| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192 |
- // Licensed to the .NET Foundation under one or more agreements.
- // The .NET Foundation licenses this file to you under the MIT license.
- // See the LICENSE file in the project root for more information.
- using System.Diagnostics;
- namespace System.Collections
- {
- internal static partial class HashHelpers
- {
- public const int HashCollisionThreshold = 100;
- // This is the maximum prime smaller than Array.MaxArrayLength
- public const int MaxPrimeArrayLength = 0x7FEFFFFD;
- public const int HashPrime = 101;
- // Table of prime numbers to use as hash table sizes.
- // A typical resize algorithm would pick the smallest prime number in this array
- // that is larger than twice the previous capacity.
- // Suppose our Hashtable currently has capacity x and enough elements are added
- // such that a resize needs to occur. Resizing first computes 2x then finds the
- // first prime in the table greater than 2x, i.e. if primes are ordered
- // p_1, p_2, ..., p_i, ..., it finds p_n such that p_n-1 < 2x < p_n.
- // Doubling is important for preserving the asymptotic complexity of the
- // hashtable operations such as add. Having a prime guarantees that double
- // hashing does not lead to infinite loops. IE, your hash function will be
- // h1(key) + i*h2(key), 0 <= i < size. h2 and the size must be relatively prime.
- // We prefer the low computation costs of higher prime numbers over the increased
- // memory allocation of a fixed prime number i.e. when right sizing a HashSet.
- public static readonly int[] primes = {
- 3, 7, 11, 17, 23, 29, 37, 47, 59, 71, 89, 107, 131, 163, 197, 239, 293, 353, 431, 521, 631, 761, 919,
- 1103, 1327, 1597, 1931, 2333, 2801, 3371, 4049, 4861, 5839, 7013, 8419, 10103, 12143, 14591,
- 17519, 21023, 25229, 30293, 36353, 43627, 52361, 62851, 75431, 90523, 108631, 130363, 156437,
- 187751, 225307, 270371, 324449, 389357, 467237, 560689, 672827, 807403, 968897, 1162687, 1395263,
- 1674319, 2009191, 2411033, 2893249, 3471899, 4166287, 4999559, 5999471, 7199369 };
- public static bool IsPrime(int candidate)
- {
- if ((candidate & 1) != 0)
- {
- int limit = (int)Math.Sqrt(candidate);
- for (int divisor = 3; divisor <= limit; divisor += 2)
- {
- if ((candidate % divisor) == 0)
- return false;
- }
- return true;
- }
- return (candidate == 2);
- }
- public static int GetPrime(int min)
- {
- if (min < 0)
- throw new ArgumentException(SR.Arg_HTCapacityOverflow);
- for (int i = 0; i < primes.Length; i++)
- {
- int prime = primes[i];
- if (prime >= min)
- return prime;
- }
- //outside of our predefined table.
- //compute the hard way.
- for (int i = (min | 1); i < int.MaxValue; i += 2)
- {
- if (IsPrime(i) && ((i - 1) % HashPrime != 0))
- return i;
- }
- return min;
- }
- // Returns size of hashtable to grow to.
- public static int ExpandPrime(int oldSize)
- {
- int newSize = 2 * oldSize;
- // Allow the hashtables to grow to maximum possible size (~2G elements) before encountering capacity overflow.
- // Note that this check works even when _items.Length overflowed thanks to the (uint) cast
- if ((uint)newSize > MaxPrimeArrayLength && MaxPrimeArrayLength > oldSize)
- {
- Debug.Assert(MaxPrimeArrayLength == GetPrime(MaxPrimeArrayLength), "Invalid MaxPrimeArrayLength");
- return MaxPrimeArrayLength;
- }
- return GetPrime(newSize);
- }
- }
- }
|