Decimal.DecCalc.cs 105 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696
  1. // Licensed to the .NET Foundation under one or more agreements.
  2. // The .NET Foundation licenses this file to you under the MIT license.
  3. // See the LICENSE file in the project root for more information.
  4. using System.Diagnostics;
  5. using System.Runtime.CompilerServices;
  6. using System.Runtime.InteropServices;
  7. using Internal.Runtime.CompilerServices;
  8. using X86 = System.Runtime.Intrinsics.X86;
  9. namespace System
  10. {
  11. public partial struct Decimal
  12. {
  13. // Low level accessors used by a DecCalc and formatting
  14. internal uint High => (uint)hi;
  15. internal uint Low => (uint)lo;
  16. internal uint Mid => (uint)mid;
  17. internal bool IsNegative => flags < 0;
  18. internal int Scale => (byte)(flags >> ScaleShift);
  19. #if BIGENDIAN
  20. private ulong Low64 => ((ulong)Mid << 32) | Low;
  21. #else
  22. private ulong Low64 => Unsafe.As<int, ulong>(ref Unsafe.AsRef(in lo));
  23. #endif
  24. private static ref DecCalc AsMutable(ref decimal d) => ref Unsafe.As<decimal, DecCalc>(ref d);
  25. #region APIs need by number formatting.
  26. internal static uint DecDivMod1E9(ref decimal value)
  27. {
  28. return DecCalc.DecDivMod1E9(ref AsMutable(ref value));
  29. }
  30. #endregion
  31. /// <summary>
  32. /// Class that contains all the mathematical calculations for decimal. Most of which have been ported from oleaut32.
  33. /// </summary>
  34. [StructLayout(LayoutKind.Explicit)]
  35. private struct DecCalc
  36. {
  37. // NOTE: Do not change the offsets of these fields. This structure must have the same layout as Decimal.
  38. [FieldOffset(0)]
  39. private uint uflags;
  40. [FieldOffset(4)]
  41. private uint uhi;
  42. [FieldOffset(8)]
  43. private uint ulo;
  44. [FieldOffset(12)]
  45. private uint umid;
  46. /// <summary>
  47. /// The low and mid fields combined in little-endian order
  48. /// </summary>
  49. [FieldOffset(8)]
  50. private ulong ulomidLE;
  51. private uint High
  52. {
  53. get => uhi;
  54. set => uhi = value;
  55. }
  56. private uint Low
  57. {
  58. get => ulo;
  59. set => ulo = value;
  60. }
  61. private uint Mid
  62. {
  63. get => umid;
  64. set => umid = value;
  65. }
  66. private bool IsNegative => (int)uflags < 0;
  67. private int Scale => (byte)(uflags >> ScaleShift);
  68. private ulong Low64
  69. {
  70. #if BIGENDIAN
  71. get { return ((ulong)umid << 32) | ulo; }
  72. set { umid = (uint)(value >> 32); ulo = (uint)value; }
  73. #else
  74. get => ulomidLE;
  75. set => ulomidLE = value;
  76. #endif
  77. }
  78. private const uint SignMask = 0x80000000;
  79. private const uint ScaleMask = 0x00FF0000;
  80. private const int DEC_SCALE_MAX = 28;
  81. private const uint TenToPowerNine = 1000000000;
  82. private const ulong TenToPowerEighteen = 1000000000000000000;
  83. // The maximum power of 10 that a 32 bit integer can store
  84. private const int MaxInt32Scale = 9;
  85. // The maximum power of 10 that a 64 bit integer can store
  86. private const int MaxInt64Scale = 19;
  87. // Fast access for 10^n where n is 0-9
  88. private static readonly uint[] s_powers10 = new uint[] {
  89. 1,
  90. 10,
  91. 100,
  92. 1000,
  93. 10000,
  94. 100000,
  95. 1000000,
  96. 10000000,
  97. 100000000,
  98. 1000000000
  99. };
  100. // Fast access for 10^n where n is 1-19
  101. private static readonly ulong[] s_ulongPowers10 = new ulong[] {
  102. 10,
  103. 100,
  104. 1000,
  105. 10000,
  106. 100000,
  107. 1000000,
  108. 10000000,
  109. 100000000,
  110. 1000000000,
  111. 10000000000,
  112. 100000000000,
  113. 1000000000000,
  114. 10000000000000,
  115. 100000000000000,
  116. 1000000000000000,
  117. 10000000000000000,
  118. 100000000000000000,
  119. 1000000000000000000,
  120. 10000000000000000000,
  121. };
  122. private static readonly double[] s_doublePowers10 = new double[] {
  123. 1, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
  124. 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
  125. 1e20, 1e21, 1e22, 1e23, 1e24, 1e25, 1e26, 1e27, 1e28, 1e29,
  126. 1e30, 1e31, 1e32, 1e33, 1e34, 1e35, 1e36, 1e37, 1e38, 1e39,
  127. 1e40, 1e41, 1e42, 1e43, 1e44, 1e45, 1e46, 1e47, 1e48, 1e49,
  128. 1e50, 1e51, 1e52, 1e53, 1e54, 1e55, 1e56, 1e57, 1e58, 1e59,
  129. 1e60, 1e61, 1e62, 1e63, 1e64, 1e65, 1e66, 1e67, 1e68, 1e69,
  130. 1e70, 1e71, 1e72, 1e73, 1e74, 1e75, 1e76, 1e77, 1e78, 1e79,
  131. 1e80
  132. };
  133. #region Decimal Math Helpers
  134. private static unsafe uint GetExponent(float f)
  135. {
  136. // Based on pulling out the exp from this single struct layout
  137. //typedef struct {
  138. // ULONG mant:23;
  139. // ULONG exp:8;
  140. // ULONG sign:1;
  141. //} SNGSTRUCT;
  142. return (byte)(*(uint*)&f >> 23);
  143. }
  144. private static unsafe uint GetExponent(double d)
  145. {
  146. // Based on pulling out the exp from this double struct layout
  147. //typedef struct {
  148. // DWORDLONG mant:52;
  149. // DWORDLONG signexp:12;
  150. // } DBLSTRUCT;
  151. return (uint)(*(ulong*)&d >> 52) & 0x7FFu;
  152. }
  153. private static ulong UInt32x32To64(uint a, uint b)
  154. {
  155. return (ulong)a * (ulong)b;
  156. }
  157. private static void UInt64x64To128(ulong a, ulong b, ref DecCalc result)
  158. {
  159. ulong low = UInt32x32To64((uint)a, (uint)b); // lo partial prod
  160. ulong mid = UInt32x32To64((uint)a, (uint)(b >> 32)); // mid 1 partial prod
  161. ulong high = UInt32x32To64((uint)(a >> 32), (uint)(b >> 32));
  162. high += mid >> 32;
  163. low += mid <<= 32;
  164. if (low < mid) // test for carry
  165. high++;
  166. mid = UInt32x32To64((uint)(a >> 32), (uint)b);
  167. high += mid >> 32;
  168. low += mid <<= 32;
  169. if (low < mid) // test for carry
  170. high++;
  171. if (high > uint.MaxValue)
  172. Number.ThrowOverflowException(TypeCode.Decimal);
  173. result.Low64 = low;
  174. result.High = (uint)high;
  175. }
  176. /// <summary>
  177. /// Do full divide, yielding 96-bit result and 32-bit remainder.
  178. /// </summary>
  179. /// <param name="bufNum">96-bit dividend as array of uints, least-sig first</param>
  180. /// <param name="den">32-bit divisor</param>
  181. /// <returns>Returns remainder. Quotient overwrites dividend.</returns>
  182. private static uint Div96By32(ref Buf12 bufNum, uint den)
  183. {
  184. // TODO: https://github.com/dotnet/coreclr/issues/3439
  185. ulong tmp, div;
  186. if (bufNum.U2 != 0)
  187. {
  188. tmp = bufNum.High64;
  189. div = tmp / den;
  190. bufNum.High64 = div;
  191. tmp = ((tmp - (uint)div * den) << 32) | bufNum.U0;
  192. if (tmp == 0)
  193. return 0;
  194. uint div32 = (uint)(tmp / den);
  195. bufNum.U0 = div32;
  196. return (uint)tmp - div32 * den;
  197. }
  198. tmp = bufNum.Low64;
  199. if (tmp == 0)
  200. return 0;
  201. div = tmp / den;
  202. bufNum.Low64 = div;
  203. return (uint)(tmp - div * den);
  204. }
  205. [MethodImpl(MethodImplOptions.AggressiveInlining)]
  206. private static bool Div96ByConst(ref ulong high64, ref uint low, uint pow)
  207. {
  208. #if BIT64
  209. ulong div64 = high64 / pow;
  210. uint div = (uint)((((high64 - div64 * pow) << 32) + low) / pow);
  211. if (low == div * pow)
  212. {
  213. high64 = div64;
  214. low = div;
  215. return true;
  216. }
  217. #else
  218. // 32-bit RyuJIT doesn't convert 64-bit division by constant into multiplication by reciprocal. Do half-width divisions instead.
  219. Debug.Assert(pow <= ushort.MaxValue);
  220. uint num, mid32, low16, div;
  221. if (high64 <= uint.MaxValue)
  222. {
  223. num = (uint)high64;
  224. mid32 = num / pow;
  225. num = (num - mid32 * pow) << 16;
  226. num += low >> 16;
  227. low16 = num / pow;
  228. num = (num - low16 * pow) << 16;
  229. num += (ushort)low;
  230. div = num / pow;
  231. if (num == div * pow)
  232. {
  233. high64 = mid32;
  234. low = (low16 << 16) + div;
  235. return true;
  236. }
  237. }
  238. else
  239. {
  240. num = (uint)(high64 >> 32);
  241. uint high32 = num / pow;
  242. num = (num - high32 * pow) << 16;
  243. num += (uint)high64 >> 16;
  244. mid32 = num / pow;
  245. num = (num - mid32 * pow) << 16;
  246. num += (ushort)high64;
  247. div = num / pow;
  248. num = (num - div * pow) << 16;
  249. mid32 = div + (mid32 << 16);
  250. num += low >> 16;
  251. low16 = num / pow;
  252. num = (num - low16 * pow) << 16;
  253. num += (ushort)low;
  254. div = num / pow;
  255. if (num == div * pow)
  256. {
  257. high64 = ((ulong)high32 << 32) | mid32;
  258. low = (low16 << 16) + div;
  259. return true;
  260. }
  261. }
  262. #endif
  263. return false;
  264. }
  265. /// <summary>
  266. /// Normalize (unscale) the number by trying to divide out 10^8, 10^4, 10^2, and 10^1.
  267. /// If a division by one of these powers returns a zero remainder, then we keep the quotient.
  268. /// </summary>
  269. [MethodImpl(MethodImplOptions.AggressiveInlining)]
  270. private static void Unscale(ref uint low, ref ulong high64, ref int scale)
  271. {
  272. // Since 10 = 2 * 5, there must be a factor of 2 for every power of 10 we can extract.
  273. // We use this as a quick test on whether to try a given power.
  274. #if BIT64
  275. while ((byte)low == 0 && scale >= 8 && Div96ByConst(ref high64, ref low, 100000000))
  276. scale -= 8;
  277. if ((low & 0xF) == 0 && scale >= 4 && Div96ByConst(ref high64, ref low, 10000))
  278. scale -= 4;
  279. #else
  280. while ((low & 0xF) == 0 && scale >= 4 && Div96ByConst(ref high64, ref low, 10000))
  281. scale -= 4;
  282. #endif
  283. if ((low & 3) == 0 && scale >= 2 && Div96ByConst(ref high64, ref low, 100))
  284. scale -= 2;
  285. if ((low & 1) == 0 && scale >= 1 && Div96ByConst(ref high64, ref low, 10))
  286. scale--;
  287. }
  288. /// <summary>
  289. /// Do partial divide, yielding 32-bit result and 64-bit remainder.
  290. /// Divisor must be larger than upper 64 bits of dividend.
  291. /// </summary>
  292. /// <param name="bufNum">96-bit dividend as array of uints, least-sig first</param>
  293. /// <param name="den">64-bit divisor</param>
  294. /// <returns>Returns quotient. Remainder overwrites lower 64-bits of dividend.</returns>
  295. private static uint Div96By64(ref Buf12 bufNum, ulong den)
  296. {
  297. Debug.Assert(den > bufNum.High64);
  298. uint quo;
  299. ulong num;
  300. uint num2 = bufNum.U2;
  301. if (num2 == 0)
  302. {
  303. num = bufNum.Low64;
  304. if (num < den)
  305. // Result is zero. Entire dividend is remainder.
  306. return 0;
  307. // TODO: https://github.com/dotnet/coreclr/issues/3439
  308. quo = (uint)(num / den);
  309. num -= quo * den; // remainder
  310. bufNum.Low64 = num;
  311. return quo;
  312. }
  313. uint denHigh32 = (uint)(den >> 32);
  314. if (num2 >= denHigh32)
  315. {
  316. // Divide would overflow. Assume a quotient of 2^32, and set
  317. // up remainder accordingly.
  318. //
  319. num = bufNum.Low64;
  320. num -= den << 32;
  321. quo = 0;
  322. // Remainder went negative. Add divisor back in until it's positive,
  323. // a max of 2 times.
  324. //
  325. do
  326. {
  327. quo--;
  328. num += den;
  329. } while (num >= den);
  330. bufNum.Low64 = num;
  331. return quo;
  332. }
  333. // Hardware divide won't overflow
  334. //
  335. ulong num64 = bufNum.High64;
  336. if (num64 < denHigh32)
  337. // Result is zero. Entire dividend is remainder.
  338. //
  339. return 0;
  340. // TODO: https://github.com/dotnet/coreclr/issues/3439
  341. quo = (uint)(num64 / denHigh32);
  342. num = bufNum.U0 | ((num64 - quo * denHigh32) << 32); // remainder
  343. // Compute full remainder, rem = dividend - (quo * divisor).
  344. //
  345. ulong prod = UInt32x32To64(quo, (uint)den); // quo * lo divisor
  346. num -= prod;
  347. if (num > ~prod)
  348. {
  349. // Remainder went negative. Add divisor back in until it's positive,
  350. // a max of 2 times.
  351. //
  352. do
  353. {
  354. quo--;
  355. num += den;
  356. } while (num >= den);
  357. }
  358. bufNum.Low64 = num;
  359. return quo;
  360. }
  361. /// <summary>
  362. /// Do partial divide, yielding 32-bit result and 96-bit remainder.
  363. /// Top divisor uint must be larger than top dividend uint. This is
  364. /// assured in the initial call because the divisor is normalized
  365. /// and the dividend can't be. In subsequent calls, the remainder
  366. /// is multiplied by 10^9 (max), so it can be no more than 1/4 of
  367. /// the divisor which is effectively multiplied by 2^32 (4 * 10^9).
  368. /// </summary>
  369. /// <param name="bufNum">128-bit dividend as array of uints, least-sig first</param>
  370. /// <param name="bufDen">96-bit divisor</param>
  371. /// <returns>Returns quotient. Remainder overwrites lower 96-bits of dividend.</returns>
  372. private static uint Div128By96(ref Buf16 bufNum, ref Buf12 bufDen)
  373. {
  374. Debug.Assert(bufDen.U2 > bufNum.U3);
  375. ulong dividend = bufNum.High64;
  376. uint den = bufDen.U2;
  377. if (dividend < den)
  378. // Result is zero. Entire dividend is remainder.
  379. //
  380. return 0;
  381. // TODO: https://github.com/dotnet/coreclr/issues/3439
  382. uint quo = (uint)(dividend / den);
  383. uint remainder = (uint)dividend - quo * den;
  384. // Compute full remainder, rem = dividend - (quo * divisor).
  385. //
  386. ulong prod1 = UInt32x32To64(quo, bufDen.U0); // quo * lo divisor
  387. ulong prod2 = UInt32x32To64(quo, bufDen.U1); // quo * mid divisor
  388. prod2 += prod1 >> 32;
  389. prod1 = (uint)prod1 | (prod2 << 32);
  390. prod2 >>= 32;
  391. ulong num = bufNum.Low64;
  392. num -= prod1;
  393. remainder -= (uint)prod2;
  394. // Propagate carries
  395. //
  396. if (num > ~prod1)
  397. {
  398. remainder--;
  399. if (remainder < ~(uint)prod2)
  400. goto PosRem;
  401. }
  402. else if (remainder <= ~(uint)prod2)
  403. goto PosRem;
  404. {
  405. // Remainder went negative. Add divisor back in until it's positive,
  406. // a max of 2 times.
  407. //
  408. prod1 = bufDen.Low64;
  409. for (;;)
  410. {
  411. quo--;
  412. num += prod1;
  413. remainder += den;
  414. if (num < prod1)
  415. {
  416. // Detected carry. Check for carry out of top
  417. // before adding it in.
  418. //
  419. if (remainder++ < den)
  420. break;
  421. }
  422. if (remainder < den)
  423. break; // detected carry
  424. }
  425. }
  426. PosRem:
  427. bufNum.Low64 = num;
  428. bufNum.U2 = remainder;
  429. return quo;
  430. }
  431. /// <summary>
  432. /// Multiply the two numbers. The low 96 bits of the result overwrite
  433. /// the input. The last 32 bits of the product are the return value.
  434. /// </summary>
  435. /// <param name="bufNum">96-bit number as array of uints, least-sig first</param>
  436. /// <param name="power">Scale factor to multiply by</param>
  437. /// <returns>Returns highest 32 bits of product</returns>
  438. private static uint IncreaseScale(ref Buf12 bufNum, uint power)
  439. {
  440. ulong tmp = UInt32x32To64(bufNum.U0, power);
  441. bufNum.U0 = (uint)tmp;
  442. tmp >>= 32;
  443. tmp += UInt32x32To64(bufNum.U1, power);
  444. bufNum.U1 = (uint)tmp;
  445. tmp >>= 32;
  446. tmp += UInt32x32To64(bufNum.U2, power);
  447. bufNum.U2 = (uint)tmp;
  448. return (uint)(tmp >> 32);
  449. }
  450. private static void IncreaseScale64(ref Buf12 bufNum, uint power)
  451. {
  452. ulong tmp = UInt32x32To64(bufNum.U0, power);
  453. bufNum.U0 = (uint)tmp;
  454. tmp >>= 32;
  455. tmp += UInt32x32To64(bufNum.U1, power);
  456. bufNum.High64 = tmp;
  457. }
  458. /// <summary>
  459. /// See if we need to scale the result to fit it in 96 bits.
  460. /// Perform needed scaling. Adjust scale factor accordingly.
  461. /// </summary>
  462. /// <param name="bufRes">Array of uints with value, least-significant first</param>
  463. /// <param name="hiRes">Index of last non-zero value in bufRes</param>
  464. /// <param name="scale">Scale factor for this value, range 0 - 2 * DEC_SCALE_MAX</param>
  465. /// <returns>Returns new scale factor. bufRes updated in place, always 3 uints.</returns>
  466. private static unsafe int ScaleResult(Buf24* bufRes, uint hiRes, int scale)
  467. {
  468. Debug.Assert(hiRes < bufRes->Length);
  469. uint* result = (uint*)bufRes;
  470. // See if we need to scale the result. The combined scale must
  471. // be <= DEC_SCALE_MAX and the upper 96 bits must be zero.
  472. //
  473. // Start by figuring a lower bound on the scaling needed to make
  474. // the upper 96 bits zero. hiRes is the index into result[]
  475. // of the highest non-zero uint.
  476. //
  477. int newScale = 0;
  478. if (hiRes > 2)
  479. {
  480. newScale = (int)hiRes * 32 - 64 - 1;
  481. newScale -= BitOps.LeadingZeroCount(result[hiRes]);
  482. // Multiply bit position by log10(2) to figure it's power of 10.
  483. // We scale the log by 256. log(2) = .30103, * 256 = 77. Doing this
  484. // with a multiply saves a 96-byte lookup table. The power returned
  485. // is <= the power of the number, so we must add one power of 10
  486. // to make it's integer part zero after dividing by 256.
  487. //
  488. // Note: the result of this multiplication by an approximation of
  489. // log10(2) have been exhaustively checked to verify it gives the
  490. // correct result. (There were only 95 to check...)
  491. //
  492. newScale = ((newScale * 77) >> 8) + 1;
  493. // newScale = min scale factor to make high 96 bits zero, 0 - 29.
  494. // This reduces the scale factor of the result. If it exceeds the
  495. // current scale of the result, we'll overflow.
  496. //
  497. if (newScale > scale)
  498. goto ThrowOverflow;
  499. }
  500. // Make sure we scale by enough to bring the current scale factor
  501. // into valid range.
  502. //
  503. if (newScale < scale - DEC_SCALE_MAX)
  504. newScale = scale - DEC_SCALE_MAX;
  505. if (newScale != 0)
  506. {
  507. // Scale by the power of 10 given by newScale. Note that this is
  508. // NOT guaranteed to bring the number within 96 bits -- it could
  509. // be 1 power of 10 short.
  510. //
  511. scale -= newScale;
  512. uint sticky = 0;
  513. uint quotient, remainder = 0;
  514. for (;;)
  515. {
  516. sticky |= remainder; // record remainder as sticky bit
  517. uint power;
  518. // Scaling loop specialized for each power of 10 because division by constant is an order of magnitude faster (especially for 64-bit division that's actually done by 128bit DIV on x64)
  519. switch (newScale)
  520. {
  521. case 1:
  522. power = DivByConst(result, hiRes, out quotient, out remainder, 10);
  523. break;
  524. case 2:
  525. power = DivByConst(result, hiRes, out quotient, out remainder, 100);
  526. break;
  527. case 3:
  528. power = DivByConst(result, hiRes, out quotient, out remainder, 1000);
  529. break;
  530. case 4:
  531. power = DivByConst(result, hiRes, out quotient, out remainder, 10000);
  532. break;
  533. #if BIT64
  534. case 5:
  535. power = DivByConst(result, hiRes, out quotient, out remainder, 100000);
  536. break;
  537. case 6:
  538. power = DivByConst(result, hiRes, out quotient, out remainder, 1000000);
  539. break;
  540. case 7:
  541. power = DivByConst(result, hiRes, out quotient, out remainder, 10000000);
  542. break;
  543. case 8:
  544. power = DivByConst(result, hiRes, out quotient, out remainder, 100000000);
  545. break;
  546. default:
  547. power = DivByConst(result, hiRes, out quotient, out remainder, TenToPowerNine);
  548. break;
  549. #else
  550. default:
  551. goto case 4;
  552. #endif
  553. }
  554. result[hiRes] = quotient;
  555. // If first quotient was 0, update hiRes.
  556. //
  557. if (quotient == 0 && hiRes != 0)
  558. hiRes--;
  559. #if BIT64
  560. newScale -= MaxInt32Scale;
  561. #else
  562. newScale -= 4;
  563. #endif
  564. if (newScale > 0)
  565. continue; // scale some more
  566. // If we scaled enough, hiRes would be 2 or less. If not,
  567. // divide by 10 more.
  568. //
  569. if (hiRes > 2)
  570. {
  571. if (scale == 0)
  572. goto ThrowOverflow;
  573. newScale = 1;
  574. scale--;
  575. continue; // scale by 10
  576. }
  577. // Round final result. See if remainder >= 1/2 of divisor.
  578. // If remainder == 1/2 divisor, round up if odd or sticky bit set.
  579. //
  580. power >>= 1; // power of 10 always even
  581. if (power <= remainder && (power < remainder || ((result[0] & 1) | sticky) != 0) && ++result[0] == 0)
  582. {
  583. uint cur = 0;
  584. do
  585. {
  586. Debug.Assert(cur + 1 < bufRes->Length);
  587. }
  588. while (++result[++cur] == 0);
  589. if (cur > 2)
  590. {
  591. // The rounding caused us to carry beyond 96 bits.
  592. // Scale by 10 more.
  593. //
  594. if (scale == 0)
  595. goto ThrowOverflow;
  596. hiRes = cur;
  597. sticky = 0; // no sticky bit
  598. remainder = 0; // or remainder
  599. newScale = 1;
  600. scale--;
  601. continue; // scale by 10
  602. }
  603. }
  604. break;
  605. } // for(;;)
  606. }
  607. return scale;
  608. ThrowOverflow:
  609. Number.ThrowOverflowException(TypeCode.Decimal);
  610. return 0;
  611. }
  612. [MethodImpl(MethodImplOptions.AggressiveInlining)]
  613. private static unsafe uint DivByConst(uint* result, uint hiRes, out uint quotient, out uint remainder, uint power)
  614. {
  615. uint high = result[hiRes];
  616. remainder = high - (quotient = high / power) * power;
  617. for (uint i = hiRes - 1; (int)i >= 0; i--)
  618. {
  619. #if BIT64
  620. ulong num = result[i] + ((ulong)remainder << 32);
  621. remainder = (uint)num - (result[i] = (uint)(num / power)) * power;
  622. #else
  623. // 32-bit RyuJIT doesn't convert 64-bit division by constant into multiplication by reciprocal. Do half-width divisions instead.
  624. Debug.Assert(power <= ushort.MaxValue);
  625. #if BIGENDIAN
  626. const int low16 = 2, high16 = 0;
  627. #else
  628. const int low16 = 0, high16 = 2;
  629. #endif
  630. // byte* is used here because Roslyn doesn't do constant propagation for pointer arithmetic
  631. uint num = *(ushort*)((byte*)result + i * 4 + high16) + (remainder << 16);
  632. uint div = num / power;
  633. remainder = num - div * power;
  634. *(ushort*)((byte*)result + i * 4 + high16) = (ushort)div;
  635. num = *(ushort*)((byte*)result + i * 4 + low16) + (remainder << 16);
  636. div = num / power;
  637. remainder = num - div * power;
  638. *(ushort*)((byte*)result + i * 4 + low16) = (ushort)div;
  639. #endif
  640. }
  641. return power;
  642. }
  643. /// <summary>
  644. /// Adjust the quotient to deal with an overflow.
  645. /// We need to divide by 10, feed in the high bit to undo the overflow and then round as required.
  646. /// </summary>
  647. private static int OverflowUnscale(ref Buf12 bufQuo, int scale, bool sticky)
  648. {
  649. if (--scale < 0)
  650. Number.ThrowOverflowException(TypeCode.Decimal);
  651. Debug.Assert(bufQuo.U2 == 0);
  652. // We have overflown, so load the high bit with a one.
  653. const ulong highbit = 1UL << 32;
  654. bufQuo.U2 = (uint)(highbit / 10);
  655. ulong tmp = ((highbit % 10) << 32) + bufQuo.U1;
  656. uint div = (uint)(tmp / 10);
  657. bufQuo.U1 = div;
  658. tmp = ((tmp - div * 10) << 32) + bufQuo.U0;
  659. div = (uint)(tmp / 10);
  660. bufQuo.U0 = div;
  661. uint remainder = (uint)(tmp - div * 10);
  662. // The remainder is the last digit that does not fit, so we can use it to work out if we need to round up
  663. if (remainder > 5 || remainder == 5 && (sticky || (bufQuo.U0 & 1) != 0))
  664. Add32To96(ref bufQuo, 1);
  665. return scale;
  666. }
  667. /// <summary>
  668. /// Determine the max power of 10, &lt;= 9, that the quotient can be scaled
  669. /// up by and still fit in 96 bits.
  670. /// </summary>
  671. /// <param name="bufQuo">96-bit quotient</param>
  672. /// <param name="scale ">Scale factor of quotient, range -DEC_SCALE_MAX to DEC_SCALE_MAX-1</param>
  673. /// <returns>power of 10 to scale by</returns>
  674. private static int SearchScale(ref Buf12 bufQuo, int scale)
  675. {
  676. const uint OVFL_MAX_9_HI = 4;
  677. const uint OVFL_MAX_8_HI = 42;
  678. const uint OVFL_MAX_7_HI = 429;
  679. const uint OVFL_MAX_6_HI = 4294;
  680. const uint OVFL_MAX_5_HI = 42949;
  681. const uint OVFL_MAX_4_HI = 429496;
  682. const uint OVFL_MAX_3_HI = 4294967;
  683. const uint OVFL_MAX_2_HI = 42949672;
  684. const uint OVFL_MAX_1_HI = 429496729;
  685. const ulong OVFL_MAX_9_MIDLO = 5441186219426131129;
  686. uint resHi = bufQuo.U2;
  687. ulong resMidLo = bufQuo.Low64;
  688. int curScale = 0;
  689. // Quick check to stop us from trying to scale any more.
  690. //
  691. if (resHi > OVFL_MAX_1_HI)
  692. {
  693. goto HaveScale;
  694. }
  695. var powerOvfl = PowerOvflValues;
  696. if (scale > DEC_SCALE_MAX - 9)
  697. {
  698. // We can't scale by 10^9 without exceeding the max scale factor.
  699. // See if we can scale to the max. If not, we'll fall into
  700. // standard search for scale factor.
  701. //
  702. curScale = DEC_SCALE_MAX - scale;
  703. if (resHi < powerOvfl[curScale - 1].Hi)
  704. goto HaveScale;
  705. }
  706. else if (resHi < OVFL_MAX_9_HI || resHi == OVFL_MAX_9_HI && resMidLo <= OVFL_MAX_9_MIDLO)
  707. return 9;
  708. // Search for a power to scale by < 9. Do a binary search.
  709. //
  710. if (resHi > OVFL_MAX_5_HI)
  711. {
  712. if (resHi > OVFL_MAX_3_HI)
  713. {
  714. curScale = 2;
  715. if (resHi > OVFL_MAX_2_HI)
  716. curScale--;
  717. }
  718. else
  719. {
  720. curScale = 4;
  721. if (resHi > OVFL_MAX_4_HI)
  722. curScale--;
  723. }
  724. }
  725. else
  726. {
  727. if (resHi > OVFL_MAX_7_HI)
  728. {
  729. curScale = 6;
  730. if (resHi > OVFL_MAX_6_HI)
  731. curScale--;
  732. }
  733. else
  734. {
  735. curScale = 8;
  736. if (resHi > OVFL_MAX_8_HI)
  737. curScale--;
  738. }
  739. }
  740. // In all cases, we already found we could not use the power one larger.
  741. // So if we can use this power, it is the biggest, and we're done. If
  742. // we can't use this power, the one below it is correct for all cases
  743. // unless it's 10^1 -- we might have to go to 10^0 (no scaling).
  744. //
  745. if (resHi == powerOvfl[curScale - 1].Hi && resMidLo > powerOvfl[curScale - 1].MidLo)
  746. curScale--;
  747. HaveScale:
  748. // curScale = largest power of 10 we can scale by without overflow,
  749. // curScale < 9. See if this is enough to make scale factor
  750. // positive if it isn't already.
  751. //
  752. if (curScale + scale < 0)
  753. Number.ThrowOverflowException(TypeCode.Decimal);
  754. return curScale;
  755. }
  756. /// <summary>
  757. /// Add a 32-bit uint to an array of 3 uints representing a 96-bit integer.
  758. /// </summary>
  759. /// <returns>Returns false if there is an overflow</returns>
  760. private static bool Add32To96(ref Buf12 bufNum, uint value)
  761. {
  762. if ((bufNum.Low64 += value) < value)
  763. {
  764. if (++bufNum.U2 == 0)
  765. return false;
  766. }
  767. return true;
  768. }
  769. /// <summary>
  770. /// Adds or subtracts two decimal values.
  771. /// On return, d1 contains the result of the operation and d2 is trashed.
  772. /// </summary>
  773. /// <param name="sign">True means subtract and false means add.</param>
  774. internal static unsafe void DecAddSub(ref DecCalc d1, ref DecCalc d2, bool sign)
  775. {
  776. ulong low64 = d1.Low64;
  777. uint high = d1.High, flags = d1.uflags, d2flags = d2.uflags;
  778. uint xorflags = d2flags ^ flags;
  779. sign ^= (xorflags & SignMask) != 0;
  780. if ((xorflags & ScaleMask) == 0)
  781. {
  782. // Scale factors are equal, no alignment necessary.
  783. //
  784. goto AlignedAdd;
  785. }
  786. else
  787. {
  788. // Scale factors are not equal. Assume that a larger scale
  789. // factor (more decimal places) is likely to mean that number
  790. // is smaller. Start by guessing that the right operand has
  791. // the larger scale factor. The result will have the larger
  792. // scale factor.
  793. //
  794. uint d1flags = flags;
  795. flags = d2flags & ScaleMask | flags & SignMask; // scale factor of "smaller", but sign of "larger"
  796. int scale = (int)(flags - d1flags) >> ScaleShift;
  797. if (scale < 0)
  798. {
  799. // Guessed scale factor wrong. Swap operands.
  800. //
  801. scale = -scale;
  802. flags = d1flags;
  803. if (sign)
  804. flags ^= SignMask;
  805. low64 = d2.Low64;
  806. high = d2.High;
  807. d2 = d1;
  808. }
  809. uint power;
  810. ulong tmp64, tmpLow;
  811. // d1 will need to be multiplied by 10^scale so
  812. // it will have the same scale as d2. We could be
  813. // extending it to up to 192 bits of precision.
  814. // Scan for zeros in the upper words.
  815. //
  816. if (high == 0)
  817. {
  818. if (low64 <= uint.MaxValue)
  819. {
  820. if ((uint)low64 == 0)
  821. {
  822. // Left arg is zero, return right.
  823. //
  824. uint signFlags = flags & SignMask;
  825. if (sign)
  826. signFlags ^= SignMask;
  827. d1 = d2;
  828. d1.uflags = d2.uflags & ScaleMask | signFlags;
  829. return;
  830. }
  831. do
  832. {
  833. if (scale <= MaxInt32Scale)
  834. {
  835. low64 = UInt32x32To64((uint)low64, s_powers10[scale]);
  836. goto AlignedAdd;
  837. }
  838. scale -= MaxInt32Scale;
  839. low64 = UInt32x32To64((uint)low64, TenToPowerNine);
  840. } while (low64 <= uint.MaxValue);
  841. }
  842. do
  843. {
  844. power = TenToPowerNine;
  845. if (scale < MaxInt32Scale)
  846. power = s_powers10[scale];
  847. tmpLow = UInt32x32To64((uint)low64, power);
  848. tmp64 = UInt32x32To64((uint)(low64 >> 32), power) + (tmpLow >> 32);
  849. low64 = (uint)tmpLow + (tmp64 << 32);
  850. high = (uint)(tmp64 >> 32);
  851. if ((scale -= MaxInt32Scale) <= 0)
  852. goto AlignedAdd;
  853. } while (high == 0);
  854. }
  855. while (true)
  856. {
  857. // Scaling won't make it larger than 4 uints
  858. //
  859. power = TenToPowerNine;
  860. if (scale < MaxInt32Scale)
  861. power = s_powers10[scale];
  862. tmpLow = UInt32x32To64((uint)low64, power);
  863. tmp64 = UInt32x32To64((uint)(low64 >> 32), power) + (tmpLow >> 32);
  864. low64 = (uint)tmpLow + (tmp64 << 32);
  865. tmp64 >>= 32;
  866. tmp64 += UInt32x32To64(high, power);
  867. scale -= MaxInt32Scale;
  868. if (tmp64 > uint.MaxValue)
  869. break;
  870. high = (uint)tmp64;
  871. // Result fits in 96 bits. Use standard aligned add.
  872. if (scale <= 0)
  873. goto AlignedAdd;
  874. }
  875. // Have to scale by a bunch. Move the number to a buffer where it has room to grow as it's scaled.
  876. //
  877. Buf24 bufNum;
  878. _ = &bufNum; // workaround for CS0165
  879. bufNum.Low64 = low64;
  880. bufNum.Mid64 = tmp64;
  881. uint hiProd = 3;
  882. // Scaling loop, up to 10^9 at a time. hiProd stays updated with index of highest non-zero uint.
  883. //
  884. for (; scale > 0; scale -= MaxInt32Scale)
  885. {
  886. power = TenToPowerNine;
  887. if (scale < MaxInt32Scale)
  888. power = s_powers10[scale];
  889. tmp64 = 0;
  890. uint* rgulNum = (uint*)&bufNum;
  891. for (uint cur = 0; ;)
  892. {
  893. Debug.Assert(cur < bufNum.Length);
  894. tmp64 += UInt32x32To64(rgulNum[cur], power);
  895. rgulNum[cur] = (uint)tmp64;
  896. cur++;
  897. tmp64 >>= 32;
  898. if (cur > hiProd)
  899. break;
  900. }
  901. if ((uint)tmp64 != 0)
  902. {
  903. // We're extending the result by another uint.
  904. Debug.Assert(hiProd + 1 < bufNum.Length);
  905. rgulNum[++hiProd] = (uint)tmp64;
  906. }
  907. }
  908. // Scaling complete, do the add. Could be subtract if signs differ.
  909. //
  910. tmp64 = bufNum.Low64;
  911. low64 = d2.Low64;
  912. uint tmpHigh = bufNum.U2;
  913. high = d2.High;
  914. if (sign)
  915. {
  916. // Signs differ, subtract.
  917. //
  918. low64 = tmp64 - low64;
  919. high = tmpHigh - high;
  920. // Propagate carry
  921. //
  922. if (low64 > tmp64)
  923. {
  924. high--;
  925. if (high < tmpHigh)
  926. goto NoCarry;
  927. }
  928. else if (high <= tmpHigh)
  929. goto NoCarry;
  930. // Carry the subtraction into the higher bits.
  931. //
  932. uint* number = (uint*)&bufNum;
  933. uint cur = 3;
  934. do
  935. {
  936. Debug.Assert(cur < bufNum.Length);
  937. } while (number[cur++]-- == 0);
  938. Debug.Assert(hiProd < bufNum.Length);
  939. if (number[hiProd] == 0 && --hiProd <= 2)
  940. goto ReturnResult;
  941. }
  942. else
  943. {
  944. // Signs the same, add.
  945. //
  946. low64 += tmp64;
  947. high += tmpHigh;
  948. // Propagate carry
  949. //
  950. if (low64 < tmp64)
  951. {
  952. high++;
  953. if (high > tmpHigh)
  954. goto NoCarry;
  955. }
  956. else if (high >= tmpHigh)
  957. goto NoCarry;
  958. uint* number = (uint*)&bufNum;
  959. for (uint cur = 3; ++number[cur++] == 0;)
  960. {
  961. Debug.Assert(cur < bufNum.Length);
  962. if (hiProd < cur)
  963. {
  964. number[cur] = 1;
  965. hiProd = cur;
  966. break;
  967. }
  968. }
  969. }
  970. NoCarry:
  971. bufNum.Low64 = low64;
  972. bufNum.U2 = high;
  973. scale = ScaleResult(&bufNum, hiProd, (byte)(flags >> ScaleShift));
  974. flags = (flags & ~ScaleMask) | ((uint)scale << ScaleShift);
  975. low64 = bufNum.Low64;
  976. high = bufNum.U2;
  977. goto ReturnResult;
  978. }
  979. SignFlip:
  980. {
  981. // Got negative result. Flip its sign.
  982. flags ^= SignMask;
  983. high = ~high;
  984. low64 = (ulong)-(long)low64;
  985. if (low64 == 0)
  986. high++;
  987. goto ReturnResult;
  988. }
  989. AlignedScale:
  990. {
  991. // The addition carried above 96 bits.
  992. // Divide the value by 10, dropping the scale factor.
  993. //
  994. if ((flags & ScaleMask) == 0)
  995. Number.ThrowOverflowException(TypeCode.Decimal);
  996. flags -= 1 << ScaleShift;
  997. const uint den = 10;
  998. ulong num = high + (1UL << 32);
  999. high = (uint)(num / den);
  1000. num = ((num - high * den) << 32) + (low64 >> 32);
  1001. uint div = (uint)(num / den);
  1002. num = ((num - div * den) << 32) + (uint)low64;
  1003. low64 = div;
  1004. low64 <<= 32;
  1005. div = (uint)(num / den);
  1006. low64 += div;
  1007. div = (uint)num - div * den;
  1008. // See if we need to round up.
  1009. //
  1010. if (div >= 5 && (div > 5 || (low64 & 1) != 0))
  1011. {
  1012. if (++low64 == 0)
  1013. high++;
  1014. }
  1015. goto ReturnResult;
  1016. }
  1017. AlignedAdd:
  1018. {
  1019. ulong d1Low64 = low64;
  1020. uint d1High = high;
  1021. if (sign)
  1022. {
  1023. // Signs differ - subtract
  1024. //
  1025. low64 = d1Low64 - d2.Low64;
  1026. high = d1High - d2.High;
  1027. // Propagate carry
  1028. //
  1029. if (low64 > d1Low64)
  1030. {
  1031. high--;
  1032. if (high >= d1High)
  1033. goto SignFlip;
  1034. }
  1035. else if (high > d1High)
  1036. goto SignFlip;
  1037. }
  1038. else
  1039. {
  1040. // Signs are the same - add
  1041. //
  1042. low64 = d1Low64 + d2.Low64;
  1043. high = d1High + d2.High;
  1044. // Propagate carry
  1045. //
  1046. if (low64 < d1Low64)
  1047. {
  1048. high++;
  1049. if (high <= d1High)
  1050. goto AlignedScale;
  1051. }
  1052. else if (high < d1High)
  1053. goto AlignedScale;
  1054. }
  1055. goto ReturnResult;
  1056. }
  1057. ReturnResult:
  1058. d1.uflags = flags;
  1059. d1.High = high;
  1060. d1.Low64 = low64;
  1061. return;
  1062. }
  1063. #endregion
  1064. /// <summary>
  1065. /// Convert Decimal to Currency (similar to OleAut32 api.)
  1066. /// </summary>
  1067. internal static long VarCyFromDec(ref DecCalc pdecIn)
  1068. {
  1069. long value;
  1070. int scale = pdecIn.Scale - 4;
  1071. // Need to scale to get 4 decimal places. -4 <= scale <= 24.
  1072. //
  1073. if (scale < 0)
  1074. {
  1075. if (pdecIn.High != 0)
  1076. goto ThrowOverflow;
  1077. uint pwr = s_powers10[-scale];
  1078. ulong high = UInt32x32To64(pwr, pdecIn.Mid);
  1079. if (high > uint.MaxValue)
  1080. goto ThrowOverflow;
  1081. ulong low = UInt32x32To64(pwr, pdecIn.Low);
  1082. low += high <<= 32;
  1083. if (low < high)
  1084. goto ThrowOverflow;
  1085. value = (long)low;
  1086. }
  1087. else
  1088. {
  1089. if (scale != 0)
  1090. InternalRound(ref pdecIn, (uint)scale, MidpointRounding.ToEven);
  1091. if (pdecIn.High != 0)
  1092. goto ThrowOverflow;
  1093. value = (long)pdecIn.Low64;
  1094. }
  1095. if (value < 0 && (value != long.MinValue || !pdecIn.IsNegative))
  1096. goto ThrowOverflow;
  1097. if (pdecIn.IsNegative)
  1098. value = -value;
  1099. return value;
  1100. ThrowOverflow:
  1101. throw new OverflowException(SR.Overflow_Currency);
  1102. }
  1103. /// <summary>
  1104. /// Decimal Compare updated to return values similar to ICompareTo
  1105. /// </summary>
  1106. internal static int VarDecCmp(in decimal d1, in decimal d2)
  1107. {
  1108. if ((d2.Low | d2.Mid | d2.High) == 0)
  1109. {
  1110. if ((d1.Low | d1.Mid | d1.High) == 0)
  1111. return 0;
  1112. return (d1.flags >> 31) | 1;
  1113. }
  1114. if ((d1.Low | d1.Mid | d1.High) == 0)
  1115. return -((d2.flags >> 31) | 1);
  1116. int sign = (d1.flags >> 31) - (d2.flags >> 31);
  1117. if (sign != 0)
  1118. return sign;
  1119. return VarDecCmpSub(in d1, in d2);
  1120. }
  1121. private static int VarDecCmpSub(in decimal d1, in decimal d2)
  1122. {
  1123. int flags = d2.flags;
  1124. int sign = (flags >> 31) | 1;
  1125. int scale = flags - d1.flags;
  1126. ulong low64 = d1.Low64;
  1127. uint high = d1.High;
  1128. ulong d2Low64 = d2.Low64;
  1129. uint d2High = d2.High;
  1130. if (scale != 0)
  1131. {
  1132. scale >>= ScaleShift;
  1133. // Scale factors are not equal. Assume that a larger scale factor (more decimal places) is likely to mean that number is smaller.
  1134. // Start by guessing that the right operand has the larger scale factor.
  1135. if (scale < 0)
  1136. {
  1137. // Guessed scale factor wrong. Swap operands.
  1138. scale = -scale;
  1139. sign = -sign;
  1140. ulong tmp64 = low64;
  1141. low64 = d2Low64;
  1142. d2Low64 = tmp64;
  1143. uint tmp = high;
  1144. high = d2High;
  1145. d2High = tmp;
  1146. }
  1147. // d1 will need to be multiplied by 10^scale so it will have the same scale as d2.
  1148. // Scaling loop, up to 10^9 at a time.
  1149. do
  1150. {
  1151. uint power = scale >= MaxInt32Scale ? TenToPowerNine : s_powers10[scale];
  1152. ulong tmpLow = UInt32x32To64((uint)low64, power);
  1153. ulong tmp = UInt32x32To64((uint)(low64 >> 32), power) + (tmpLow >> 32);
  1154. low64 = (uint)tmpLow + (tmp << 32);
  1155. tmp >>= 32;
  1156. tmp += UInt32x32To64(high, power);
  1157. // If the scaled value has more than 96 significant bits then it's greater than d2
  1158. if (tmp > uint.MaxValue)
  1159. return sign;
  1160. high = (uint)tmp;
  1161. } while ((scale -= MaxInt32Scale) > 0);
  1162. }
  1163. uint cmpHigh = high - d2High;
  1164. if (cmpHigh != 0)
  1165. {
  1166. // check for overflow
  1167. if (cmpHigh > high)
  1168. sign = -sign;
  1169. return sign;
  1170. }
  1171. ulong cmpLow64 = low64 - d2Low64;
  1172. if (cmpLow64 == 0)
  1173. sign = 0;
  1174. // check for overflow
  1175. else if (cmpLow64 > low64)
  1176. sign = -sign;
  1177. return sign;
  1178. }
  1179. /// <summary>
  1180. /// Decimal Multiply
  1181. /// </summary>
  1182. internal static unsafe void VarDecMul(ref DecCalc d1, ref DecCalc d2)
  1183. {
  1184. int scale = (byte)(d1.uflags + d2.uflags >> ScaleShift);
  1185. ulong tmp;
  1186. uint hiProd;
  1187. Buf24 bufProd;
  1188. _ = &bufProd; // workaround for CS0165
  1189. if ((d1.High | d1.Mid) == 0)
  1190. {
  1191. if ((d2.High | d2.Mid) == 0)
  1192. {
  1193. // Upper 64 bits are zero.
  1194. //
  1195. ulong low64 = UInt32x32To64(d1.Low, d2.Low);
  1196. if (scale > DEC_SCALE_MAX)
  1197. {
  1198. // Result scale is too big. Divide result by power of 10 to reduce it.
  1199. // If the amount to divide by is > 19 the result is guaranteed
  1200. // less than 1/2. [max value in 64 bits = 1.84E19]
  1201. //
  1202. if (scale > DEC_SCALE_MAX + MaxInt64Scale)
  1203. goto ReturnZero;
  1204. scale -= DEC_SCALE_MAX + 1;
  1205. ulong power = s_ulongPowers10[scale];
  1206. // TODO: https://github.com/dotnet/coreclr/issues/3439
  1207. tmp = low64 / power;
  1208. ulong remainder = low64 - tmp * power;
  1209. low64 = tmp;
  1210. // Round result. See if remainder >= 1/2 of divisor.
  1211. // Divisor is a power of 10, so it is always even.
  1212. //
  1213. power >>= 1;
  1214. if (remainder >= power && (remainder > power || ((uint)low64 & 1) > 0))
  1215. low64++;
  1216. scale = DEC_SCALE_MAX;
  1217. }
  1218. d1.Low64 = low64;
  1219. d1.uflags = ((d2.uflags ^ d1.uflags) & SignMask) | ((uint)scale << ScaleShift);
  1220. return;
  1221. }
  1222. else
  1223. {
  1224. // Left value is 32-bit, result fits in 4 uints
  1225. tmp = UInt32x32To64(d1.Low, d2.Low);
  1226. bufProd.U0 = (uint)tmp;
  1227. tmp = UInt32x32To64(d1.Low, d2.Mid) + (tmp >> 32);
  1228. bufProd.U1 = (uint)tmp;
  1229. tmp >>= 32;
  1230. if (d2.High != 0)
  1231. {
  1232. tmp += UInt32x32To64(d1.Low, d2.High);
  1233. if (tmp > uint.MaxValue)
  1234. {
  1235. bufProd.Mid64 = tmp;
  1236. hiProd = 3;
  1237. goto SkipScan;
  1238. }
  1239. }
  1240. if ((uint)tmp != 0)
  1241. {
  1242. bufProd.U2 = (uint)tmp;
  1243. hiProd = 2;
  1244. goto SkipScan;
  1245. }
  1246. hiProd = 1;
  1247. }
  1248. }
  1249. else if ((d2.High | d2.Mid) == 0)
  1250. {
  1251. // Right value is 32-bit, result fits in 4 uints
  1252. tmp = UInt32x32To64(d2.Low, d1.Low);
  1253. bufProd.U0 = (uint)tmp;
  1254. tmp = UInt32x32To64(d2.Low, d1.Mid) + (tmp >> 32);
  1255. bufProd.U1 = (uint)tmp;
  1256. tmp >>= 32;
  1257. if (d1.High != 0)
  1258. {
  1259. tmp += UInt32x32To64(d2.Low, d1.High);
  1260. if (tmp > uint.MaxValue)
  1261. {
  1262. bufProd.Mid64 = tmp;
  1263. hiProd = 3;
  1264. goto SkipScan;
  1265. }
  1266. }
  1267. if ((uint)tmp != 0)
  1268. {
  1269. bufProd.U2 = (uint)tmp;
  1270. hiProd = 2;
  1271. goto SkipScan;
  1272. }
  1273. hiProd = 1;
  1274. }
  1275. else
  1276. {
  1277. // Both operands have bits set in the upper 64 bits.
  1278. //
  1279. // Compute and accumulate the 9 partial products into a
  1280. // 192-bit (24-byte) result.
  1281. //
  1282. // [l-h][l-m][l-l] left high, middle, low
  1283. // x [r-h][r-m][r-l] right high, middle, low
  1284. // ------------------------------
  1285. //
  1286. // [0-h][0-l] l-l * r-l
  1287. // [1ah][1al] l-l * r-m
  1288. // [1bh][1bl] l-m * r-l
  1289. // [2ah][2al] l-m * r-m
  1290. // [2bh][2bl] l-l * r-h
  1291. // [2ch][2cl] l-h * r-l
  1292. // [3ah][3al] l-m * r-h
  1293. // [3bh][3bl] l-h * r-m
  1294. // [4-h][4-l] l-h * r-h
  1295. // ------------------------------
  1296. // [p-5][p-4][p-3][p-2][p-1][p-0] prod[] array
  1297. //
  1298. tmp = UInt32x32To64(d1.Low, d2.Low);
  1299. bufProd.U0 = (uint)tmp;
  1300. ulong tmp2 = UInt32x32To64(d1.Low, d2.Mid) + (tmp >> 32);
  1301. tmp = UInt32x32To64(d1.Mid, d2.Low);
  1302. tmp += tmp2; // this could generate carry
  1303. bufProd.U1 = (uint)tmp;
  1304. if (tmp < tmp2) // detect carry
  1305. tmp2 = (tmp >> 32) | (1UL << 32);
  1306. else
  1307. tmp2 = tmp >> 32;
  1308. tmp = UInt32x32To64(d1.Mid, d2.Mid) + tmp2;
  1309. if ((d1.High | d2.High) > 0)
  1310. {
  1311. // Highest 32 bits is non-zero. Calculate 5 more partial products.
  1312. //
  1313. tmp2 = UInt32x32To64(d1.Low, d2.High);
  1314. tmp += tmp2; // this could generate carry
  1315. uint tmp3 = 0;
  1316. if (tmp < tmp2) // detect carry
  1317. tmp3 = 1;
  1318. tmp2 = UInt32x32To64(d1.High, d2.Low);
  1319. tmp += tmp2; // this could generate carry
  1320. bufProd.U2 = (uint)tmp;
  1321. if (tmp < tmp2) // detect carry
  1322. tmp3++;
  1323. tmp2 = ((ulong)tmp3 << 32) | (tmp >> 32);
  1324. tmp = UInt32x32To64(d1.Mid, d2.High);
  1325. tmp += tmp2; // this could generate carry
  1326. tmp3 = 0;
  1327. if (tmp < tmp2) // detect carry
  1328. tmp3 = 1;
  1329. tmp2 = UInt32x32To64(d1.High, d2.Mid);
  1330. tmp += tmp2; // this could generate carry
  1331. bufProd.U3 = (uint)tmp;
  1332. if (tmp < tmp2) // detect carry
  1333. tmp3++;
  1334. tmp = ((ulong)tmp3 << 32) | (tmp >> 32);
  1335. bufProd.High64 = UInt32x32To64(d1.High, d2.High) + tmp;
  1336. hiProd = 5;
  1337. }
  1338. else if (tmp != 0)
  1339. {
  1340. bufProd.Mid64 = tmp;
  1341. hiProd = 3;
  1342. }
  1343. else
  1344. hiProd = 1;
  1345. }
  1346. // Check for leading zero uints on the product
  1347. //
  1348. uint* product = (uint*)&bufProd;
  1349. while (product[(int)hiProd] == 0)
  1350. {
  1351. if (hiProd == 0)
  1352. goto ReturnZero;
  1353. hiProd--;
  1354. }
  1355. SkipScan:
  1356. if (hiProd > 2 || scale > DEC_SCALE_MAX)
  1357. {
  1358. scale = ScaleResult(&bufProd, hiProd, scale);
  1359. }
  1360. d1.Low64 = bufProd.Low64;
  1361. d1.High = bufProd.U2;
  1362. d1.uflags = ((d2.uflags ^ d1.uflags) & SignMask) | ((uint)scale << ScaleShift);
  1363. return;
  1364. ReturnZero:
  1365. d1 = default;
  1366. }
  1367. /// <summary>
  1368. /// Convert float to Decimal
  1369. /// </summary>
  1370. internal static void VarDecFromR4(float input, out DecCalc result)
  1371. {
  1372. result = default;
  1373. // The most we can scale by is 10^28, which is just slightly more
  1374. // than 2^93. So a float with an exponent of -94 could just
  1375. // barely reach 0.5, but smaller exponents will always round to zero.
  1376. //
  1377. const uint SNGBIAS = 126;
  1378. int exp = (int)(GetExponent(input) - SNGBIAS);
  1379. if (exp < -94)
  1380. return; // result should be zeroed out
  1381. if (exp > 96)
  1382. Number.ThrowOverflowException(TypeCode.Decimal);
  1383. uint flags = 0;
  1384. if (input < 0)
  1385. {
  1386. input = -input;
  1387. flags = SignMask;
  1388. }
  1389. // Round the input to a 7-digit integer. The R4 format has
  1390. // only 7 digits of precision, and we want to keep garbage digits
  1391. // out of the Decimal were making.
  1392. //
  1393. // Calculate max power of 10 input value could have by multiplying
  1394. // the exponent by log10(2). Using scaled integer multiplcation,
  1395. // log10(2) * 2 ^ 16 = .30103 * 65536 = 19728.3.
  1396. //
  1397. double dbl = input;
  1398. int power = 6 - ((exp * 19728) >> 16);
  1399. // power is between -22 and 35
  1400. if (power >= 0)
  1401. {
  1402. // We have less than 7 digits, scale input up.
  1403. //
  1404. if (power > DEC_SCALE_MAX)
  1405. power = DEC_SCALE_MAX;
  1406. dbl *= s_doublePowers10[power];
  1407. }
  1408. else
  1409. {
  1410. if (power != -1 || dbl >= 1E7)
  1411. dbl /= s_doublePowers10[-power];
  1412. else
  1413. power = 0; // didn't scale it
  1414. }
  1415. Debug.Assert(dbl < 1E7);
  1416. if (dbl < 1E6 && power < DEC_SCALE_MAX)
  1417. {
  1418. dbl *= 10;
  1419. power++;
  1420. Debug.Assert(dbl >= 1E6);
  1421. }
  1422. // Round to integer
  1423. //
  1424. uint mant;
  1425. // with SSE4.1 support ROUNDSD can be used
  1426. if (X86.Sse41.IsSupported)
  1427. mant = (uint)(int)Math.Round(dbl);
  1428. else
  1429. {
  1430. mant = (uint)(int)dbl;
  1431. dbl -= (int)mant; // difference between input & integer
  1432. if (dbl > 0.5 || dbl == 0.5 && (mant & 1) != 0)
  1433. mant++;
  1434. }
  1435. if (mant == 0)
  1436. return; // result should be zeroed out
  1437. if (power < 0)
  1438. {
  1439. // Add -power factors of 10, -power <= (29 - 7) = 22.
  1440. //
  1441. power = -power;
  1442. if (power < 10)
  1443. {
  1444. result.Low64 = UInt32x32To64(mant, s_powers10[power]);
  1445. }
  1446. else
  1447. {
  1448. // Have a big power of 10.
  1449. //
  1450. if (power > 18)
  1451. {
  1452. ulong low64 = UInt32x32To64(mant, s_powers10[power - 18]);
  1453. UInt64x64To128(low64, TenToPowerEighteen, ref result);
  1454. }
  1455. else
  1456. {
  1457. ulong low64 = UInt32x32To64(mant, s_powers10[power - 9]);
  1458. ulong hi64 = UInt32x32To64(TenToPowerNine, (uint)(low64 >> 32));
  1459. low64 = UInt32x32To64(TenToPowerNine, (uint)low64);
  1460. result.Low = (uint)low64;
  1461. hi64 += low64 >> 32;
  1462. result.Mid = (uint)hi64;
  1463. hi64 >>= 32;
  1464. result.High = (uint)hi64;
  1465. }
  1466. }
  1467. }
  1468. else
  1469. {
  1470. // Factor out powers of 10 to reduce the scale, if possible.
  1471. // The maximum number we could factor out would be 6. This
  1472. // comes from the fact we have a 7-digit number, and the
  1473. // MSD must be non-zero -- but the lower 6 digits could be
  1474. // zero. Note also the scale factor is never negative, so
  1475. // we can't scale by any more than the power we used to
  1476. // get the integer.
  1477. //
  1478. int lmax = power;
  1479. if (lmax > 6)
  1480. lmax = 6;
  1481. if ((mant & 0xF) == 0 && lmax >= 4)
  1482. {
  1483. const uint den = 10000;
  1484. uint div = mant / den;
  1485. if (mant == div * den)
  1486. {
  1487. mant = div;
  1488. power -= 4;
  1489. lmax -= 4;
  1490. }
  1491. }
  1492. if ((mant & 3) == 0 && lmax >= 2)
  1493. {
  1494. const uint den = 100;
  1495. uint div = mant / den;
  1496. if (mant == div * den)
  1497. {
  1498. mant = div;
  1499. power -= 2;
  1500. lmax -= 2;
  1501. }
  1502. }
  1503. if ((mant & 1) == 0 && lmax >= 1)
  1504. {
  1505. const uint den = 10;
  1506. uint div = mant / den;
  1507. if (mant == div * den)
  1508. {
  1509. mant = div;
  1510. power--;
  1511. }
  1512. }
  1513. flags |= (uint)power << ScaleShift;
  1514. result.Low = mant;
  1515. }
  1516. result.uflags = flags;
  1517. }
  1518. /// <summary>
  1519. /// Convert double to Decimal
  1520. /// </summary>
  1521. internal static void VarDecFromR8(double input, out DecCalc result)
  1522. {
  1523. result = default;
  1524. // The most we can scale by is 10^28, which is just slightly more
  1525. // than 2^93. So a float with an exponent of -94 could just
  1526. // barely reach 0.5, but smaller exponents will always round to zero.
  1527. //
  1528. const uint DBLBIAS = 1022;
  1529. int exp = (int)(GetExponent(input) - DBLBIAS);
  1530. if (exp < -94)
  1531. return; // result should be zeroed out
  1532. if (exp > 96)
  1533. Number.ThrowOverflowException(TypeCode.Decimal);
  1534. uint flags = 0;
  1535. if (input < 0)
  1536. {
  1537. input = -input;
  1538. flags = SignMask;
  1539. }
  1540. // Round the input to a 15-digit integer. The R8 format has
  1541. // only 15 digits of precision, and we want to keep garbage digits
  1542. // out of the Decimal were making.
  1543. //
  1544. // Calculate max power of 10 input value could have by multiplying
  1545. // the exponent by log10(2). Using scaled integer multiplcation,
  1546. // log10(2) * 2 ^ 16 = .30103 * 65536 = 19728.3.
  1547. //
  1548. double dbl = input;
  1549. int power = 14 - ((exp * 19728) >> 16);
  1550. // power is between -14 and 43
  1551. if (power >= 0)
  1552. {
  1553. // We have less than 15 digits, scale input up.
  1554. //
  1555. if (power > DEC_SCALE_MAX)
  1556. power = DEC_SCALE_MAX;
  1557. dbl *= s_doublePowers10[power];
  1558. }
  1559. else
  1560. {
  1561. if (power != -1 || dbl >= 1E15)
  1562. dbl /= s_doublePowers10[-power];
  1563. else
  1564. power = 0; // didn't scale it
  1565. }
  1566. Debug.Assert(dbl < 1E15);
  1567. if (dbl < 1E14 && power < DEC_SCALE_MAX)
  1568. {
  1569. dbl *= 10;
  1570. power++;
  1571. Debug.Assert(dbl >= 1E14);
  1572. }
  1573. // Round to int64
  1574. //
  1575. ulong mant;
  1576. // with SSE4.1 support ROUNDSD can be used
  1577. if (X86.Sse41.IsSupported)
  1578. mant = (ulong)(long)Math.Round(dbl);
  1579. else
  1580. {
  1581. mant = (ulong)(long)dbl;
  1582. dbl -= (long)mant; // difference between input & integer
  1583. if (dbl > 0.5 || dbl == 0.5 && (mant & 1) != 0)
  1584. mant++;
  1585. }
  1586. if (mant == 0)
  1587. return; // result should be zeroed out
  1588. if (power < 0)
  1589. {
  1590. // Add -power factors of 10, -power <= (29 - 15) = 14.
  1591. //
  1592. power = -power;
  1593. if (power < 10)
  1594. {
  1595. var pow10 = s_powers10[power];
  1596. ulong low64 = UInt32x32To64((uint)mant, pow10);
  1597. ulong hi64 = UInt32x32To64((uint)(mant >> 32), pow10);
  1598. result.Low = (uint)low64;
  1599. hi64 += low64 >> 32;
  1600. result.Mid = (uint)hi64;
  1601. hi64 >>= 32;
  1602. result.High = (uint)hi64;
  1603. }
  1604. else
  1605. {
  1606. // Have a big power of 10.
  1607. //
  1608. Debug.Assert(power <= 14);
  1609. UInt64x64To128(mant, s_ulongPowers10[power - 1], ref result);
  1610. }
  1611. }
  1612. else
  1613. {
  1614. // Factor out powers of 10 to reduce the scale, if possible.
  1615. // The maximum number we could factor out would be 14. This
  1616. // comes from the fact we have a 15-digit number, and the
  1617. // MSD must be non-zero -- but the lower 14 digits could be
  1618. // zero. Note also the scale factor is never negative, so
  1619. // we can't scale by any more than the power we used to
  1620. // get the integer.
  1621. //
  1622. int lmax = power;
  1623. if (lmax > 14)
  1624. lmax = 14;
  1625. if ((byte)mant == 0 && lmax >= 8)
  1626. {
  1627. const uint den = 100000000;
  1628. ulong div = mant / den;
  1629. if ((uint)mant == (uint)(div * den))
  1630. {
  1631. mant = div;
  1632. power -= 8;
  1633. lmax -= 8;
  1634. }
  1635. }
  1636. if (((uint)mant & 0xF) == 0 && lmax >= 4)
  1637. {
  1638. const uint den = 10000;
  1639. ulong div = mant / den;
  1640. if ((uint)mant == (uint)(div * den))
  1641. {
  1642. mant = div;
  1643. power -= 4;
  1644. lmax -= 4;
  1645. }
  1646. }
  1647. if (((uint)mant & 3) == 0 && lmax >= 2)
  1648. {
  1649. const uint den = 100;
  1650. ulong div = mant / den;
  1651. if ((uint)mant == (uint)(div * den))
  1652. {
  1653. mant = div;
  1654. power -= 2;
  1655. lmax -= 2;
  1656. }
  1657. }
  1658. if (((uint)mant & 1) == 0 && lmax >= 1)
  1659. {
  1660. const uint den = 10;
  1661. ulong div = mant / den;
  1662. if ((uint)mant == (uint)(div * den))
  1663. {
  1664. mant = div;
  1665. power--;
  1666. }
  1667. }
  1668. flags |= (uint)power << ScaleShift;
  1669. result.Low64 = mant;
  1670. }
  1671. result.uflags = flags;
  1672. }
  1673. /// <summary>
  1674. /// Convert Decimal to float
  1675. /// </summary>
  1676. internal static float VarR4FromDec(in decimal value)
  1677. {
  1678. return (float)VarR8FromDec(in value);
  1679. }
  1680. /// <summary>
  1681. /// Convert Decimal to double
  1682. /// </summary>
  1683. internal static double VarR8FromDec(in decimal value)
  1684. {
  1685. // Value taken via reverse engineering the double that corresponds to 2^64. (oleaut32 has ds2to64 = DEFDS(0, 0, DBLBIAS + 65, 0))
  1686. const double ds2to64 = 1.8446744073709552e+019;
  1687. double dbl = ((double)value.Low64 +
  1688. (double)value.High * ds2to64) / s_doublePowers10[value.Scale];
  1689. if (value.IsNegative)
  1690. dbl = -dbl;
  1691. return dbl;
  1692. }
  1693. internal static int GetHashCode(in decimal d)
  1694. {
  1695. if ((d.Low | d.Mid | d.High) == 0)
  1696. return 0;
  1697. uint flags = (uint)d.flags;
  1698. if ((flags & ScaleMask) == 0 || (d.Low & 1) != 0)
  1699. return (int)(flags ^ d.High ^ d.Mid ^ d.Low);
  1700. int scale = (byte)(flags >> ScaleShift);
  1701. uint low = d.Low;
  1702. ulong high64 = ((ulong)d.High << 32) | d.Mid;
  1703. Unscale(ref low, ref high64, ref scale);
  1704. flags = ((flags) & ~ScaleMask) | (uint)scale << ScaleShift;
  1705. return (int)(flags ^ (uint)(high64 >> 32) ^ (uint)high64 ^ low);
  1706. }
  1707. /// <summary>
  1708. /// Divides two decimal values.
  1709. /// On return, d1 contains the result of the operation.
  1710. /// </summary>
  1711. internal static unsafe void VarDecDiv(ref DecCalc d1, ref DecCalc d2)
  1712. {
  1713. Buf12 bufQuo;
  1714. _ = &bufQuo; // workaround for CS0165
  1715. uint power;
  1716. int curScale;
  1717. int scale = (sbyte)(d1.uflags - d2.uflags >> ScaleShift);
  1718. bool unscale = false;
  1719. uint tmp;
  1720. if ((d2.High | d2.Mid) == 0)
  1721. {
  1722. // Divisor is only 32 bits. Easy divide.
  1723. //
  1724. uint den = d2.Low;
  1725. if (den == 0)
  1726. throw new DivideByZeroException();
  1727. bufQuo.Low64 = d1.Low64;
  1728. bufQuo.U2 = d1.High;
  1729. uint remainder = Div96By32(ref bufQuo, den);
  1730. for (;;)
  1731. {
  1732. if (remainder == 0)
  1733. {
  1734. if (scale < 0)
  1735. {
  1736. curScale = Math.Min(9, -scale);
  1737. goto HaveScale;
  1738. }
  1739. break;
  1740. }
  1741. // We need to unscale if and only if we have a non-zero remainder
  1742. unscale = true;
  1743. // We have computed a quotient based on the natural scale
  1744. // ( <dividend scale> - <divisor scale> ). We have a non-zero
  1745. // remainder, so now we should increase the scale if possible to
  1746. // include more quotient bits.
  1747. //
  1748. // If it doesn't cause overflow, we'll loop scaling by 10^9 and
  1749. // computing more quotient bits as long as the remainder stays
  1750. // non-zero. If scaling by that much would cause overflow, we'll
  1751. // drop out of the loop and scale by as much as we can.
  1752. //
  1753. // Scaling by 10^9 will overflow if bufQuo[2].bufQuo[1] >= 2^32 / 10^9
  1754. // = 4.294 967 296. So the upper limit is bufQuo[2] == 4 and
  1755. // bufQuo[1] == 0.294 967 296 * 2^32 = 1,266,874,889.7+. Since
  1756. // quotient bits in bufQuo[0] could be all 1's, then 1,266,874,888
  1757. // is the largest value in bufQuo[1] (when bufQuo[2] == 4) that is
  1758. // assured not to overflow.
  1759. //
  1760. if (scale == DEC_SCALE_MAX || (curScale = SearchScale(ref bufQuo, scale)) == 0)
  1761. {
  1762. // No more scaling to be done, but remainder is non-zero.
  1763. // Round quotient.
  1764. //
  1765. tmp = remainder << 1;
  1766. if (tmp < remainder || tmp >= den && (tmp > den || (bufQuo.U0 & 1) != 0))
  1767. goto RoundUp;
  1768. break;
  1769. }
  1770. HaveScale:
  1771. power = s_powers10[curScale];
  1772. scale += curScale;
  1773. if (IncreaseScale(ref bufQuo, power) != 0)
  1774. goto ThrowOverflow;
  1775. ulong num = UInt32x32To64(remainder, power);
  1776. // TODO: https://github.com/dotnet/coreclr/issues/3439
  1777. uint div = (uint)(num / den);
  1778. remainder = (uint)num - div * den;
  1779. if (!Add32To96(ref bufQuo, div))
  1780. {
  1781. scale = OverflowUnscale(ref bufQuo, scale, remainder != 0);
  1782. break;
  1783. }
  1784. } // for (;;)
  1785. }
  1786. else
  1787. {
  1788. // Divisor has bits set in the upper 64 bits.
  1789. //
  1790. // Divisor must be fully normalized (shifted so bit 31 of the most
  1791. // significant uint is 1). Locate the MSB so we know how much to
  1792. // normalize by. The dividend will be shifted by the same amount so
  1793. // the quotient is not changed.
  1794. //
  1795. tmp = d2.High;
  1796. if (tmp == 0)
  1797. tmp = d2.Mid;
  1798. curScale = BitOps.LeadingZeroCount(tmp);
  1799. // Shift both dividend and divisor left by curScale.
  1800. //
  1801. Buf16 bufRem;
  1802. _ = &bufRem; // workaround for CS0165
  1803. bufRem.Low64 = d1.Low64 << curScale;
  1804. bufRem.High64 = (d1.Mid + ((ulong)d1.High << 32)) >> (32 - curScale);
  1805. ulong divisor = d2.Low64 << curScale;
  1806. if (d2.High == 0)
  1807. {
  1808. // Have a 64-bit divisor in sdlDivisor. The remainder
  1809. // (currently 96 bits spread over 4 uints) will be < divisor.
  1810. //
  1811. bufQuo.U1 = Div96By64(ref *(Buf12*)&bufRem.U1, divisor);
  1812. bufQuo.U0 = Div96By64(ref *(Buf12*)&bufRem, divisor);
  1813. for (;;)
  1814. {
  1815. if (bufRem.Low64 == 0)
  1816. {
  1817. if (scale < 0)
  1818. {
  1819. curScale = Math.Min(9, -scale);
  1820. goto HaveScale64;
  1821. }
  1822. break;
  1823. }
  1824. // We need to unscale if and only if we have a non-zero remainder
  1825. unscale = true;
  1826. // Remainder is non-zero. Scale up quotient and remainder by
  1827. // powers of 10 so we can compute more significant bits.
  1828. //
  1829. if (scale == DEC_SCALE_MAX || (curScale = SearchScale(ref bufQuo, scale)) == 0)
  1830. {
  1831. // No more scaling to be done, but remainder is non-zero.
  1832. // Round quotient.
  1833. //
  1834. ulong tmp64 = bufRem.Low64;
  1835. if ((long)tmp64 < 0 || (tmp64 <<= 1) > divisor ||
  1836. (tmp64 == divisor && (bufQuo.U0 & 1) != 0))
  1837. goto RoundUp;
  1838. break;
  1839. }
  1840. HaveScale64:
  1841. power = s_powers10[curScale];
  1842. scale += curScale;
  1843. if (IncreaseScale(ref bufQuo, power) != 0)
  1844. goto ThrowOverflow;
  1845. IncreaseScale64(ref *(Buf12*)&bufRem, power);
  1846. tmp = Div96By64(ref *(Buf12*)&bufRem, divisor);
  1847. if (!Add32To96(ref bufQuo, tmp))
  1848. {
  1849. scale = OverflowUnscale(ref bufQuo, scale, bufRem.Low64 != 0);
  1850. break;
  1851. }
  1852. } // for (;;)
  1853. }
  1854. else
  1855. {
  1856. // Have a 96-bit divisor in bufDivisor.
  1857. //
  1858. // Start by finishing the shift left by curScale.
  1859. //
  1860. Buf12 bufDivisor;
  1861. _ = &bufDivisor; // workaround for CS0165
  1862. bufDivisor.Low64 = divisor;
  1863. bufDivisor.U2 = (uint)((d2.Mid + ((ulong)d2.High << 32)) >> (32 - curScale));
  1864. // The remainder (currently 96 bits spread over 4 uints) will be < divisor.
  1865. //
  1866. bufQuo.Low64 = Div128By96(ref bufRem, ref bufDivisor);
  1867. for (;;)
  1868. {
  1869. if ((bufRem.Low64 | bufRem.U2) == 0)
  1870. {
  1871. if (scale < 0)
  1872. {
  1873. curScale = Math.Min(9, -scale);
  1874. goto HaveScale96;
  1875. }
  1876. break;
  1877. }
  1878. // We need to unscale if and only if we have a non-zero remainder
  1879. unscale = true;
  1880. // Remainder is non-zero. Scale up quotient and remainder by
  1881. // powers of 10 so we can compute more significant bits.
  1882. //
  1883. if (scale == DEC_SCALE_MAX || (curScale = SearchScale(ref bufQuo, scale)) == 0)
  1884. {
  1885. // No more scaling to be done, but remainder is non-zero.
  1886. // Round quotient.
  1887. //
  1888. if ((int)bufRem.U2 < 0)
  1889. {
  1890. goto RoundUp;
  1891. }
  1892. tmp = bufRem.U1 >> 31;
  1893. bufRem.Low64 <<= 1;
  1894. bufRem.U2 = (bufRem.U2 << 1) + tmp;
  1895. if (bufRem.U2 > bufDivisor.U2 || bufRem.U2 == bufDivisor.U2 &&
  1896. (bufRem.Low64 > bufDivisor.Low64 || bufRem.Low64 == bufDivisor.Low64 &&
  1897. (bufQuo.U0 & 1) != 0))
  1898. goto RoundUp;
  1899. break;
  1900. }
  1901. HaveScale96:
  1902. power = s_powers10[curScale];
  1903. scale += curScale;
  1904. if (IncreaseScale(ref bufQuo, power) != 0)
  1905. goto ThrowOverflow;
  1906. bufRem.U3 = IncreaseScale(ref *(Buf12*)&bufRem, power);
  1907. tmp = Div128By96(ref bufRem, ref bufDivisor);
  1908. if (!Add32To96(ref bufQuo, tmp))
  1909. {
  1910. scale = OverflowUnscale(ref bufQuo, scale, (bufRem.Low64 | bufRem.High64) != 0);
  1911. break;
  1912. }
  1913. } // for (;;)
  1914. }
  1915. }
  1916. Unscale:
  1917. if (unscale)
  1918. {
  1919. uint low = bufQuo.U0;
  1920. ulong high64 = bufQuo.High64;
  1921. Unscale(ref low, ref high64, ref scale);
  1922. d1.Low = low;
  1923. d1.Mid = (uint)high64;
  1924. d1.High = (uint)(high64 >> 32);
  1925. }
  1926. else
  1927. {
  1928. d1.Low64 = bufQuo.Low64;
  1929. d1.High = bufQuo.U2;
  1930. }
  1931. d1.uflags = ((d1.uflags ^ d2.uflags) & SignMask) | ((uint)scale << ScaleShift);
  1932. return;
  1933. RoundUp:
  1934. {
  1935. if (++bufQuo.Low64 == 0 && ++bufQuo.U2 == 0)
  1936. {
  1937. scale = OverflowUnscale(ref bufQuo, scale, true);
  1938. }
  1939. goto Unscale;
  1940. }
  1941. ThrowOverflow:
  1942. Number.ThrowOverflowException(TypeCode.Decimal);
  1943. }
  1944. /// <summary>
  1945. /// Computes the remainder between two decimals.
  1946. /// On return, d1 contains the result of the operation and d2 is trashed.
  1947. /// </summary>
  1948. internal static void VarDecMod(ref DecCalc d1, ref DecCalc d2)
  1949. {
  1950. if ((d2.ulo | d2.umid | d2.uhi) == 0)
  1951. throw new DivideByZeroException();
  1952. if ((d1.ulo | d1.umid | d1.uhi) == 0)
  1953. return;
  1954. // In the operation x % y the sign of y does not matter. Result will have the sign of x.
  1955. d2.uflags = (d2.uflags & ~SignMask) | (d1.uflags & SignMask);
  1956. int cmp = VarDecCmpSub(in Unsafe.As<DecCalc, decimal>(ref d1), in Unsafe.As<DecCalc, decimal>(ref d2));
  1957. if (cmp == 0)
  1958. {
  1959. d1.ulo = 0;
  1960. d1.umid = 0;
  1961. d1.uhi = 0;
  1962. if (d2.uflags > d1.uflags)
  1963. d1.uflags = d2.uflags;
  1964. return;
  1965. }
  1966. if ((cmp ^ (int)(d1.uflags & SignMask)) < 0)
  1967. return;
  1968. // The divisor is smaller than the dividend and both are non-zero. Calculate the integer remainder using the larger scaling factor.
  1969. int scale = (sbyte)(d1.uflags - d2.uflags >> ScaleShift);
  1970. if (scale > 0)
  1971. {
  1972. // Divisor scale can always be increased to dividend scale for remainder calculation.
  1973. do
  1974. {
  1975. uint power = scale >= MaxInt32Scale ? TenToPowerNine : s_powers10[scale];
  1976. ulong tmp = UInt32x32To64(d2.Low, power);
  1977. d2.Low = (uint)tmp;
  1978. tmp >>= 32;
  1979. tmp += (d2.Mid + ((ulong)d2.High << 32)) * power;
  1980. d2.Mid = (uint)tmp;
  1981. d2.High = (uint)(tmp >> 32);
  1982. } while ((scale -= MaxInt32Scale) > 0);
  1983. scale = 0;
  1984. }
  1985. do
  1986. {
  1987. if (scale < 0)
  1988. {
  1989. d1.uflags = d2.uflags;
  1990. // Try to scale up dividend to match divisor.
  1991. Buf12 bufQuo;
  1992. unsafe
  1993. { _ = &bufQuo; } // workaround for CS0165
  1994. bufQuo.Low64 = d1.Low64;
  1995. bufQuo.U2 = d1.High;
  1996. do
  1997. {
  1998. int iCurScale = SearchScale(ref bufQuo, DEC_SCALE_MAX + scale);
  1999. if (iCurScale == 0)
  2000. break;
  2001. uint power = iCurScale >= MaxInt32Scale ? TenToPowerNine : s_powers10[iCurScale];
  2002. scale += iCurScale;
  2003. ulong tmp = UInt32x32To64(bufQuo.U0, power);
  2004. bufQuo.U0 = (uint)tmp;
  2005. tmp >>= 32;
  2006. bufQuo.High64 = tmp + bufQuo.High64 * power;
  2007. if (power != TenToPowerNine)
  2008. break;
  2009. }
  2010. while (scale < 0);
  2011. d1.Low64 = bufQuo.Low64;
  2012. d1.High = bufQuo.U2;
  2013. }
  2014. if (d1.High == 0)
  2015. {
  2016. Debug.Assert(d2.High == 0);
  2017. Debug.Assert(scale == 0);
  2018. d1.Low64 %= d2.Low64;
  2019. return;
  2020. }
  2021. else if ((d2.High | d2.Mid) == 0)
  2022. {
  2023. uint den = d2.Low;
  2024. ulong tmp = ((ulong)d1.High << 32) | d1.Mid;
  2025. tmp = ((tmp % den) << 32) | d1.Low;
  2026. d1.Low64 = tmp % den;
  2027. d1.High = 0;
  2028. }
  2029. else
  2030. {
  2031. VarDecModFull(ref d1, ref d2, scale);
  2032. return;
  2033. }
  2034. } while (scale < 0);
  2035. }
  2036. private static unsafe void VarDecModFull(ref DecCalc d1, ref DecCalc d2, int scale)
  2037. {
  2038. // Divisor has bits set in the upper 64 bits.
  2039. //
  2040. // Divisor must be fully normalized (shifted so bit 31 of the most significant uint is 1).
  2041. // Locate the MSB so we know how much to normalize by.
  2042. // The dividend will be shifted by the same amount so the quotient is not changed.
  2043. //
  2044. uint tmp = d2.High;
  2045. if (tmp == 0)
  2046. tmp = d2.Mid;
  2047. int shift = BitOps.LeadingZeroCount(tmp);
  2048. Buf28 b;
  2049. _ = &b; // workaround for CS0165
  2050. b.Buf24.Low64 = d1.Low64 << shift;
  2051. b.Buf24.Mid64 = (d1.Mid + ((ulong)d1.High << 32)) >> (32 - shift);
  2052. // The dividend might need to be scaled up to 221 significant bits.
  2053. // Maximum scaling is required when the divisor is 2^64 with scale 28 and is left shifted 31 bits
  2054. // and the dividend is decimal.MaxValue: (2^96 - 1) * 10^28 << 31 = 221 bits.
  2055. uint high = 3;
  2056. while (scale < 0)
  2057. {
  2058. uint power = scale <= -MaxInt32Scale ? TenToPowerNine : s_powers10[-scale];
  2059. uint* buf = (uint*)&b;
  2060. ulong tmp64 = UInt32x32To64(b.Buf24.U0, power);
  2061. b.Buf24.U0 = (uint)tmp64;
  2062. for (int i = 1; i <= high; i++)
  2063. {
  2064. tmp64 >>= 32;
  2065. tmp64 += UInt32x32To64(buf[i], power);
  2066. buf[i] = (uint)tmp64;
  2067. }
  2068. // The high bit of the dividend must not be set.
  2069. if (tmp64 > int.MaxValue)
  2070. {
  2071. Debug.Assert(high + 1 < b.Length);
  2072. buf[++high] = (uint)(tmp64 >> 32);
  2073. }
  2074. scale += MaxInt32Scale;
  2075. }
  2076. if (d2.High == 0)
  2077. {
  2078. ulong divisor = d2.Low64 << shift;
  2079. switch (high)
  2080. {
  2081. case 6:
  2082. Div96By64(ref *(Buf12*)&b.Buf24.U4, divisor);
  2083. goto case 5;
  2084. case 5:
  2085. Div96By64(ref *(Buf12*)&b.Buf24.U3, divisor);
  2086. goto case 4;
  2087. case 4:
  2088. Div96By64(ref *(Buf12*)&b.Buf24.U2, divisor);
  2089. break;
  2090. }
  2091. Div96By64(ref *(Buf12*)&b.Buf24.U1, divisor);
  2092. Div96By64(ref *(Buf12*)&b, divisor);
  2093. d1.Low64 = b.Buf24.Low64 >> shift;
  2094. d1.High = 0;
  2095. }
  2096. else
  2097. {
  2098. Buf12 bufDivisor;
  2099. _ = &bufDivisor; // workaround for CS0165
  2100. bufDivisor.Low64 = d2.Low64 << shift;
  2101. bufDivisor.U2 = (uint)((d2.Mid + ((ulong)d2.High << 32)) >> (32 - shift));
  2102. switch (high)
  2103. {
  2104. case 6:
  2105. Div128By96(ref *(Buf16*)&b.Buf24.U3, ref bufDivisor);
  2106. goto case 5;
  2107. case 5:
  2108. Div128By96(ref *(Buf16*)&b.Buf24.U2, ref bufDivisor);
  2109. goto case 4;
  2110. case 4:
  2111. Div128By96(ref *(Buf16*)&b.Buf24.U1, ref bufDivisor);
  2112. break;
  2113. }
  2114. Div128By96(ref *(Buf16*)&b, ref bufDivisor);
  2115. d1.Low64 = (b.Buf24.Low64 >> shift) + ((ulong)b.Buf24.U2 << (32 - shift) << 32);
  2116. d1.High = b.Buf24.U2 >> shift;
  2117. }
  2118. }
  2119. // Does an in-place round by the specified scale
  2120. internal static void InternalRound(ref DecCalc d, uint scale, MidpointRounding mode)
  2121. {
  2122. // the scale becomes the desired decimal count
  2123. d.uflags -= scale << ScaleShift;
  2124. uint remainder, sticky = 0, power;
  2125. // First divide the value by constant 10^9 up to three times
  2126. while (scale >= MaxInt32Scale)
  2127. {
  2128. scale -= MaxInt32Scale;
  2129. const uint divisor = TenToPowerNine;
  2130. uint n = d.uhi;
  2131. if (n == 0)
  2132. {
  2133. ulong tmp = d.Low64;
  2134. ulong div = tmp / divisor;
  2135. d.Low64 = div;
  2136. remainder = (uint)(tmp - div * divisor);
  2137. }
  2138. else
  2139. {
  2140. uint q;
  2141. d.uhi = q = n / divisor;
  2142. remainder = n - q * divisor;
  2143. n = d.umid;
  2144. if ((n | remainder) != 0)
  2145. {
  2146. d.umid = q = (uint)((((ulong)remainder << 32) | n) / divisor);
  2147. remainder = n - q * divisor;
  2148. }
  2149. n = d.ulo;
  2150. if ((n | remainder) != 0)
  2151. {
  2152. d.ulo = q = (uint)((((ulong)remainder << 32) | n) / divisor);
  2153. remainder = n - q * divisor;
  2154. }
  2155. }
  2156. power = divisor;
  2157. if (scale == 0)
  2158. goto checkRemainder;
  2159. sticky |= remainder;
  2160. }
  2161. {
  2162. power = s_powers10[scale];
  2163. // TODO: https://github.com/dotnet/coreclr/issues/3439
  2164. uint n = d.uhi;
  2165. if (n == 0)
  2166. {
  2167. ulong tmp = d.Low64;
  2168. if (tmp == 0)
  2169. {
  2170. if (mode <= MidpointRounding.ToZero)
  2171. goto done;
  2172. remainder = 0;
  2173. goto checkRemainder;
  2174. }
  2175. ulong div = tmp / power;
  2176. d.Low64 = div;
  2177. remainder = (uint)(tmp - div * power);
  2178. }
  2179. else
  2180. {
  2181. uint q;
  2182. d.uhi = q = n / power;
  2183. remainder = n - q * power;
  2184. n = d.umid;
  2185. if ((n | remainder) != 0)
  2186. {
  2187. d.umid = q = (uint)((((ulong)remainder << 32) | n) / power);
  2188. remainder = n - q * power;
  2189. }
  2190. n = d.ulo;
  2191. if ((n | remainder) != 0)
  2192. {
  2193. d.ulo = q = (uint)((((ulong)remainder << 32) | n) / power);
  2194. remainder = n - q * power;
  2195. }
  2196. }
  2197. }
  2198. checkRemainder:
  2199. if (mode == MidpointRounding.ToZero)
  2200. goto done;
  2201. else if (mode == MidpointRounding.ToEven)
  2202. {
  2203. // To do IEEE rounding, we add LSB of result to sticky bits so either causes round up if remainder * 2 == last divisor.
  2204. remainder <<= 1;
  2205. if ((sticky | d.ulo & 1) != 0)
  2206. remainder++;
  2207. if (power >= remainder)
  2208. goto done;
  2209. }
  2210. else if (mode == MidpointRounding.AwayFromZero)
  2211. {
  2212. // Round away from zero at the mid point.
  2213. remainder <<= 1;
  2214. if (power > remainder)
  2215. goto done;
  2216. }
  2217. else if (mode == MidpointRounding.ToNegativeInfinity)
  2218. {
  2219. // Round toward -infinity if we have chopped off a non-zero amount from a negative value.
  2220. if ((remainder | sticky) == 0 || !d.IsNegative)
  2221. goto done;
  2222. }
  2223. else
  2224. {
  2225. Debug.Assert(mode == MidpointRounding.ToPositiveInfinity);
  2226. // Round toward infinity if we have chopped off a non-zero amount from a positive value.
  2227. if ((remainder | sticky) == 0 || d.IsNegative)
  2228. goto done;
  2229. }
  2230. if (++d.Low64 == 0)
  2231. d.uhi++;
  2232. done:
  2233. return;
  2234. }
  2235. internal static uint DecDivMod1E9(ref DecCalc value)
  2236. {
  2237. ulong high64 = ((ulong)value.uhi << 32) + value.umid;
  2238. ulong div64 = high64 / TenToPowerNine;
  2239. value.uhi = (uint)(div64 >> 32);
  2240. value.umid = (uint)div64;
  2241. ulong num = ((high64 - (uint)div64 * TenToPowerNine) << 32) + value.ulo;
  2242. uint div = (uint)(num / TenToPowerNine);
  2243. value.ulo = div;
  2244. return (uint)num - div * TenToPowerNine;
  2245. }
  2246. struct PowerOvfl
  2247. {
  2248. public readonly uint Hi;
  2249. public readonly ulong MidLo;
  2250. public PowerOvfl(uint hi, uint mid, uint lo)
  2251. {
  2252. Hi = hi;
  2253. MidLo = ((ulong)mid << 32) + lo;
  2254. }
  2255. }
  2256. static readonly PowerOvfl[] PowerOvflValues = new[]
  2257. {
  2258. // This is a table of the largest values that can be in the upper two
  2259. // uints of a 96-bit number that will not overflow when multiplied
  2260. // by a given power. For the upper word, this is a table of
  2261. // 2^32 / 10^n for 1 <= n <= 8. For the lower word, this is the
  2262. // remaining fraction part * 2^32. 2^32 = 4294967296.
  2263. //
  2264. new PowerOvfl(429496729, 2576980377, 2576980377), // 10^1 remainder 0.6
  2265. new PowerOvfl(42949672, 4123168604, 687194767), // 10^2 remainder 0.16
  2266. new PowerOvfl(4294967, 1271310319, 2645699854), // 10^3 remainder 0.616
  2267. new PowerOvfl(429496, 3133608139, 694066715), // 10^4 remainder 0.1616
  2268. new PowerOvfl(42949, 2890341191, 2216890319), // 10^5 remainder 0.51616
  2269. new PowerOvfl(4294, 4154504685, 2369172679), // 10^6 remainder 0.551616
  2270. new PowerOvfl(429, 2133437386, 4102387834), // 10^7 remainder 0.9551616
  2271. new PowerOvfl(42, 4078814305, 410238783), // 10^8 remainder 0.09991616
  2272. };
  2273. [StructLayout(LayoutKind.Explicit)]
  2274. private struct Buf12
  2275. {
  2276. [FieldOffset(0 * 4)]
  2277. public uint U0;
  2278. [FieldOffset(1 * 4)]
  2279. public uint U1;
  2280. [FieldOffset(2 * 4)]
  2281. public uint U2;
  2282. [FieldOffset(0)]
  2283. private ulong ulo64LE;
  2284. [FieldOffset(4)]
  2285. private ulong uhigh64LE;
  2286. public ulong Low64
  2287. {
  2288. #if BIGENDIAN
  2289. get => ((ulong)U1 << 32) | U0;
  2290. set { U1 = (uint)(value >> 32); U0 = (uint)value; }
  2291. #else
  2292. get => ulo64LE;
  2293. set => ulo64LE = value;
  2294. #endif
  2295. }
  2296. /// <summary>
  2297. /// U1-U2 combined (overlaps with Low64)
  2298. /// </summary>
  2299. public ulong High64
  2300. {
  2301. #if BIGENDIAN
  2302. get => ((ulong)U2 << 32) | U1;
  2303. set { U2 = (uint)(value >> 32); U1 = (uint)value; }
  2304. #else
  2305. get => uhigh64LE;
  2306. set => uhigh64LE = value;
  2307. #endif
  2308. }
  2309. }
  2310. [StructLayout(LayoutKind.Explicit)]
  2311. private struct Buf16
  2312. {
  2313. [FieldOffset(0 * 4)]
  2314. public uint U0;
  2315. [FieldOffset(1 * 4)]
  2316. public uint U1;
  2317. [FieldOffset(2 * 4)]
  2318. public uint U2;
  2319. [FieldOffset(3 * 4)]
  2320. public uint U3;
  2321. [FieldOffset(0 * 8)]
  2322. private ulong ulo64LE;
  2323. [FieldOffset(1 * 8)]
  2324. private ulong uhigh64LE;
  2325. public ulong Low64
  2326. {
  2327. #if BIGENDIAN
  2328. get => ((ulong)U1 << 32) | U0;
  2329. set { U1 = (uint)(value >> 32); U0 = (uint)value; }
  2330. #else
  2331. get => ulo64LE;
  2332. set => ulo64LE = value;
  2333. #endif
  2334. }
  2335. public ulong High64
  2336. {
  2337. #if BIGENDIAN
  2338. get => ((ulong)U3 << 32) | U2;
  2339. set { U3 = (uint)(value >> 32); U2 = (uint)value; }
  2340. #else
  2341. get => uhigh64LE;
  2342. set => uhigh64LE = value;
  2343. #endif
  2344. }
  2345. }
  2346. [StructLayout(LayoutKind.Explicit)]
  2347. private struct Buf24
  2348. {
  2349. [FieldOffset(0 * 4)]
  2350. public uint U0;
  2351. [FieldOffset(1 * 4)]
  2352. public uint U1;
  2353. [FieldOffset(2 * 4)]
  2354. public uint U2;
  2355. [FieldOffset(3 * 4)]
  2356. public uint U3;
  2357. [FieldOffset(4 * 4)]
  2358. public uint U4;
  2359. [FieldOffset(5 * 4)]
  2360. public uint U5;
  2361. [FieldOffset(0 * 8)]
  2362. private ulong ulo64LE;
  2363. [FieldOffset(1 * 8)]
  2364. private ulong umid64LE;
  2365. [FieldOffset(2 * 8)]
  2366. private ulong uhigh64LE;
  2367. public ulong Low64
  2368. {
  2369. #if BIGENDIAN
  2370. get => ((ulong)U1 << 32) | U0;
  2371. set { U1 = (uint)(value >> 32); U0 = (uint)value; }
  2372. #else
  2373. get => ulo64LE;
  2374. set => ulo64LE = value;
  2375. #endif
  2376. }
  2377. public ulong Mid64
  2378. {
  2379. #if BIGENDIAN
  2380. get => ((ulong)U3 << 32) | U2;
  2381. set { U3 = (uint)(value >> 32); U2 = (uint)value; }
  2382. #else
  2383. get => umid64LE;
  2384. set => umid64LE = value;
  2385. #endif
  2386. }
  2387. public ulong High64
  2388. {
  2389. #if BIGENDIAN
  2390. get => ((ulong)U5 << 32) | U4;
  2391. set { U5 = (uint)(value >> 32); U4 = (uint)value; }
  2392. #else
  2393. get => uhigh64LE;
  2394. set => uhigh64LE = value;
  2395. #endif
  2396. }
  2397. public int Length => 6;
  2398. }
  2399. private struct Buf28
  2400. {
  2401. public Buf24 Buf24;
  2402. public uint U6;
  2403. public int Length => 7;
  2404. }
  2405. }
  2406. }
  2407. }