RC2CryptoServiceProvider.cs 7.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262
  1. //
  2. // System.Security.Cryptography.RC2CryptoServiceProvider.cs
  3. //
  4. // Authors:
  5. // Andrew Birkett ([email protected])
  6. // Sebastien Pouliot ([email protected])
  7. //
  8. // Portions (C) 2002 Motus Technologies Inc. (http://www.motus.com)
  9. //
  10. using System;
  11. namespace System.Security.Cryptography {
  12. // References:
  13. // a. IETF RFC2286: A Description of the RC2(r) Encryption Algorithm
  14. // http://www.ietf.org/rfc/rfc2268.txt
  15. public sealed class RC2CryptoServiceProvider : RC2 {
  16. public RC2CryptoServiceProvider() {}
  17. // included to (exactly) match corlib
  18. public override int EffectiveKeySize {
  19. get { return base.EffectiveKeySize; }
  20. set { base.EffectiveKeySize = value; }
  21. }
  22. public override ICryptoTransform CreateDecryptor(byte[] rgbKey, byte[] rgbIV)
  23. {
  24. Key = rgbKey;
  25. IV = rgbIV;
  26. return new RC2Transform (this, false);
  27. }
  28. public override ICryptoTransform CreateEncryptor(byte[] rgbKey, byte[] rgbIV)
  29. {
  30. Key = rgbKey;
  31. IV = rgbIV;
  32. return new RC2Transform (this, true);
  33. }
  34. public override void GenerateIV ()
  35. {
  36. IVValue = KeyBuilder.IV (BlockSizeValue >> 3);
  37. }
  38. public override void GenerateKey ()
  39. {
  40. KeyValue = KeyBuilder.Key (KeySizeValue >> 3);
  41. }
  42. }
  43. internal class RC2Transform : SymmetricTransform {
  44. private UInt16 R0, R1, R2, R3; // state
  45. private UInt16[] K; // expanded key
  46. private int j; // Key indexer
  47. public RC2Transform (RC2 rc2Algo, bool encryption) : base (rc2Algo, encryption, rc2Algo.IV)
  48. {
  49. byte[] key = rc2Algo.Key;
  50. int t1 = rc2Algo.EffectiveKeySize;
  51. // Expand key into a byte array, then convert to word
  52. // array since we always access the key in 16bit chunks.
  53. byte[] L = new byte [128];
  54. int t = key.Length;
  55. int t8 = ((t1 + 7) >> 3); // divide by 8
  56. int tm = 255 % (2 << (8 + t1 - (t8 << 3) - 1));
  57. for (int i=0; i < t; i++)
  58. L [i] = key [i];
  59. for (int i=t; i < 128; i++)
  60. L [i] = (byte) (pitable [(L [i-1] + L [i-t]) & 0xff]);
  61. L [128-t8] = pitable [L [128-t8] & tm];
  62. for (int i=127-t8; i >= 0; i--)
  63. L [i] = pitable [L [i+1] ^ L [i+t8]];
  64. K = new UInt16 [64];
  65. int pos = 0;
  66. for (int i=0; i < 64; i++)
  67. K [i] = (UInt16) (L [pos++] + (L [pos++] << 8));
  68. }
  69. protected override void ECB (byte[] input, byte[] output)
  70. {
  71. // unrolled loop, eliminated mul
  72. R0 = (UInt16) (input [0] | (input [1] << 8));
  73. R1 = (UInt16) (input [2] | (input [3] << 8));
  74. R2 = (UInt16) (input [4] | (input [5] << 8));
  75. R3 = (UInt16) (input [6] | (input [7] << 8));
  76. if (encrypt) {
  77. j = 0;
  78. // inline, but looped, Mix(); Mix(); Mix(); Mix(); Mix();
  79. while (j <= 16) {
  80. R0 += (UInt16) (K[j++] + (R3 & R2) + ((~R3) & R1));
  81. R0 = (UInt16) ((R0 << 1) | (R0 >> 15));
  82. R1 += (UInt16) (K[j++] + (R0 & R3) + ((~R0) & R2));
  83. R1 = (UInt16) ((R1 << 2) | (R1 >> 14));
  84. R2 += (UInt16) (K[j++] + (R1 & R0) + ((~R1) & R3));
  85. R2 = (UInt16) ((R2 << 3) | (R2 >> 13));
  86. R3 += (UInt16) (K[j++] + (R2 & R1) + ((~R2) & R0));
  87. R3 = (UInt16) ((R3 << 5) | (R3 >> 11));
  88. }
  89. // inline Mash(); j == 20
  90. R0 += K [R3 & 63];
  91. R1 += K [R0 & 63];
  92. R2 += K [R1 & 63];
  93. R3 += K [R2 & 63];
  94. // inline, but looped, Mix(); Mix(); Mix(); Mix(); Mix(); Mix();
  95. while (j <= 40) {
  96. R0 += (UInt16) (K[j++] + (R3 & R2) + ((~R3) & R1));
  97. R0 = (UInt16) ((R0 << 1) | (R0 >> 15));
  98. R1 += (UInt16) (K[j++] + (R0 & R3) + ((~R0) & R2));
  99. R1 = (UInt16) ((R1 << 2) | (R1 >> 14));
  100. R2 += (UInt16) (K[j++] + (R1 & R0) + ((~R1) & R3));
  101. R2 = (UInt16) ((R2 << 3) | (R2 >> 13));
  102. R3 += (UInt16) (K[j++] + (R2 & R1) + ((~R2) & R0));
  103. R3 = (UInt16) ((R3 << 5) | (R3 >> 11));
  104. }
  105. // inline Mash(); j == 44
  106. R0 += K [R3 & 63];
  107. R1 += K [R0 & 63];
  108. R2 += K [R1 & 63];
  109. R3 += K [R2 & 63];
  110. // inline, but looped, Mix(); Mix(); Mix(); Mix(); Mix();
  111. while (j < 64) {
  112. R0 += (UInt16) (K[j++] + (R3 & R2) + ((~R3) & R1));
  113. R0 = (UInt16) ((R0 << 1) | (R0 >> 15));
  114. R1 += (UInt16) (K[j++] + (R0 & R3) + ((~R0) & R2));
  115. R1 = (UInt16) ((R1 << 2) | (R1 >> 14));
  116. R2 += (UInt16) (K[j++] + (R1 & R0) + ((~R1) & R3));
  117. R2 = (UInt16) ((R2 << 3) | (R2 >> 13));
  118. R3 += (UInt16) (K[j++] + (R2 & R1) + ((~R2) & R0));
  119. R3 = (UInt16) ((R3 << 5) | (R3 >> 11));
  120. }
  121. }
  122. else {
  123. j = 63;
  124. // inline, but looped, RMix(); RMix(); RMix(); RMix(); RMix();
  125. while (j >= 44) {
  126. R3 = (UInt16) ((R3 >> 5) | (R3 << 11));
  127. R3 -= (UInt16) (K[j--] + (R2 & R1) + ((~R2) & R0));
  128. R2 = (UInt16) ((R2 >> 3) | (R2 << 13));
  129. R2 -= (UInt16) (K[j--] + (R1 & R0) + ((~R1) & R3));
  130. R1 = (UInt16) ((R1 >> 2) | (R1 << 14));
  131. R1 -= (UInt16) (K[j--] + (R0 & R3) + ((~R0) & R2));
  132. R0 = (UInt16) ((R0 >> 1) | (R0 << 15));
  133. R0 -= (UInt16) (K[j--] + (R3 & R2) + ((~R3) & R1));
  134. }
  135. // inline RMash();
  136. R3 -= K [R2 & 63];
  137. R2 -= K [R1 & 63];
  138. R1 -= K [R0 & 63];
  139. R0 -= K [R3 & 63];
  140. // inline, but looped, RMix(); RMix(); RMix(); RMix(); RMix(); RMix();
  141. while (j >= 20) {
  142. R3 = (UInt16) ((R3 >> 5) | (R3 << 11));
  143. R3 -= (UInt16) (K[j--] + (R2 & R1) + ((~R2) & R0));
  144. R2 = (UInt16) ((R2 >> 3) | (R2 << 13));
  145. R2 -= (UInt16) (K[j--] + (R1 & R0) + ((~R1) & R3));
  146. R1 = (UInt16) ((R1 >> 2) | (R1 << 14));
  147. R1 -= (UInt16) (K[j--] + (R0 & R3) + ((~R0) & R2));
  148. R0 = (UInt16) ((R0 >> 1) | (R0 << 15));
  149. R0 -= (UInt16) (K[j--] + (R3 & R2) + ((~R3) & R1));
  150. }
  151. // inline RMash();
  152. R3 -= K [R2 & 63];
  153. R2 -= K [R1 & 63];
  154. R1 -= K [R0 & 63];
  155. R0 -= K [R3 & 63];
  156. // inline, but looped, RMix(); RMix(); RMix(); RMix(); RMix();
  157. while (j >= 0) {
  158. R3 = (UInt16) ((R3 >> 5) | (R3 << 11));
  159. R3 -= (UInt16) (K[j--] + (R2 & R1) + ((~R2) & R0));
  160. R2 = (UInt16) ((R2 >> 3) | (R2 << 13));
  161. R2 -= (UInt16) (K[j--] + (R1 & R0) + ((~R1) & R3));
  162. R1 = (UInt16) ((R1 >> 2) | (R1 << 14));
  163. R1 -= (UInt16) (K[j--] + (R0 & R3) + ((~R0) & R2));
  164. R0 = (UInt16) ((R0 >> 1) | (R0 << 15));
  165. R0 -= (UInt16) (K[j--] + (R3 & R2) + ((~R3) & R1));
  166. }
  167. }
  168. // unrolled loop
  169. output[0] = (byte) R0;
  170. output[1] = (byte) (R0 >> 8);
  171. output[2] = (byte) R1;
  172. output[3] = (byte) (R1 >> 8);
  173. output[4] = (byte) R2;
  174. output[5] = (byte) (R2 >> 8);
  175. output[6] = (byte) R3;
  176. output[7] = (byte) (R3 >> 8);
  177. }
  178. static private byte[] pitable = {
  179. 0xd9, 0x78, 0xf9, 0xc4, 0x19, 0xdd, 0xb5, 0xed,
  180. 0x28, 0xe9, 0xfd, 0x79, 0x4a, 0xa0, 0xd8, 0x9d,
  181. 0xc6, 0x7e, 0x37, 0x83, 0x2b, 0x76, 0x53, 0x8e,
  182. 0x62, 0x4c, 0x64, 0x88, 0x44, 0x8b, 0xfb, 0xa2,
  183. 0x17, 0x9a, 0x59, 0xf5, 0x87, 0xb3, 0x4f, 0x13,
  184. 0x61, 0x45, 0x6d, 0x8d, 0x09, 0x81, 0x7d, 0x32,
  185. 0xbd, 0x8f, 0x40, 0xeb, 0x86, 0xb7, 0x7b, 0x0b,
  186. 0xf0, 0x95, 0x21, 0x22, 0x5c, 0x6b, 0x4e, 0x82,
  187. 0x54, 0xd6, 0x65, 0x93, 0xce, 0x60, 0xb2, 0x1c,
  188. 0x73, 0x56, 0xc0, 0x14, 0xa7, 0x8c, 0xf1, 0xdc,
  189. 0x12, 0x75, 0xca, 0x1f, 0x3b, 0xbe, 0xe4, 0xd1,
  190. 0x42, 0x3d, 0xd4, 0x30, 0xa3, 0x3c, 0xb6, 0x26,
  191. 0x6f, 0xbf, 0x0e, 0xda, 0x46, 0x69, 0x07, 0x57,
  192. 0x27, 0xf2, 0x1d, 0x9b, 0xbc, 0x94, 0x43, 0x03,
  193. 0xf8, 0x11, 0xc7, 0xf6, 0x90, 0xef, 0x3e, 0xe7,
  194. 0x06, 0xc3, 0xd5, 0x2f, 0xc8, 0x66, 0x1e, 0xd7,
  195. 0x08, 0xe8, 0xea, 0xde, 0x80, 0x52, 0xee, 0xf7,
  196. 0x84, 0xaa, 0x72, 0xac, 0x35, 0x4d, 0x6a, 0x2a,
  197. 0x96, 0x1a, 0xd2, 0x71, 0x5a, 0x15, 0x49, 0x74,
  198. 0x4b, 0x9f, 0xd0, 0x5e, 0x04, 0x18, 0xa4, 0xec,
  199. 0xc2, 0xe0, 0x41, 0x6e, 0x0f, 0x51, 0xcb, 0xcc,
  200. 0x24, 0x91, 0xaf, 0x50, 0xa1, 0xf4, 0x70, 0x39,
  201. 0x99, 0x7c, 0x3a, 0x85, 0x23, 0xb8, 0xb4, 0x7a,
  202. 0xfc, 0x02, 0x36, 0x5b, 0x25, 0x55, 0x97, 0x31,
  203. 0x2d, 0x5d, 0xfa, 0x98, 0xe3, 0x8a, 0x92, 0xae,
  204. 0x05, 0xdf, 0x29, 0x10, 0x67, 0x6c, 0xba, 0xc9,
  205. 0xd3, 0x00, 0xe6, 0xcf, 0xe1, 0x9e, 0xa8, 0x2c,
  206. 0x63, 0x16, 0x01, 0x3f, 0x58, 0xe2, 0x89, 0xa9,
  207. 0x0d, 0x38, 0x34, 0x1b, 0xab, 0x33, 0xff, 0xb0,
  208. 0xbb, 0x48, 0x0c, 0x5f, 0xb9, 0xb1, 0xcd, 0x2e,
  209. 0xc5, 0xf3, 0xdb, 0x47, 0xe5, 0xa5, 0x9c, 0x77,
  210. 0x0a, 0xa6, 0x20, 0x68, 0xfe, 0x7f, 0xc1, 0xad
  211. };
  212. }
  213. }