| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156 |
- // Licensed to the .NET Foundation under one or more agreements.
- // The .NET Foundation licenses this file to you under the MIT license.
- // See the LICENSE file in the project root for more information.
- using System.Diagnostics;
- namespace System
- {
- internal static partial class Number
- {
- // This is a port of the `DiyFp` implementation here: https://github.com/google/double-conversion/blob/a711666ddd063eb1e4b181a6cb981d39a1fc8bac/double-conversion/diy-fp.h
- // The backing structure and how it is used is described in more detail here: http://www.cs.tufts.edu/~nr/cs257/archive/florian-loitsch/printf.pdf
- // This "Do It Yourself Floating Point" class implements a floating-point number with a ulong significand and an int exponent.
- // Normalized DiyFp numbers will have the most significant bit of the significand set.
- // Multiplication and Subtraction do not normalize their results.
- // DiyFp are not designed to contain special doubles (NaN and Infinity).
- internal readonly ref struct DiyFp
- {
- public const int DoubleImplicitBitIndex = 52;
- public const int SingleImplicitBitIndex = 23;
- public const int SignificandSize = 64;
- public readonly ulong f;
- public readonly int e;
- // Computes the two boundaries of value.
- //
- // The bigger boundary (mPlus) is normalized.
- // The lower boundary has the same exponent as mPlus.
- //
- // Precondition:
- // The value encoded by value must be greater than 0.
- public static DiyFp CreateAndGetBoundaries(double value, out DiyFp mMinus, out DiyFp mPlus)
- {
- var result = new DiyFp(value);
- result.GetBoundaries(DoubleImplicitBitIndex, out mMinus, out mPlus);
- return result;
- }
- // Computes the two boundaries of value.
- //
- // The bigger boundary (mPlus) is normalized.
- // The lower boundary has the same exponent as mPlus.
- //
- // Precondition:
- // The value encoded by value must be greater than 0.
- public static DiyFp CreateAndGetBoundaries(float value, out DiyFp mMinus, out DiyFp mPlus)
- {
- var result = new DiyFp(value);
- result.GetBoundaries(SingleImplicitBitIndex, out mMinus, out mPlus);
- return result;
- }
- public DiyFp(double value)
- {
- Debug.Assert(double.IsFinite(value));
- Debug.Assert(value > 0.0);
- f = ExtractFractionAndBiasedExponent(value, out e);
- }
- public DiyFp(float value)
- {
- Debug.Assert(float.IsFinite(value));
- Debug.Assert(value > 0.0f);
- f = ExtractFractionAndBiasedExponent(value, out e);
- }
- public DiyFp(ulong f, int e)
- {
- this.f = f;
- this.e = e;
- }
- public DiyFp Multiply(in DiyFp other)
- {
- // Simply "emulates" a 128-bit multiplication
- //
- // However: the resulting number only contains 64-bits. The least
- // signficant 64-bits are only used for rounding the most significant
- // 64-bits.
- uint a = (uint)(f >> 32);
- uint b = (uint)(f);
- uint c = (uint)(other.f >> 32);
- uint d = (uint)(other.f);
- ulong ac = ((ulong)(a) * c);
- ulong bc = ((ulong)(b) * c);
- ulong ad = ((ulong)(a) * d);
- ulong bd = ((ulong)(b) * d);
- ulong tmp = (bd >> 32) + (uint)(ad) + (uint)(bc);
- // By adding (1UL << 31) to tmp, we round the final result.
- // Halfway cases will be rounded up.
- tmp += (1U << 31);
- return new DiyFp((ac + (ad >> 32) + (bc >> 32) + (tmp >> 32)), (e + other.e + SignificandSize));
- }
- public DiyFp Normalize()
- {
- // This method is mainly called for normalizing boundaries.
- //
- // We deviate from the reference implementation by just using
- // our LeadingZeroCount function so that we only need to shift
- // and subtract once.
- Debug.Assert(f != 0);
- int lzcnt = BitOps.LeadingZeroCount(f);
- return new DiyFp((f << lzcnt), (e - lzcnt));
- }
- // The exponents of both numbers must be the same.
- // The significand of 'this' must be bigger than the significand of 'other'.
- // The result will not be normalized.
- public DiyFp Subtract(in DiyFp other)
- {
- Debug.Assert(e == other.e);
- Debug.Assert(f >= other.f);
- return new DiyFp((f - other.f), e);
- }
- private void GetBoundaries(int implicitBitIndex, out DiyFp mMinus, out DiyFp mPlus)
- {
- mPlus = new DiyFp(((f << 1) + 1), (e - 1)).Normalize();
- // The boundary is closer if the sigificand is of the form:
- // f == 2^p-1
- //
- // Think of v = 1000e10 and v- = 9999e9
- // Then the boundary == (v - v-) / 2 is not just at a distance of 1e9 but at a distance of 1e8.
- // The only exception is for the smallest normal, where the largest denormal is at the same distance as its successor.
- //
- // Note: denormals have the same exponent as the smallest normals.
- // We deviate from the reference implementation by just checking if the significand has only the implicit bit set.
- // In this scenario, we know that all the explicit bits are 0 and that the unbiased exponent is non-zero.
- if (f == (1UL << implicitBitIndex))
- {
- mMinus = new DiyFp(((f << 2) - 1), (e - 2));
- }
- else
- {
- mMinus = new DiyFp(((f << 1) - 1), (e - 1));
- }
- mMinus = new DiyFp((mMinus.f << (mMinus.e - mPlus.e)), mPlus.e);
- }
- }
- }
- }
|