !=( BigInteger bi1, BigInteger bi2)
- {
- return !(bi1.Equals (bi2));
- }
- public override bool Equals (object o)
- {
- BigInteger bi = (BigInteger) o;
- if(this.dataLength != bi.dataLength)
- return false;
- for(int i = 0; i < this.dataLength; i++) {
- if(this.data [i] != bi.data [i])
- return false;
- }
- return true;
- }
- public override int GetHashCode ()
- {
- return this.ToString ().GetHashCode ();
- }
- // Overloading of inequality operator
- public static bool operator > (BigInteger bi1, BigInteger bi2)
- {
- int pos = maxLength - 1;
- // bi1 is negative, bi2 is positive
- if((bi1.data[pos] & 0x80000000) != 0 && (bi2.data[pos] & 0x80000000) == 0)
- return false;
- // bi1 is positive, bi2 is negative
- else if((bi1.data[pos] & 0x80000000) == 0 && (bi2.data[pos] & 0x80000000) != 0)
- return true;
- // same sign
- int len = (bi1.dataLength > bi2.dataLength) ? bi1.dataLength : bi2.dataLength;
- for(pos = len - 1; pos >= 0 && bi1.data[pos] == bi2.data[pos]; pos--);
- if(pos >= 0) {
- if(bi1.data[pos] > bi2.data[pos])
- return true;
- return false;
- }
- return false;
- }
- public static bool operator < (BigInteger bi1, BigInteger bi2)
- {
- int pos = maxLength - 1;
- // bi1 is negative, bi2 is positive
- if((bi1.data[pos] & 0x80000000) != 0 && (bi2.data[pos] & 0x80000000) == 0)
- return true;
- // bi1 is positive, bi2 is negative
- else if((bi1.data[pos] & 0x80000000) == 0 && (bi2.data[pos] & 0x80000000) != 0)
- return false;
- // same sign
- int len = (bi1.dataLength > bi2.dataLength) ? bi1.dataLength : bi2.dataLength;
- for(pos = len - 1; pos >= 0 && bi1.data[pos] == bi2.data[pos]; pos--);
- if(pos >= 0) {
- if(bi1.data[pos] < bi2.data[pos])
- return true;
- return false;
- }
- return false;
- }
- public static bool operator >= (BigInteger bi1, BigInteger bi2)
- {
- return (bi1 == bi2 || bi1 > bi2);
- }
- public static bool operator <= (BigInteger bi1, BigInteger bi2)
- {
- return (bi1 == bi2 || bi1 < bi2);
- }
- // Private function that supports the division of two numbers with
- // a divisor that has more than 1 digit.
- // Algorithm taken from [1]
- private static void multiByteDivide (BigInteger bi1, BigInteger bi2,
- BigInteger outQuotient, BigInteger outRemainder)
- {
- uint[] result = new uint[maxLength];
- int remainderLen = bi1.dataLength + 1;
- uint[] remainder = new uint[remainderLen];
- uint mask = 0x80000000;
- uint val = bi2.data[bi2.dataLength - 1];
- int shift = 0, resultPos = 0;
- while(mask != 0 && (val & mask) == 0) {
- shift++; mask >>= 1;
- }
- //Console.WriteLine("shift = {0}", shift);
- //Console.WriteLine("Before bi1 Len = {0}, bi2 Len = {1}", bi1.dataLength, bi2.dataLength);
- for (int i = 0; i < bi1.dataLength; i++)
- remainder[i] = bi1.data[i];
- shiftLeft (remainder, shift);
- bi2 = bi2 << shift;
- /*
- Console.WriteLine("bi1 Len = {0}, bi2 Len = {1}", bi1.dataLength, bi2.dataLength);
- Console.WriteLine("dividend = " + bi1 + "\ndivisor = " + bi2);
- for(int q = remainderLen - 1; q >= 0; q--)
- Console.Write("{0:x2}", remainder[q]);
- Console.WriteLine();
- */
- int j = remainderLen - bi2.dataLength;
- int pos = remainderLen - 1;
- ulong firstDivisorByte = bi2.data[bi2.dataLength-1];
- ulong secondDivisorByte = bi2.data[bi2.dataLength-2];
- int divisorLen = bi2.dataLength + 1;
- uint[] dividendPart = new uint[divisorLen];
- while(j > 0) {
- ulong dividend = ((ulong)remainder[pos] << 32) + (ulong)remainder[pos-1];
- //Console.WriteLine("dividend = {0}", dividend);
- ulong q_hat = dividend / firstDivisorByte;
- ulong r_hat = dividend % firstDivisorByte;
- //Console.WriteLine("q_hat = {0:X}, r_hat = {1:X}", q_hat, r_hat);
- bool done = false;
- while(!done) {
- done = true;
- if(q_hat == 0x100000000 ||
- (q_hat * secondDivisorByte) > ((r_hat << 32) + remainder[pos-2])) {
- q_hat--;
- r_hat += firstDivisorByte;
- if(r_hat < 0x100000000)
- done = false;
- }
- }
- for (int h = 0; h < divisorLen; h++)
- dividendPart[h] = remainder[pos-h];
- BigInteger kk = new BigInteger (dividendPart);
- BigInteger ss = bi2 * (long)q_hat;
- //Console.WriteLine("ss before = " + ss);
- while(ss > kk) {
- q_hat--;
- ss -= bi2;
- //Console.WriteLine(ss);
- }
- BigInteger yy = kk - ss;
- //Console.WriteLine("ss = " + ss);
- //Console.WriteLine("kk = " + kk);
- //Console.WriteLine("yy = " + yy);
- for(int h = 0; h < divisorLen; h++)
- remainder[pos-h] = yy.data[bi2.dataLength-h];
- /*
- Console.WriteLine("dividend = ");
- for(int q = remainderLen - 1; q >= 0; q--)
- Console.Write("{0:x2}", remainder[q]);
- Console.WriteLine("\n************ q_hat = {0:X}\n", q_hat);
- */
- result[resultPos++] = (uint)q_hat;
- pos--;
- j--;
- }
- outQuotient.dataLength = resultPos;
- int y = 0;
- for(int x = outQuotient.dataLength - 1; x >= 0; x--, y++)
- outQuotient.data[y] = result[x];
- for(; y < maxLength; y++)
- outQuotient.data[y] = 0;
- while(outQuotient.dataLength > 1 && outQuotient.data[outQuotient.dataLength-1] == 0)
- outQuotient.dataLength--;
- if(outQuotient.dataLength == 0)
- outQuotient.dataLength = 1;
- outRemainder.dataLength = shiftRight(remainder, shift);
- for(y = 0; y < outRemainder.dataLength; y++)
- outRemainder.data[y] = remainder[y];
- for(; y < maxLength; y++)
- outRemainder.data[y] = 0;
- }
- // Private function that supports the division of two numbers with
- // a divisor that has only 1 digit.
- private static void singleByteDivide (BigInteger bi1, BigInteger bi2,
- BigInteger outQuotient, BigInteger outRemainder)
- {
- uint[] result = new uint[maxLength];
- int resultPos = 0;
- // copy dividend to reminder
- for(int i = 0; i < maxLength; i++)
- outRemainder.data[i] = bi1.data[i];
- outRemainder.dataLength = bi1.dataLength;
- while(outRemainder.dataLength > 1 && outRemainder.data[outRemainder.dataLength-1] == 0)
- outRemainder.dataLength--;
- ulong divisor = (ulong)bi2.data[0];
- int pos = outRemainder.dataLength - 1;
- ulong dividend = (ulong)outRemainder.data[pos];
- //Console.WriteLine("divisor = " + divisor + " dividend = " + dividend);
- //Console.WriteLine("divisor = " + bi2 + "\ndividend = " + bi1);
- if(dividend >= divisor) {
- ulong quotient = dividend / divisor;
- result[resultPos++] = (uint)quotient;
- outRemainder.data[pos] = (uint)(dividend % divisor);
- }
- pos--;
- while(pos >= 0) {
- //Console.WriteLine(pos);
- dividend = ((ulong)outRemainder.data[pos+1] << 32) + (ulong)outRemainder.data[pos];
- ulong quotient = dividend / divisor;
- result[resultPos++] = (uint)quotient;
- outRemainder.data[pos+1] = 0;
- outRemainder.data[pos--] = (uint)(dividend % divisor);
- //Console.WriteLine(">>>> " + bi1);
- }
- outQuotient.dataLength = resultPos;
- int j = 0;
- for(int i = outQuotient.dataLength - 1; i >= 0; i--, j++)
- outQuotient.data[j] = result[i];
- for(; j < maxLength; j++)
- outQuotient.data[j] = 0;
- while(outQuotient.dataLength > 1 && outQuotient.data[outQuotient.dataLength-1] == 0)
- outQuotient.dataLength--;
- if(outQuotient.dataLength == 0)
- outQuotient.dataLength = 1;
- while(outRemainder.dataLength > 1 && outRemainder.data[outRemainder.dataLength-1] == 0)
- outRemainder.dataLength--;
- }
- // Overloading of division operator
- public static BigInteger operator / (BigInteger bi1, BigInteger bi2)
- {
- BigInteger quotient = new BigInteger();
- BigInteger remainder = new BigInteger();
- int lastPos = maxLength-1;
- bool divisorNeg = false, dividendNeg = false;
- if((bi1.data[lastPos] & 0x80000000) != 0) { // bi1 negative
- bi1 = -bi1;
- dividendNeg = true;
- }
- if((bi2.data[lastPos] & 0x80000000) != 0) { // bi2 negative
- bi2 = -bi2;
- divisorNeg = true;
- }
- if(bi1 < bi2) {
- return quotient;
- }
- else {
- if(bi2.dataLength == 1)
- singleByteDivide(bi1, bi2, quotient, remainder);
- else
- multiByteDivide(bi1, bi2, quotient, remainder);
- if(dividendNeg != divisorNeg)
- return -quotient;
- return quotient;
- }
- }
- // Overloading of modulus operator
- public static BigInteger operator % (BigInteger bi1, BigInteger bi2)
- {
- BigInteger quotient = new BigInteger();
- BigInteger remainder = new BigInteger(bi1);
- int lastPos = maxLength-1;
- bool dividendNeg = false;
- if((bi1.data[lastPos] & 0x80000000) != 0) { // bi1 negative
- bi1 = -bi1;
- dividendNeg = true;
- }
- if((bi2.data[lastPos] & 0x80000000) != 0) // bi2 negative
- bi2 = -bi2;
- if(bi1 < bi2) {
- return remainder;
- }
- else {
- if(bi2.dataLength == 1)
- singleByteDivide(bi1, bi2, quotient, remainder);
- else
- multiByteDivide(bi1, bi2, quotient, remainder);
- if(dividendNeg)
- return -remainder;
- return remainder;
- }
- }
- // Overloading of bitwise AND operator
- public static BigInteger operator & (BigInteger bi1, BigInteger bi2)
- {
- BigInteger result = new BigInteger();
- int len = (bi1.dataLength > bi2.dataLength) ? bi1.dataLength : bi2.dataLength;
- for(int i = 0; i < len; i++) {
- uint sum = (uint)(bi1.data[i] & bi2.data[i]);
- result.data[i] = sum;
- }
- result.dataLength = maxLength;
- while(result.dataLength > 1 && result.data[result.dataLength-1] == 0)
- result.dataLength--;
- return result;
- }
- // Overloading of bitwise OR operator
- public static BigInteger operator | (BigInteger bi1, BigInteger bi2)
- {
- BigInteger result = new BigInteger();
- int len = (bi1.dataLength > bi2.dataLength) ? bi1.dataLength : bi2.dataLength;
- for(int i = 0; i < len; i++) {
- uint sum = (uint)(bi1.data[i] | bi2.data[i]);
- result.data[i] = sum;
- }
- result.dataLength = maxLength;
- while(result.dataLength > 1 && result.data[result.dataLength-1] == 0)
- result.dataLength--;
- return result;
- }
- // Overloading of bitwise XOR operator
- public static BigInteger operator ^ (BigInteger bi1, BigInteger bi2)
- {
- BigInteger result = new BigInteger();
- int len = (bi1.dataLength > bi2.dataLength) ? bi1.dataLength : bi2.dataLength;
- for(int i = 0; i < len; i++) {
- uint sum = (uint)(bi1.data[i] ^ bi2.data[i]);
- result.data[i] = sum;
- }
- result.dataLength = maxLength;
- while(result.dataLength > 1 && result.data[result.dataLength-1] == 0)
- result.dataLength--;
- return result;
- }
- // Returns max(this, bi)
- public BigInteger max (BigInteger bi)
- {
- if(this > bi)
- return (new BigInteger(this));
- else
- return (new BigInteger(bi));
- }
- // Returns min(this, bi)
- public BigInteger min (BigInteger bi)
- {
- if (this < bi)
- return (new BigInteger (this));
- else
- return (new BigInteger (bi));
- }
- // Returns the absolute value
- public BigInteger abs ()
- {
- if((this.data[maxLength - 1] & 0x80000000) != 0)
- return (-this);
- else
- return (new BigInteger (this));
- }
- // Returns a string representing the BigInteger in base 10.
- public override string ToString ()
- {
- return ToString (10);
- }
- // Returns a string representing the BigInteger in sign-and-magnitude
- // format in the specified radix.
- //
- // Example
- // -------
- // If the value of BigInteger is -255 in base 10, then
- // ToString(16) returns "-FF"
- public string ToString (int radix)
- {
- if(radix < 2 || radix > 36)
- throw (new ArgumentException("Radix must be >= 2 and <= 36"));
- string charSet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
- string result = "";
- BigInteger a = this;
- bool negative = false;
- if((a.data[maxLength-1] & 0x80000000) != 0) {
- negative = true;
- try {
- a = -a;
- }
- catch(Exception) {}
- }
- BigInteger quotient = new BigInteger();
- BigInteger remainder = new BigInteger();
- BigInteger biRadix = new BigInteger(radix);
- if(a.dataLength == 1 && a.data[0] == 0)
- result = "0";
- else {
- while(a.dataLength > 1 || (a.dataLength == 1 && a.data[0] != 0)) {
- singleByteDivide(a, biRadix, quotient, remainder);
- if(remainder.data[0] < 10)
- result = remainder.data[0] + result;
- else
- result = charSet[(int)remainder.data[0] - 10] + result;
- a = quotient;
- }
- if(negative)
- result = "-" + result;
- }
- return result;
- }
- // Returns a hex string showing the contains of the BigInteger
- //
- // Examples
- // -------
- // 1) If the value of BigInteger is 255 in base 10, then
- // ToHexString() returns "FF"
- //
- // 2) If the value of BigInteger is -255 in base 10, then
- // ToHexString() returns ".....FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF01",
- // which is the 2's complement representation of -255.
- public string ToHexString ()
- {
- string result = data[dataLength - 1].ToString("X");
- for(int i = dataLength - 2; i >= 0; i--) {
- result += data[i].ToString("X8");
- }
- return result;
- }
- // Modulo Exponentiation
- public BigInteger modPow(BigInteger exp, BigInteger n)
- {
- if((exp.data[maxLength-1] & 0x80000000) != 0)
- throw (new ArithmeticException("Positive exponents only."));
- BigInteger resultNum = 1;
- BigInteger tempNum;
- bool thisNegative = false;
- if((this.data[maxLength-1] & 0x80000000) != 0) { // negative this
- tempNum = -this % n;
- thisNegative = true;
- }
- else
- tempNum = this % n; // ensures (tempNum * tempNum) < b^(2k)
- if((n.data[maxLength-1] & 0x80000000) != 0) // negative n
- n = -n;
- // calculate constant = b^(2k) / m
- BigInteger constant = new BigInteger ();
- int i = n.dataLength << 1;
- constant.data[i] = 0x00000001;
- constant.dataLength = i + 1;
- constant = constant / n;
- int totalBits = exp.bitCount ();
- int count = 0;
- // perform squaring and multiply exponentiation
- for(int pos = 0; pos < exp.dataLength; pos++) {
- uint mask = 0x01;
- //Console.WriteLine("pos = " + pos);
- for(int index = 0; index < 32; index++) {
- if((exp.data[pos] & mask) != 0)
- resultNum = BarrettReduction(resultNum * tempNum, n, constant);
- mask <<= 1;
- tempNum = BarrettReduction(tempNum * tempNum, n, constant);
- if(tempNum.dataLength == 1 && tempNum.data[0] == 1) {
- if(thisNegative && (exp.data[0] & 0x1) != 0) //odd exp
- return -resultNum;
- return resultNum;
- }
- count++;
- if(count == totalBits)
- break;
- }
- }
- if(thisNegative && (exp.data[0] & 0x1) != 0) //odd exp
- return -resultNum;
- return resultNum;
- }
- // Fast calculation of modular reduction using Barrett's reduction.
- // Requires x < b^(2k), where b is the base. In this case, base is
- // 2^32 (uint).
- // Reference [4]
- private BigInteger BarrettReduction(BigInteger x, BigInteger n, BigInteger constant)
- {
- int k = n.dataLength,
- kPlusOne = k+1,
- kMinusOne = k-1;
- BigInteger q1 = new BigInteger ();
- // q1 = x / b^(k-1)
- for(int i = kMinusOne, j = 0; i < x.dataLength; i++, j++)
- q1.data[j] = x.data[i];
- q1.dataLength = x.dataLength - kMinusOne;
- if(q1.dataLength <= 0)
- q1.dataLength = 1;
- BigInteger q2 = q1 * constant;
- BigInteger q3 = new BigInteger();
- // q3 = q2 / b^(k+1)
- for(int i = kPlusOne, j = 0; i < q2.dataLength; i++, j++)
- q3.data[j] = q2.data[i];
- q3.dataLength = q2.dataLength - kPlusOne;
- if(q3.dataLength <= 0)
- q3.dataLength = 1;
- // r1 = x mod b^(k+1)
- // i.e. keep the lowest (k+1) words
- BigInteger r1 = new BigInteger();
- int lengthToCopy = (x.dataLength > kPlusOne) ? kPlusOne : x.dataLength;
- for(int i = 0; i < lengthToCopy; i++)
- r1.data[i] = x.data[i];
- r1.dataLength = lengthToCopy;
- // r2 = (q3 * n) mod b^(k+1)
- // partial multiplication of q3 and n
- BigInteger r2 = new BigInteger();
- for(int i = 0; i < q3.dataLength; i++) {
- if(q3.data[i] == 0) continue;
- ulong mcarry = 0;
- int t = i;
- for(int j = 0; j < n.dataLength && t < kPlusOne; j++, t++) {
- // t = i + j
- ulong val = ((ulong)q3.data[i] * (ulong)n.data[j]) +
- (ulong)r2.data[t] + mcarry;
- r2.data[t] = (uint)(val & 0xFFFFFFFF);
- mcarry = (val >> 32);
- }
- if(t < kPlusOne)
- r2.data[t] = (uint)mcarry;
- }
- r2.dataLength = kPlusOne;
- while(r2.dataLength > 1 && r2.data[r2.dataLength-1] == 0)
- r2.dataLength--;
- r1 -= r2;
- if((r1.data[maxLength-1] & 0x80000000) != 0) { // negative
- BigInteger val = new BigInteger();
- val.data[kPlusOne] = 0x00000001;
- val.dataLength = kPlusOne + 1;
- r1 += val;
- }
- while(r1 >= n)
- r1 -= n;
- return r1;
- }
- // Returns gcd(this, bi)
- public BigInteger gcd(BigInteger bi)
- {
- BigInteger x;
- BigInteger y;
- if((data[maxLength-1] & 0x80000000) != 0) // negative
- x = -this;
- else
- x = this;
- if((bi.data[maxLength-1] & 0x80000000) != 0) // negative
- y = -bi;
- else
- y = bi;
- BigInteger g = y;
- while(x.dataLength > 1 || (x.dataLength == 1 && x.data[0] != 0)) {
- g = x;
- x = y % x;
- y = g;
- }
- return g;
- }
- // Populates "this" with the specified amount of random bits
- public void genRandomBits (int bits)
- {
- genRandomBits (bits, new BigRandom ());
- }
- public void genRandomBits (int bits, BigRandom rng)
- {
- int dwords = bits >> 5;
- int remBits = bits & 0x1F;
- if (remBits != 0)
- dwords++;
- if (dwords > maxLength)
- throw (new ArithmeticException("Number of required bits > maxLength."));
- rng.Get (data);
- for (int i = dwords; i < maxLength; i++)
- data[i] = 0;
- if (remBits != 0) {
- uint mask = (uint)(0x01 << (remBits-1));
- data[dwords-1] |= mask;
- mask = (uint)(0xFFFFFFFF >> (32 - remBits));
- data[dwords-1] &= mask;
- }
- else
- data[dwords-1] |= 0x80000000;
- dataLength = dwords;
- if (dataLength == 0)
- dataLength = 1;
- }
- // Returns the position of the most significant bit in the BigInteger.
- // Eg. The result is 0, if the value of BigInteger is 0...0000 0000
- // The result is 1, if the value of BigInteger is 0...0000 0001
- // The result is 2, if the value of BigInteger is 0...0000 0010
- // The result is 2, if the value of BigInteger is 0...0000 0011
- public int bitCount ()
- {
- while(dataLength > 1 && data[dataLength-1] == 0)
- dataLength--;
- uint value = data[dataLength - 1];
- uint mask = 0x80000000;
- int bits = 32;
- while(bits > 0 && (value & mask) == 0) {
- bits--;
- mask >>= 1;
- }
- bits += ((dataLength - 1) << 5);
- return bits;
- }
- // Probabilistic prime test based on Fermat's little theorem
- //
- // for any a < p (p does not divide a) if
- // a^(p-1) mod p != 1 then p is not prime.
- //
- // Otherwise, p is probably prime (pseudoprime to the chosen base).
- //
- // Returns
- // -------
- // True if "this" is a pseudoprime to randomly chosen
- // bases. The number of chosen bases is given by the "confidence"
- // parameter.
- //
- // False if "this" is definitely NOT prime.
- //
- // Note - this method is fast but fails for Carmichael numbers except
- // when the randomly chosen base is a factor of the number.
- public bool FermatLittleTest (int confidence)
- {
- BigInteger thisVal;
- if((this.data[maxLength-1] & 0x80000000) != 0) // negative
- thisVal = -this;
- else
- thisVal = this;
- if(thisVal.dataLength == 1) {
- // test small numbers
- if(thisVal.data[0] == 0 || thisVal.data[0] == 1)
- return false;
- else if(thisVal.data[0] == 2 || thisVal.data[0] == 3)
- return true;
- }
- if((thisVal.data[0] & 0x1) == 0) // even numbers
- return false;
- int bits = thisVal.bitCount();
- BigInteger a = new BigInteger();
- BigInteger p_sub1 = thisVal - (new BigInteger(1));
- for(int round = 0; round < confidence; round++) {
- bool done = false;
- while(!done) { // generate a < n
- int testBits = 0;
- // make sure "a" has at least 2 bits
- while(testBits < 2)
- testBits = rng.GetInt (bits);
- a.genRandomBits (testBits);
- int byteLen = a.dataLength;
- // make sure "a" is not 0
- if(byteLen > 1 || (byteLen == 1 && a.data[0] != 1))
- done = true;
- }
- // check whether a factor exists (fix for version 1.03)
- BigInteger gcdTest = a.gcd(thisVal);
- if(gcdTest.dataLength == 1 && gcdTest.data[0] != 1)
- return false;
- // calculate a^(p-1) mod p
- BigInteger expResult = a.modPow(p_sub1, thisVal);
- int resultLen = expResult.dataLength;
- // is NOT prime is a^(p-1) mod p != 1
- if(resultLen > 1 || (resultLen == 1 && expResult.data[0] != 1)) {
- //Console.WriteLine("a = " + a.ToString());
- return false;
- }
- }
- return true;
- }
- // Probabilistic prime test based on Rabin-Miller's
- //
- // for any p > 0 with p - 1 = 2^s * t
- //
- // p is probably prime (strong pseudoprime) if for any a < p,
- // 1) a^t mod p = 1 or
- // 2) a^((2^j)*t) mod p = p-1 for some 0 <= j <= s-1
- //
- // Otherwise, p is composite.
- //
- // Returns
- // -------
- // True if "this" is a strong pseudoprime to randomly chosen
- // bases. The number of chosen bases is given by the "confidence"
- // parameter.
- //
- // False if "this" is definitely NOT prime.
- public bool RabinMillerTest(int confidence)
- {
- BigInteger thisVal;
- if((this.data[maxLength-1] & 0x80000000) != 0) // negative
- thisVal = -this;
- else
- thisVal = this;
- if(thisVal.dataLength == 1) {
- // test small numbers
- if(thisVal.data[0] == 0 || thisVal.data[0] == 1)
- return false;
- else if(thisVal.data[0] == 2 || thisVal.data[0] == 3)
- return true;
- }
- if((thisVal.data[0] & 0x1) == 0) // even numbers
- return false;
- // calculate values of s and t
- BigInteger p_sub1 = thisVal - (new BigInteger(1));
- int s = 0;
- for(int index = 0; index < p_sub1.dataLength; index++) {
- uint mask = 0x01;
- for(int i = 0; i < 32; i++) {
- if((p_sub1.data[index] & mask) != 0) {
- index = p_sub1.dataLength; // to break the outer loop
- break;
- }
- mask <<= 1;
- s++;
- }
- }
- BigInteger t = p_sub1 >> s;
- int bits = thisVal.bitCount();
- BigInteger a = new BigInteger();
- for(int round = 0; round < confidence; round++) {
- bool done = false;
- while(!done) { // generate a < n
- int testBits = 0;
- // make sure "a" has at least 2 bits
- while(testBits < 2)
- testBits = rng.GetInt (bits);
- a.genRandomBits (testBits);
- int byteLen = a.dataLength;
- // make sure "a" is not 0
- if(byteLen > 1 || (byteLen == 1 && a.data[0] != 1))
- done = true;
- }
- // check whether a factor exists (fix for version 1.03)
- BigInteger gcdTest = a.gcd(thisVal);
- if(gcdTest.dataLength == 1 && gcdTest.data[0] != 1)
- return false;
- BigInteger b = a.modPow(t, thisVal);
- /*
- Console.WriteLine("a = " + a.ToString(10));
- Console.WriteLine("b = " + b.ToString(10));
- Console.WriteLine("t = " + t.ToString(10));
- Console.WriteLine("s = " + s);
- */
- bool result = false;
- if(b.dataLength == 1 && b.data[0] == 1) // a^t mod p = 1
- result = true;
- for(int j = 0; result == false && j < s; j++) {
- if(b == p_sub1) { // a^((2^j)*t) mod p = p-1 for some 0 <= j <= s-1
- result = true;
- break;
- }
- b = (b * b) % thisVal;
- }
- if(result == false)
- return false;
- }
- return true;
- }
- // Probabilistic prime test based on Solovay-Strassen (Euler Criterion)
- //
- // p is probably prime if for any a < p (a is not multiple of p),
- // a^((p-1)/2) mod p = J(a, p)
- //
- // where J is the Jacobi symbol.
- //
- // Otherwise, p is composite.
- //
- // Returns
- // -------
- // True if "this" is a Euler pseudoprime to randomly chosen
- // bases. The number of chosen bases is given by the "confidence"
- // parameter.
- //
- // False if "this" is definitely NOT prime.
- public bool SolovayStrassenTest(int confidence)
- {
- BigInteger thisVal;
- if((this.data[maxLength-1] & 0x80000000) != 0) // negative
- thisVal = -this;
- else
- thisVal = this;
- if(thisVal.dataLength == 1) {
- // test small numbers
- if(thisVal.data[0] == 0 || thisVal.data[0] == 1)
- return false;
- else if(thisVal.data[0] == 2 || thisVal.data[0] == 3)
- return true;
- }
- if((thisVal.data[0] & 0x1) == 0) // even numbers
- return false;
- int bits = thisVal.bitCount();
- BigInteger a = new BigInteger();
- BigInteger p_sub1 = thisVal - 1;
- BigInteger p_sub1_shift = p_sub1 >> 1;
- for(int round = 0; round < confidence; round++) {
- bool done = false;
- while(!done) { // generate a < n
- int testBits = 0;
- // make sure "a" has at least 2 bits
- while(testBits < 2)
- testBits = rng.GetInt (bits);
- a.genRandomBits (testBits);
- int byteLen = a.dataLength;
- // make sure "a" is not 0
- if(byteLen > 1 || (byteLen == 1 && a.data[0] != 1))
- done = true;
- }
- // check whether a factor exists (fix for version 1.03)
- BigInteger gcdTest = a.gcd(thisVal);
- if(gcdTest.dataLength == 1 && gcdTest.data[0] != 1)
- return false;
- // calculate a^((p-1)/2) mod p
- BigInteger expResult = a.modPow(p_sub1_shift, thisVal);
- if(expResult == p_sub1)
- expResult = -1;
- // calculate Jacobi symbol
- BigInteger jacob = Jacobi(a, thisVal);
- //Console.WriteLine("a = " + a.ToString(10) + " b = " + thisVal.ToString(10));
- //Console.WriteLine("expResult = " + expResult.ToString(10) + " Jacob = " + jacob.ToString(10));
- // if they are different then it is not prime
- if(expResult != jacob)
- return false;
- }
- return true;
- }
- // Implementation of the Lucas Strong Pseudo Prime test.
- //
- // Let n be an odd number with gcd(n,D) = 1, and n - J(D, n) = 2^s * d
- // with d odd and s >= 0.
- //
- // If Ud mod n = 0 or V2^r*d mod n = 0 for some 0 <= r < s, then n
- // is a strong Lucas pseudoprime with parameters (P, Q). We select
- // P and Q based on Selfridge.
- //
- // Returns True if number is a strong Lucus pseudo prime.
- // Otherwise, returns False indicating that number is composite.
- public bool LucasStrongTest()
- {
- BigInteger thisVal;
- if((this.data[maxLength-1] & 0x80000000) != 0) // negative
- thisVal = -this;
- else
- thisVal = this;
- if(thisVal.dataLength == 1) {
- // test small numbers
- if(thisVal.data[0] == 0 || thisVal.data[0] == 1)
- return false;
- else if(thisVal.data[0] == 2 || thisVal.data[0] == 3)
- return true;
- }
- if((thisVal.data[0] & 0x1) == 0) // even numbers
- return false;
- return LucasStrongTestHelper(thisVal);
- }
- private bool LucasStrongTestHelper(BigInteger thisVal)
- {
- // Do the test (selects D based on Selfridge)
- // Let D be the first element of the sequence
- // 5, -7, 9, -11, 13, ... for which J(D,n) = -1
- // Let P = 1, Q = (1-D) / 4
- long D = 5, sign = -1, dCount = 0;
- bool done = false;
- while(!done) {
- int Jresult = BigInteger.Jacobi(D, thisVal);
- if(Jresult == -1)
- done = true; // J(D, this) = 1
- else {
- if(Jresult == 0 && System.Math.Abs(D) < thisVal) // divisor found
- return false;
- if(dCount == 20) {
- // check for square
- BigInteger root = thisVal.sqrt();
- if(root * root == thisVal)
- return false;
- }
- //Console.WriteLine(D);
- D = (System.Math.Abs(D) + 2) * sign;
- sign = -sign;
- }
- dCount++;
- }
- long Q = (1 - D) >> 2;
- /*
- Console.WriteLine("D = " + D);
- Console.WriteLine("Q = " + Q);
- Console.WriteLine("(n,D) = " + thisVal.gcd(D));
- Console.WriteLine("(n,Q) = " + thisVal.gcd(Q));
- Console.WriteLine("J(D|n) = " + BigInteger.Jacobi(D, thisVal));
- */
- BigInteger p_add1 = thisVal + 1;
- int s = 0;
- for(int index = 0; index < p_add1.dataLength; index++) {
- uint mask = 0x01;
- for(int i = 0; i < 32; i++) {
- if((p_add1.data[index] & mask) != 0) {
- index = p_add1.dataLength; // to break the outer loop
- break;
- }
- mask <<= 1;
- s++;
- }
- }
- BigInteger t = p_add1 >> s;
- // calculate constant = b^(2k) / m
- // for Barrett Reduction
- BigInteger constant = new BigInteger();
- int nLen = thisVal.dataLength << 1;
- constant.data[nLen] = 0x00000001;
- constant.dataLength = nLen + 1;
- constant = constant / thisVal;
- BigInteger[] lucas = LucasSequenceHelper(1, Q, t, thisVal, constant, 0);
- bool isPrime = false;
- if((lucas[0].dataLength == 1 && lucas[0].data[0] == 0) ||
- (lucas[1].dataLength == 1 && lucas[1].data[0] == 0)) {
- // u(t) = 0 or V(t) = 0
- isPrime = true;
- }
- for(int i = 1; i < s; i++) {
- if(!isPrime) {
- // doubling of index
- lucas[1] = thisVal.BarrettReduction(lucas[1] * lucas[1], thisVal, constant);
- lucas[1] = (lucas[1] - (lucas[2] << 1)) % thisVal;
- //lucas[1] = ((lucas[1] * lucas[1]) - (lucas[2] << 1)) % thisVal;
- if((lucas[1].dataLength == 1 && lucas[1].data[0] == 0))
- isPrime = true;
- }
- lucas[2] = thisVal.BarrettReduction(lucas[2] * lucas[2], thisVal, constant); //Q^k
- }
- if(isPrime) { // additional checks for composite numbers
- // If n is prime and gcd(n, Q) == 1, then
- // Q^((n+1)/2) = Q * Q^((n-1)/2) is congruent to (Q * J(Q, n)) mod n
- BigInteger g = thisVal.gcd(Q);
- if(g.dataLength == 1 && g.data[0] == 1) { // gcd(this, Q) == 1
- if((lucas[2].data[maxLength-1] & 0x80000000) != 0)
- lucas[2] += thisVal;
- BigInteger temp = (Q * BigInteger.Jacobi(Q, thisVal)) % thisVal;
- if((temp.data[maxLength-1] & 0x80000000) != 0)
- temp += thisVal;
- if(lucas[2] != temp)
- isPrime = false;
- }
- }
- return isPrime;
- }
- // Determines whether a number is probably prime, using the Rabin-Miller's
- // test. Before applying the test, the number is tested for divisibility
- // by primes < 2000
- //
- // Returns true if number is probably prime.
- public bool isProbablePrime(int confidence)
- {
- BigInteger thisVal;
- if((this.data[maxLength-1] & 0x80000000) != 0) // negative
- thisVal = -this;
- else
- thisVal = this;
- // test for divisibility by primes < 2000
- for(int p = 0; p < primesBelow2000.Length; p++) {
- BigInteger divisor = primesBelow2000[p];
- if(divisor >= thisVal)
- break;
- BigInteger resultNum = thisVal % divisor;
- if(resultNum.IntValue() == 0) {
- /*
- Console.WriteLine("Not prime! Divisible by {0}\n",
- primesBelow2000[p]);
- */
- return false;
- }
- }
- if(thisVal.RabinMillerTest(confidence))
- return true;
- else {
- //Console.WriteLine("Not prime! Failed primality test\n");
- return false;
- }
- }
- // Determines whether this BigInteger is probably prime using a
- // combination of base 2 strong pseudoprime test and Lucas strong
- // pseudoprime test.
- //
- // The sequence of the primality test is as follows,
- //
- // 1) Trial divisions are carried out using prime numbers below 2000.
- // if any of the primes divides this BigInteger, then it is not prime.
- //
- // 2) Perform base 2 strong pseudoprime test. If this BigInteger is a
- // base 2 strong pseudoprime, proceed on to the next step.
- //
- // 3) Perform strong Lucas pseudoprime test.
- //
- // Returns True if this BigInteger is both a base 2 strong pseudoprime
- // and a strong Lucas pseudoprime.
- //
- // For a detailed discussion of this primality test, see [6].
- public bool isProbablePrime()
- {
- BigInteger thisVal;
- if((this.data[maxLength-1] & 0x80000000) != 0) // negative
- thisVal = -this;
- else
- thisVal = this;
- if(thisVal.dataLength == 1) {
- // test small numbers
- if(thisVal.data[0] == 0 || thisVal.data[0] == 1)
- return false;
- else if(thisVal.data[0] == 2 || thisVal.data[0] == 3)
- return true;
- }
- if((thisVal.data[0] & 0x1) == 0) // even numbers
- return false;
- // test for divisibility by primes < 2000
- for(int p = 0; p < primesBelow2000.Length; p++) {
- BigInteger divisor = primesBelow2000[p];
- if(divisor >= thisVal)
- break;
- BigInteger resultNum = thisVal % divisor;
- if(resultNum.IntValue() == 0) {
- //Console.WriteLine("Not prime! Divisible by {0}\n",
- // primesBelow2000[p]);
- return false;
- }
- }
- // Perform BASE 2 Rabin-Miller Test
- // calculate values of s and t
- BigInteger p_sub1 = thisVal - (new BigInteger(1));
- int s = 0;
- for(int index = 0; index < p_sub1.dataLength; index++) {
- uint mask = 0x01;
- for(int i = 0; i < 32; i++) {
- if((p_sub1.data[index] & mask) != 0) {
- index = p_sub1.dataLength; // to break the outer loop
- break;
- }
- mask <<= 1;
- s++;
- }
- }
- BigInteger t = p_sub1 >> s;
- int bits = thisVal.bitCount();
- BigInteger a = 2;
- // b = a^t mod p
- BigInteger b = a.modPow(t, thisVal);
- bool result = false;
- if(b.dataLength == 1 && b.data[0] == 1) // a^t mod p = 1
- result = true;
- for(int j = 0; result == false && j < s; j++) {
- if(b == p_sub1) { // a^((2^j)*t) mod p = p-1 for some 0 <= j <= s-1
- result = true;
- break;
- }
- b = (b * b) % thisVal;
- }
- // if number is strong pseudoprime to base 2, then do a strong lucas test
- if(result)
- result = LucasStrongTestHelper(thisVal);
- return result;
- }
- // Returns the lowest 4 bytes of the BigInteger as an int.
- public int IntValue ()
- {
- return (int)data[0];
- }
- // Returns the lowest 8 bytes of the BigInteger as a long.
- public long LongValue ()
- {
- long val = 0;
- val = (long)data[0];
- try {
- // exception if maxLength = 1
- val |= (long)data[1] << 32;
- }
- catch(Exception) {
- if((data[0] & 0x80000000) != 0) // negative
- val = (int)data[0];
- }
- return val;
- }
- // Computes the Jacobi Symbol for a and b.
- // Algorithm adapted from [3] and [4] with some optimizations
- public static int Jacobi (BigInteger a, BigInteger b)
- {
- // Jacobi defined only for odd integers
- if((b.data[0] & 0x1) == 0)
- throw (new ArgumentException("Jacobi defined only for odd integers."));
- if(a >= b) a %= b;
- if(a.dataLength == 1 && a.data[0] == 0) return 0; // a == 0
- if(a.dataLength == 1 && a.data[0] == 1) return 1; // a == 1
- if(a < 0) {
- if( (((b-1).data[0]) & 0x2) == 0) //if( (((b-1) >> 1).data[0] & 0x1) == 0)
- return Jacobi(-a, b);
- else
- return -Jacobi(-a, b);
- }
- int e = 0;
- for(int index = 0; index < a.dataLength; index++) {
- uint mask = 0x01;
- for(int i = 0; i < 32; i++) {
- if((a.data[index] & mask) != 0) {
- index = a.dataLength; // to break the outer loop
- break;
- }
- mask <<= 1;
- e++;
- }
- }
- BigInteger a1 = a >> e;
- int s = 1;
- if((e & 0x1) != 0 && ((b.data[0] & 0x7) == 3 || (b.data[0] & 0x7) == 5))
- s = -1;
- if((b.data[0] & 0x3) == 3 && (a1.data[0] & 0x3) == 3)
- s = -s;
- if(a1.dataLength == 1 && a1.data[0] == 1)
- return s;
- else
- return (s * Jacobi(b % a1, a1));
- }
- // Generates a positive BigInteger that is probably prime.
- public static BigInteger genPseudoPrime (int bits, int confidence)
- {
- BigInteger result = new BigInteger ();
- bool done = false;
- while (!done) {
- result.genRandomBits (bits);
- result.data[0] |= 0x01; // make it odd
- // prime test
- done = result.isProbablePrime(confidence);
- }
- return result;
- }
- // Generates a random number with the specified number of bits such
- // that gcd(number, this) = 1
- public BigInteger genCoPrime (int bits)
- {
- bool done = false;
- BigInteger result = new BigInteger ();
- while(!done) {
- result.genRandomBits (bits);
- //Console.WriteLine(result.ToString(16));
- // gcd test
- BigInteger g = result.gcd(this);
- if (g.dataLength == 1 && g.data[0] == 1)
- done = true;
- }
- return result;
- }
- // Returns the modulo inverse of this. Throws ArithmeticException if
- // the inverse does not exist. (i.e. gcd(this, modulus) != 1)
- public BigInteger modInverse (BigInteger modulus)
- {
- BigInteger[] p = { 0, 1 };
- BigInteger[] q = new BigInteger[2]; // quotients
- BigInteger[] r = { 0, 0 }; // remainders
- int step = 0;
- BigInteger a = modulus;
- BigInteger b = this;
- while(b.dataLength > 1 || (b.dataLength == 1 && b.data[0] != 0)) {
- BigInteger quotient = new BigInteger();
- BigInteger remainder = new BigInteger();
- if(step > 1) {
- BigInteger pval = (p[0] - (p[1] * q[0])) % modulus;
- p[0] = p[1];
- p[1] = pval;
- }
- if(b.dataLength == 1)
- singleByteDivide(a, b, quotient, remainder);
- else
- multiByteDivide(a, b, quotient, remainder);
- /*
- Console.WriteLine(quotient.dataLength);
- Console.WriteLine("{0} = {1}({2}) + {3} p = {4}", a.ToString(10),
- b.ToString(10), quotient.ToString(10), remainder.ToString(10),
- p[1].ToString(10));
- */
- q[0] = q[1];
- r[0] = r[1];
- q[1] = quotient; r[1] = remainder;
- a = b;
- b = remainder;
- step++;
- }
- if(r[0].dataLength > 1 || (r[0].dataLength == 1 && r[0].data[0] != 1))
- throw (new ArithmeticException("No inverse!"));
- BigInteger result = ((p[0] - (p[1] * q[0])) % modulus);
- if((result.data[maxLength - 1] & 0x80000000) != 0)
- result += modulus; // get the least positive modulus
- return result;
- }
- // Returns the value of the BigInteger as a byte array. The lowest
- // index contains the MSB.
- public byte[] getBytes()
- {
- int numBits = bitCount();
- byte[] result = null;
- if(numBits == 0) {
- result = new byte[1];
- result[0] = 0;
- }
- else {
- int numBytes = numBits >> 3;
- if((numBits & 0x7) != 0)
- numBytes++;
- result = new byte[numBytes];
- //Console.WriteLine(result.Length);
- int numBytesInWord = numBytes & 0x3;
- if(numBytesInWord == 0)
- numBytesInWord = 4;
- int pos = 0;
- for(int i = dataLength - 1; i >= 0; i--) {
- uint val = data[i];
- for(int j = numBytesInWord - 1; j >= 0; j--) {
- result[pos+j] = (byte)(val & 0xFF);
- val >>= 8;
- }
- pos += numBytesInWord;
- numBytesInWord = 4;
- }
- }
- return result;
- }
- // Return true if the value of the specified bit is 1, false otherwise
- public bool testBit (uint bitNum)
- {
- uint bytePos = bitNum >> 5; // divide by 32
- byte bitPos = (byte)(bitNum & 0x1F); // get the lowest 5 bits
- uint mask = (uint)1 << bitPos;
- return ((this.data[bytePos] | mask) == this.data[bytePos]);
- }
- // Sets the value of the specified bit to 1
- // The Least Significant Bit position is 0.
- public void setBit(uint bitNum)
- {
- uint bytePos = bitNum >> 5; // divide by 32
- byte bitPos = (byte)(bitNum & 0x1F); // get the lowest 5 bits
- uint mask = (uint)1 << bitPos;
- this.data[bytePos] |= mask;
- if(bytePos >= this.dataLength)
- this.dataLength = (int)bytePos + 1;
- }
- // Sets the value of the specified bit to 0
- // The Least Significant Bit position is 0.
- public void unsetBit(uint bitNum)
- {
- uint bytePos = bitNum >> 5;
- if(bytePos < this.dataLength) {
- byte bitPos = (byte)(bitNum & 0x1F);
- uint mask = (uint)1 << bitPos;
- uint mask2 = 0xFFFFFFFF ^ mask;
- this.data[bytePos] &= mask2;
- if(this.dataLength > 1 && this.data[this.dataLength - 1] == 0)
- this.dataLength--;
- }
- }
- // Returns a value that is equivalent to the integer square root
- // of the BigInteger.
- // The integer square root of "this" is defined as the largest integer n
- // such that (n * n) <= this
- public BigInteger sqrt ()
- {
- uint numBits = (uint)this.bitCount();
- if((numBits & 0x1) != 0) // odd number of bits
- numBits = (numBits >> 1) + 1;
- else
- numBits = (numBits >> 1);
- uint bytePos = numBits >> 5;
- byte bitPos = (byte)(numBits & 0x1F);
- uint mask;
- BigInteger result = new BigInteger();
- if(bitPos == 0)
- mask = 0x80000000;
- else {
- mask = (uint)1 << bitPos;
- bytePos++;
- }
- result.dataLength = (int)bytePos;
- for(int i = (int)bytePos - 1; i >= 0; i--) {
- while(mask != 0) {
- // guess
- result.data[i] ^= mask;
- // undo the guess if its square is larger than this
- if((result * result) > this)
- result.data[i] ^= mask;
- mask >>= 1;
- }
- mask = 0x80000000;
- }
- return result;
- }
- // Returns the k_th number in the Lucas Sequence reduced modulo n.
- //
- // Uses index doubling to speed up the process. For example, to calculate V(k),
- // we maintain two numbers in the sequence V(n) and V(n+1).
- //
- // To obtain V(2n), we use the identity
- // V(2n) = (V(n) * V(n)) - (2 * Q^n)
- // To obtain V(2n+1), we first write it as
- // V(2n+1) = V((n+1) + n)
- // and use the identity
- // V(m+n) = V(m) * V(n) - Q * V(m-n)
- // Hence,
- // V((n+1) + n) = V(n+1) * V(n) - Q^n * V((n+1) - n)
- // = V(n+1) * V(n) - Q^n * V(1)
- // = V(n+1) * V(n) - Q^n * P
- //
- // We use k in its binary expansion and perform index doubling for each
- // bit position. For each bit position that is set, we perform an
- // index doubling followed by an index addition. This means that for V(n),
- // we need to update it to V(2n+1). For V(n+1), we need to update it to
- // V((2n+1)+1) = V(2*(n+1))
- //
- // This function returns
- // [0] = U(k)
- // [1] = V(k)
- // [2] = Q^n
- //
- // Where U(0) = 0 % n, U(1) = 1 % n
- // V(0) = 2 % n, V(1) = P % n
- public static BigInteger[] LucasSequence (BigInteger P, BigInteger Q,
- BigInteger k, BigInteger n)
- {
- if(k.dataLength == 1 && k.data[0] == 0) {
- BigInteger[] result = new BigInteger[3];
- result[0] = 0; result[1] = 2 % n; result[2] = 1 % n;
- return result;
- }
- // calculate constant = b^(2k) / m
- // for Barrett Reduction
- BigInteger constant = new BigInteger();
- int nLen = n.dataLength << 1;
- constant.data[nLen] = 0x00000001;
- constant.dataLength = nLen + 1;
- constant = constant / n;
- // calculate values of s and t
- int s = 0;
- for(int index = 0; index < k.dataLength; index++) {
- uint mask = 0x01;
- for(int i = 0; i < 32; i++) {
- if((k.data[index] & mask) != 0) {
- index = k.dataLength; // to break the outer loop
- break;
- }
- mask <<= 1;
- s++;
- }
- }
- BigInteger t = k >> s;
- //Console.WriteLine("s = " + s + " t = " + t);
- return LucasSequenceHelper(P, Q, t, n, constant, s);
- }
- // Performs the calculation of the kth term in the Lucas Sequence.
- // For details of the algorithm, see reference [9].
- // k must be odd. i.e LSB == 1
- private static BigInteger[] LucasSequenceHelper(BigInteger P, BigInteger Q,
- BigInteger k, BigInteger n, BigInteger constant, int s)
- {
- BigInteger[] result = new BigInteger[3];
- if((k.data[0] & 0x00000001) == 0)
- throw (new ArgumentException("Argument k must be odd."));
- int numbits = k.bitCount();
- uint mask = (uint)0x1 << ((numbits & 0x1F) - 1);
- // v = v0, v1 = v1, u1 = u1, Q_k = Q^0
- BigInteger v = 2 % n, Q_k = 1 % n,
- v1 = P % n, u1 = Q_k;
- bool flag = true;
- for(int i = k.dataLength - 1; i >= 0 ; i--) { // iterate on the binary expansion of k
- //Console.WriteLine("round");
- while(mask != 0) {
- if(i == 0 && mask == 0x00000001) // last bit
- break;
- if((k.data[i] & mask) != 0) { // bit is set
- // index doubling with addition
- u1 = (u1 * v1) % n;
- v = ((v * v1) - (P * Q_k)) % n;
- v1 = n.BarrettReduction(v1 * v1, n, constant);
- v1 = (v1 - ((Q_k * Q) << 1)) % n;
- if(flag)
- flag = false;
- else
- Q_k = n.BarrettReduction(Q_k * Q_k, n, constant);
- Q_k = (Q_k * Q) % n;
- }
- else {
- // index doubling
- u1 = ((u1 * v) - Q_k) % n;
- v1 = ((v * v1) - (P * Q_k)) % n;
- v = n.BarrettReduction(v * v, n, constant);
- v = (v - (Q_k << 1)) % n;
- if(flag) {
- Q_k = Q % n;
- flag = false;
- }
- else
- Q_k = n.BarrettReduction(Q_k * Q_k, n, constant);
- }
- mask >>= 1;
- }
- mask = 0x80000000;
- }
- // at this point u1 = u(n+1) and v = v(n)
- // since the last bit always 1, we need to transform u1 to u(2n+1) and v to v(2n+1)
- u1 = ((u1 * v) - Q_k) % n;
- v = ((v * v1) - (P * Q_k)) % n;
- if(flag)
- flag = false;
- else
- Q_k = n.BarrettReduction(Q_k * Q_k, n, constant);
- Q_k = (Q_k * Q) % n;
- for (int i = 0; i < s; i++) {
- // index doubling
- u1 = (u1 * v) % n;
- v = ((v * v) - (Q_k << 1)) % n;
- if(flag) {
- Q_k = Q % n;
- flag = false;
- }
- else
- Q_k = n.BarrettReduction(Q_k * Q_k, n, constant);
- }
- result[0] = u1;
- result[1] = v;
- result[2] = Q_k;
- return result;
- }
- }
- }
|