| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054 |
- // Licensed to the .NET Foundation under one or more agreements.
- // The .NET Foundation licenses this file to you under the MIT license.
- // See the LICENSE file in the project root for more information.
- using System.Diagnostics;
- namespace System
- {
- internal static partial class Number
- {
- // This is a port of the `Grisu3` implementation here: https://github.com/google/double-conversion/blob/a711666ddd063eb1e4b181a6cb981d39a1fc8bac/double-conversion/fast-dtoa.cc
- // The backing algorithm and the proofs behind it are described in more detail here: http://www.cs.tufts.edu/~nr/cs257/archive/florian-loitsch/printf.pdf
- // ========================================================================================================================================
- //
- // Overview:
- //
- // The general idea behind Grisu3 is to leverage additional bits and cached powers of ten to generate the correct digits.
- // The algorithm is imprecise for some numbers. Fortunately, the algorithm itself can determine this scenario and gives us
- // a result indicating success or failure. We must fallback to a different algorithm for the failing scenario.
- internal static class Grisu3
- {
- private const int CachedPowersDecimalExponentDistance = 8;
- private const int CachedPowersMinDecimalExponent = -348;
- private const int CachedPowersPowerMaxDecimalExponent = 340;
- private const int CachedPowersOffset = -CachedPowersMinDecimalExponent;
- // 1 / Log2(10)
- private const double D1Log210 = 0.301029995663981195;
- // The minimal and maximal target exponents define the range of w's binary exponent,
- // where w is the result of multiplying the input by a cached power of ten.
- //
- // A different range might be chosen on a different platform, to optimize digit generation,
- // but a smaller range requires more powers of ten to be cached.
- private const int MaximalTargetExponent = -32;
- private const int MinimalTargetExponent = -60;
- private static readonly short[] s_CachedPowersBinaryExponent = new short[]
- {
- -1220,
- -1193,
- -1166,
- -1140,
- -1113,
- -1087,
- -1060,
- -1034,
- -1007,
- -980,
- -954,
- -927,
- -901,
- -874,
- -847,
- -821,
- -794,
- -768,
- -741,
- -715,
- -688,
- -661,
- -635,
- -608,
- -582,
- -555,
- -529,
- -502,
- -475,
- -449,
- -422,
- -396,
- -369,
- -343,
- -316,
- -289,
- -263,
- -236,
- -210,
- -183,
- -157,
- -130,
- -103,
- -77,
- -50,
- -24,
- 3,
- 30,
- 56,
- 83,
- 109,
- 136,
- 162,
- 189,
- 216,
- 242,
- 269,
- 295,
- 322,
- 348,
- 375,
- 402,
- 428,
- 455,
- 481,
- 508,
- 534,
- 561,
- 588,
- 614,
- 641,
- 667,
- 694,
- 720,
- 747,
- 774,
- 800,
- 827,
- 853,
- 880,
- 907,
- 933,
- 960,
- 986,
- 1013,
- 1039,
- 1066,
- };
- private static readonly short[] s_CachedPowersDecimalExponent = new short[]
- {
- CachedPowersMinDecimalExponent,
- -340,
- -332,
- -324,
- -316,
- -308,
- -300,
- -292,
- -284,
- -276,
- -268,
- -260,
- -252,
- -244,
- -236,
- -228,
- -220,
- -212,
- -204,
- -196,
- -188,
- -180,
- -172,
- -164,
- -156,
- -148,
- -140,
- -132,
- -124,
- -116,
- -108,
- -100,
- -92,
- -84,
- -76,
- -68,
- -60,
- -52,
- -44,
- -36,
- -28,
- -20,
- -12,
- -4,
- 4,
- 12,
- 20,
- 28,
- 36,
- 44,
- 52,
- 60,
- 68,
- 76,
- 84,
- 92,
- 100,
- 108,
- 116,
- 124,
- 132,
- 140,
- 148,
- 156,
- 164,
- 172,
- 180,
- 188,
- 196,
- 204,
- 212,
- 220,
- 228,
- 236,
- 244,
- 252,
- 260,
- 268,
- 276,
- 284,
- 292,
- 300,
- 308,
- 316,
- 324,
- 332,
- CachedPowersPowerMaxDecimalExponent,
- };
- private static readonly ulong[] s_CachedPowersSignificand = new ulong[]
- {
- 0xFA8FD5A0081C0288,
- 0xBAAEE17FA23EBF76,
- 0x8B16FB203055AC76,
- 0xCF42894A5DCE35EA,
- 0x9A6BB0AA55653B2D,
- 0xE61ACF033D1A45DF,
- 0xAB70FE17C79AC6CA,
- 0xFF77B1FCBEBCDC4F,
- 0xBE5691EF416BD60C,
- 0x8DD01FAD907FFC3C,
- 0xD3515C2831559A83,
- 0x9D71AC8FADA6C9B5,
- 0xEA9C227723EE8BCB,
- 0xAECC49914078536D,
- 0x823C12795DB6CE57,
- 0xC21094364DFB5637,
- 0x9096EA6F3848984F,
- 0xD77485CB25823AC7,
- 0xA086CFCD97BF97F4,
- 0xEF340A98172AACE5,
- 0xB23867FB2A35B28E,
- 0x84C8D4DFD2C63F3B,
- 0xC5DD44271AD3CDBA,
- 0x936B9FCEBB25C996,
- 0xDBAC6C247D62A584,
- 0xA3AB66580D5FDAF6,
- 0xF3E2F893DEC3F126,
- 0xB5B5ADA8AAFF80B8,
- 0x87625F056C7C4A8B,
- 0xC9BCFF6034C13053,
- 0x964E858C91BA2655,
- 0xDFF9772470297EBD,
- 0xA6DFBD9FB8E5B88F,
- 0xF8A95FCF88747D94,
- 0xB94470938FA89BCF,
- 0x8A08F0F8BF0F156B,
- 0xCDB02555653131B6,
- 0x993FE2C6D07B7FAC,
- 0xE45C10C42A2B3B06,
- 0xAA242499697392D3,
- 0xFD87B5F28300CA0E,
- 0xBCE5086492111AEB,
- 0x8CBCCC096F5088CC,
- 0xD1B71758E219652C,
- 0x9C40000000000000,
- 0xE8D4A51000000000,
- 0xAD78EBC5AC620000,
- 0x813F3978F8940984,
- 0xC097CE7BC90715B3,
- 0x8F7E32CE7BEA5C70,
- 0xD5D238A4ABE98068,
- 0x9F4F2726179A2245,
- 0xED63A231D4C4FB27,
- 0xB0DE65388CC8ADA8,
- 0x83C7088E1AAB65DB,
- 0xC45D1DF942711D9A,
- 0x924D692CA61BE758,
- 0xDA01EE641A708DEA,
- 0xA26DA3999AEF774A,
- 0xF209787BB47D6B85,
- 0xB454E4A179DD1877,
- 0x865B86925B9BC5C2,
- 0xC83553C5C8965D3D,
- 0x952AB45CFA97A0B3,
- 0xDE469FBD99A05FE3,
- 0xA59BC234DB398C25,
- 0xF6C69A72A3989F5C,
- 0xB7DCBF5354E9BECE,
- 0x88FCF317F22241E2,
- 0xCC20CE9BD35C78A5,
- 0x98165AF37B2153DF,
- 0xE2A0B5DC971F303A,
- 0xA8D9D1535CE3B396,
- 0xFB9B7CD9A4A7443C,
- 0xBB764C4CA7A44410,
- 0x8BAB8EEFB6409C1A,
- 0xD01FEF10A657842C,
- 0x9B10A4E5E9913129,
- 0xE7109BFBA19C0C9D,
- 0xAC2820D9623BF429,
- 0x80444B5E7AA7CF85,
- 0xBF21E44003ACDD2D,
- 0x8E679C2F5E44FF8F,
- 0xD433179D9C8CB841,
- 0x9E19DB92B4E31BA9,
- 0xEB96BF6EBADF77D9,
- 0xAF87023B9BF0EE6B,
- };
- private static readonly uint[] s_SmallPowersOfTen = new uint[]
- {
- 1, // 10^0
- 10, // 10^1
- 100, // 10^2
- 1000, // 10^3
- 10000, // 10^4
- 100000, // 10^5
- 1000000, // 10^6
- 10000000, // 10^7
- 100000000, // 10^8
- 1000000000, // 10^9
- };
- public static bool TryRunDouble(double value, int requestedDigits, ref NumberBuffer number)
- {
- double v = double.IsNegative(value) ? -value : value;
- Debug.Assert(v > 0);
- Debug.Assert(double.IsFinite(v));
- int length = 0;
- int decimalExponent = 0;
- bool result = false;
- if (requestedDigits == -1)
- {
- DiyFp w = DiyFp.CreateAndGetBoundaries(v, out DiyFp boundaryMinus, out DiyFp boundaryPlus).Normalize();
- result = TryRunShortest(in boundaryMinus, in w, in boundaryPlus, number.Digits, out length, out decimalExponent);
- }
- else
- {
- DiyFp w = new DiyFp(v).Normalize();
- result = TryRunCounted(in w, requestedDigits, number.Digits, out length, out decimalExponent);
- }
- if (result)
- {
- Debug.Assert((requestedDigits == -1) || (length == requestedDigits));
- number.Scale = length + decimalExponent;
- number.Digits[length] = (byte)('\0');
- number.DigitsCount = length;
- }
- return result;
- }
- public static bool TryRunSingle(float value, int requestedDigits, ref NumberBuffer number)
- {
- float v = float.IsNegative(value) ? -value : value;
- Debug.Assert(v > 0);
- Debug.Assert(float.IsFinite(v));
- int length = 0;
- int decimalExponent = 0;
- bool result = false;
- if (requestedDigits == -1)
- {
- DiyFp w = DiyFp.CreateAndGetBoundaries(v, out DiyFp boundaryMinus, out DiyFp boundaryPlus).Normalize();
- result = TryRunShortest(in boundaryMinus, in w, in boundaryPlus, number.Digits, out length, out decimalExponent);
- }
- else
- {
- DiyFp w = new DiyFp(v).Normalize();
- result = TryRunCounted(in w, requestedDigits, number.Digits, out length, out decimalExponent);
- }
- if (result)
- {
- Debug.Assert((requestedDigits == -1) || (length == requestedDigits));
- number.Scale = length + decimalExponent;
- number.Digits[length] = (byte)('\0');
- number.DigitsCount = length;
- }
- return result;
- }
- // The counted version of Grisu3 only generates requestedDigits number of digits.
- // This version does not generate the shortest representation, and with enough requested digits 0.1 will at some point print as 0.9999999...
- // Grisu3 is too imprecise for real halfway cases (1.5 will not work) and therefore the rounding strategy for halfway cases is irrelevant.
- private static bool TryRunCounted(in DiyFp w, int requestedDigits, Span<byte> buffer, out int length, out int decimalExponent)
- {
- Debug.Assert(requestedDigits > 0);
- int tenMkMinimalBinaryExponent = MinimalTargetExponent - (w.e + DiyFp.SignificandSize);
- int tenMkMaximalBinaryExponent = MaximalTargetExponent - (w.e + DiyFp.SignificandSize);
- DiyFp tenMk = GetCachedPowerForBinaryExponentRange(tenMkMinimalBinaryExponent, tenMkMaximalBinaryExponent, out int mk);
- Debug.Assert(MinimalTargetExponent <= (w.e + tenMk.e + DiyFp.SignificandSize));
- Debug.Assert(MaximalTargetExponent >= (w.e + tenMk.e + DiyFp.SignificandSize));
- // Note that tenMk is only an approximation of 10^-k.
- // A DiyFp only contains a 64-bit significand and tenMk is thus only precise up to 64-bits.
- // The DiyFp.Multiply procedure rounds its result and tenMk is approximated too.
- // The variable scaledW (as well as scaledBoundaryMinus/Plus) are now off by a small amount.
- //
- // In fact, scaledW - (w * 10^k) < 1ulp (unit in last place) of scaledW.
- // In other words, let f = scaledW.f and e = scaledW.e, then:
- // (f - 1) * 2^e < (w * 10^k) < (f + 1) * 2^e
- DiyFp scaledW = w.Multiply(in tenMk);
- // We now have (double)(scaledW * 10^-mk).
- //
- // DigitGenCounted will generate the first requestedDigits of scaledW and return together with a kappa such that:
- // scaledW ~= buffer * 10^kappa.
- //
- // It will not always be exactly the same since DigitGenCounted only produces a limited number of digits.
- bool result = TryDigitGenCounted(in scaledW, requestedDigits, buffer, out length, out int kappa);
- decimalExponent = -mk + kappa;
- return result;
- }
- // Provides a decimal representation of v.
- // Returns true if it succeeds; otherwise, the result cannot be trusted.
- //
- // There will be length digits inside the buffer (not null-terminated).
- // If the function returns true then:
- // v == (double)(buffer * 10^decimalExponent)
- //
- // The digits in the buffer are the shortest represenation possible (no 0.09999999999999999 instead of 0.1).
- // The shorter representation will even be chosen if the longer one would be closer to v.
- //
- // The last digit will be closest to the actual v.
- // That is, even if several digits might correctly yield 'v' when read again, the closest will be computed.
- private static bool TryRunShortest(in DiyFp boundaryMinus, in DiyFp w, in DiyFp boundaryPlus, Span<byte> buffer, out int length, out int decimalExponent)
- {
- // boundaryMinus and boundaryPlus are the boundaries between v and its closest floating-point neighbors.
- // Any number strictly between boundaryMinus and boundaryPlus will round to v when converted to a double.
- // Grisu3 will never output representations that lie exactly on a boundary.
- Debug.Assert(boundaryPlus.e == w.e);
- int tenMkMinimalBinaryExponent = MinimalTargetExponent - (w.e + DiyFp.SignificandSize);
- int tenMkMaximalBinaryExponent = MaximalTargetExponent - (w.e + DiyFp.SignificandSize);
- DiyFp tenMk = GetCachedPowerForBinaryExponentRange(tenMkMinimalBinaryExponent, tenMkMaximalBinaryExponent, out int mk);
- Debug.Assert(MinimalTargetExponent <= (w.e + tenMk.e + DiyFp.SignificandSize));
- Debug.Assert(MaximalTargetExponent >= (w.e + tenMk.e + DiyFp.SignificandSize));
- // Note that tenMk is only an approximation of 10^-k.
- // A DiyFp only contains a 64-bit significan and tenMk is thus only precise up to 64-bits.
- // The DiyFp.Multiply procedure rounds its result and tenMk is approximated too.
- // The variable scaledW (as well as scaledBoundaryMinus/Plus) are now off by a small amount.
- //
- // In fact, scaledW - (w * 10^k) < 1ulp (unit in last place) of scaledW.
- // In other words, let f = scaledW.f and e = scaledW.e, then:
- // (f - 1) * 2^e < (w * 10^k) < (f + 1) * 2^e
- DiyFp scaledW = w.Multiply(in tenMk);
- Debug.Assert(scaledW.e == (boundaryPlus.e + tenMk.e + DiyFp.SignificandSize));
- // In theory, it would be possible to avoid some recomputations by computing the difference between w
- // and boundaryMinus/Plus (a power of 2) and to compute scaledBoundaryMinus/Plus by subtracting/adding
- // from scaledW. However, the code becomes much less readable and the speed enhancements are not terrific.
- DiyFp scaledBoundaryMinus = boundaryMinus.Multiply(in tenMk);
- DiyFp scaledBoundaryPlus = boundaryPlus.Multiply(in tenMk);
- // DigitGen will generate the digits of scaledW. Therefore, we have:
- // v == (double)(scaledW * 10^-mk)
- //
- // Set decimalExponent == -mk and pass it to DigitGen and if scaledW is not an integer than it will be updated.
- // For instance, if scaledW == 1.23 then the buffer will be filled with "123" and the decimalExponent will be decreased by 2.
- bool result = TryDigitGenShortest(in scaledBoundaryMinus, in scaledW, in scaledBoundaryPlus, buffer, out length, out int kappa);
- decimalExponent = -mk + kappa;
- return result;
- }
- // Returns the biggest power of ten that is less than or equal to the given number.
- // We furthermore receive the maximum number of bits 'number' has.
- //
- // Returns power == 10^(exponent) such that
- // power <= number < power * 10
- // If numberBits == 0, then 0^(0-1) is returned.
- // The number of bits must be <= 32.
- //
- // Preconditions:
- // number < (1 << (numberBits + 1))
- private static uint BiggestPowerTen(uint number, int numberBits, out int exponentPlusOne)
- {
- // Inspired by the method for finding an integer log base 10 from here:
- // http://graphics.stanford.edu/~seander/bithacks.html#IntegerLog10
- Debug.Assert(number < (1U << (numberBits + 1)));
- // 1233/4096 is approximately 1/log2(10)
- int exponentGuess = ((numberBits + 1) * 1233) >> 12;
- Debug.Assert((uint)(exponentGuess) < s_SmallPowersOfTen.Length);
- uint power = s_SmallPowersOfTen[exponentGuess];
- // We don't have any guarantees that 2^numberBits <= number
- if (number < power)
- {
- exponentGuess -= 1;
- power = s_SmallPowersOfTen[exponentGuess];
- }
- exponentPlusOne = exponentGuess + 1;
- return power;
- }
- // Generates (at most) requestedDigits of input number w.
- //
- // w is a floating-point number (DiyFp), consisting of a significand and an exponent.
- // Its exponent is bounded by MinimalTargetExponent and MaximalTargetExponent, hence:
- // -60 <= w.e <= -32
- //
- // Returns false if it fails, in which case the generated digits in the buffer should not be used.
- //
- // Preconditions:
- // w is correct up to 1 ulp (unit in last place). That is, its error must be strictly less than a unit of its last digit.
- // MinimalTargetExponent <= w.e <= MaximalTargetExponent
- //
- // Postconditions:
- // Returns false if the procedure fails; otherwise:
- // * buffer is not null-terminated, but length contains the number of digits.
- // * The representation in buffer is the most precise representation of requestedDigits digits.
- // * buffer contains at most requestedDigits digits of w. If there are less than requestedDigits digits then some trailing '0's have been removed.
- // * kappa is such that w = buffer * 10^kappa + eps with |eps| < 10^kappa / 2.
- //
- // This procedure takes into account the imprecision of its input numbers.
- // If the precision is not enough to guarantee all the postconditions, then false is returned.
- // This usually happens rarely, but the failure-rate increases with higher requestedDigits
- private static bool TryDigitGenCounted(in DiyFp w, int requestedDigits, Span<byte> buffer, out int length, out int kappa)
- {
- Debug.Assert(MinimalTargetExponent <= w.e);
- Debug.Assert(w.e <= MaximalTargetExponent);
- Debug.Assert(MinimalTargetExponent >= -60);
- Debug.Assert(MaximalTargetExponent <= -32);
- // w is assumed to have an error less than 1 unit.
- // Whenever w is scaled we also scale its error.
- ulong wError = 1;
- // We cut the input number into two parts: the integral digits and the fractional digits.
- // We don't emit any decimal separator, but adapt kapp instead.
- // For example: instead of writing "1.2", we put "12" into the buffer and increase kappa by 1.
- var one = new DiyFp((1UL << -w.e), w.e);
- // Division by one is a shift.
- uint integrals = (uint)(w.f >> -one.e);
- // Modulo by one is an and.
- ulong fractionals = w.f & (one.f - 1);
- // We deviate from the original algorithm here and do some early checks to determine if we can satisfy requestedDigits.
- // If we determine that we can't, we exit early and avoid most of the heavy lifting that the algorithm otherwise does.
- //
- // When fractionals is zero, we can easily determine if integrals can satisfy requested digits:
- // If requestedDigits >= 11, integrals is not able to exhaust the count by itself since 10^(11 -1) > uint.MaxValue >= integrals.
- // If integrals < 10^(requestedDigits - 1), integrals cannot exhaust the count.
- // Otherwise, integrals might be able to exhaust the count and we need to execute the rest of the code.
- if ((fractionals == 0) && ((requestedDigits >= 11) || (integrals < s_SmallPowersOfTen[requestedDigits - 1])))
- {
- Debug.Assert(buffer[0] == '\0');
- length = 0;
- kappa = 0;
- return false;
- }
- uint divisor = BiggestPowerTen(integrals, (DiyFp.SignificandSize - (-one.e)), out kappa);
- length = 0;
- // Loop invariant:
- // buffer = w / 10^kappa (integer division)
- // These invariants hold for the first iteration:
- // kappa has been initialized with the divisor exponent + 1
- // The divisor is the biggest power of ten that is smaller than integrals
- while (kappa > 0)
- {
- uint digit = Math.DivRem(integrals, divisor, out integrals);
- Debug.Assert(digit <= 9);
- buffer[length] = (byte)('0' + digit);
- length++;
- requestedDigits--;
- kappa--;
- // Note that kappa now equals the exponent of the
- // divisor and that the invariant thus holds again.
- if (requestedDigits == 0)
- {
- break;
- }
- divisor /= 10;
- }
- if (requestedDigits == 0)
- {
- ulong rest = ((ulong)(integrals) << -one.e) + fractionals;
- return TryRoundWeedCounted(
- buffer,
- length,
- rest,
- tenKappa: ((ulong)(divisor)) << -one.e,
- unit: wError,
- ref kappa
- );
- }
- // The integrals have been generated and we are at the point of the decimal separator.
- // In the following loop, we simply multiply the remaining digits by 10 and divide by one.
- // We just need to pay attention to multiply associated data (the unit), too.
- // Note that the multiplication by 10 does not overflow because:
- // w.e >= -60 and thus one.e >= -60
- Debug.Assert(one.e >= MinimalTargetExponent);
- Debug.Assert(fractionals < one.f);
- Debug.Assert((ulong.MaxValue / 10) >= one.f);
- while ((requestedDigits > 0) && (fractionals > wError))
- {
- fractionals *= 10;
- wError *= 10;
- // Integer division by one.
- uint digit = (uint)(fractionals >> -one.e);
- Debug.Assert(digit <= 9);
- buffer[length] = (byte)('0' + digit);
- length++;
- requestedDigits--;
- kappa--;
- // Modulo by one.
- fractionals &= (one.f - 1);
- }
- if (requestedDigits != 0)
- {
- buffer[0] = (byte)('\0');
- length = 0;
- kappa = 0;
- return false;
- }
- return TryRoundWeedCounted(
- buffer,
- length,
- rest: fractionals,
- tenKappa: one.f,
- unit: wError,
- ref kappa
- );
- }
- // Generates the digits of input number w.
- //
- // w is a floating-point number (DiyFp), consisting of a significand and an exponent.
- // Its exponent is bounded by kMinimalTargetExponent and kMaximalTargetExponent, hence:
- // -60 <= w.e() <= -32.
- //
- // Returns false if it fails, in which case the generated digits in the buffer should not be used.
- //
- // Preconditions:
- // low, w and high are correct up to 1 ulp (unit in the last place). That is, their error must be less than a unit of their last digits.
- // low.e() == w.e() == high.e()
- // low < w < high, and taking into account their error: low~ <= high~
- // kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent
- //
- // Postconditions:
- // Returns false if procedure fails; otherwise:
- // * buffer is not null-terminated, but len contains the number of digits.
- // * buffer contains the shortest possible decimal digit-sequence such that LOW < buffer * 10^kappa < HIGH, where LOW and HIGH are the correct values of low and high (without their error).
- // * If more than one decimal representation gives the minimal number of decimal digits then the one closest to W (where W is the correct value of w) is chosen.
- //
- // This procedure takes into account the imprecision of its input numbers.
- // If the precision is not enough to guarantee all the postconditions then false is returned.
- // This usually happens rarely (~0.5%).
- //
- // Say, for the sake of example, that:
- // w.e() == -48, and w.f() == 0x1234567890abcdef
- //
- // w's value can be computed by w.f() * 2^w.e()
- //
- // We can obtain w's integral digits by simply shifting w.f() by -w.e().
- // -> w's integral part is 0x1234
- // w's fractional part is therefore 0x567890abcdef.
- //
- // Printing w's integral part is easy (simply print 0x1234 in decimal).
- //
- // In order to print its fraction we repeatedly multiply the fraction by 10 and get each digit.
- // For example, the first digit after the point would be computed by
- // (0x567890abcdef * 10) >> 48. -> 3
- //
- // The whole thing becomes slightly more complicated because we want to stop once we have enough digits.
- // That is, once the digits inside the buffer represent 'w' we can stop.
- //
- // Everything inside the interval low - high represents w.
- // However we have to pay attention to low, high and w's imprecision.
- private static bool TryDigitGenShortest(in DiyFp low, in DiyFp w, in DiyFp high, Span<byte> buffer, out int length, out int kappa)
- {
- Debug.Assert(low.e == w.e);
- Debug.Assert(w.e == high.e);
- Debug.Assert((low.f + 1) <= (high.f - 1));
- Debug.Assert(MinimalTargetExponent <= w.e);
- Debug.Assert(w.e <= MaximalTargetExponent);
- // low, w, and high are imprecise, but by less than one ulp (unit in the last place).
- //
- // If we remove (resp. add) 1 ulp from low (resp. high) we are certain that the new numbers
- // are outside of the interval we want the final representation to lie in.
- //
- // Inversely adding (resp. removing) 1 ulp from low (resp. high) would yield numbers that
- // are certain to lie in the interval. We will use this fact later on.
- //
- // We will now start by generating the digits within the uncertain interval.
- // Later, we will weed out representations that lie outside the safe interval and thus might lie outside the correct interval.
- ulong unit = 1;
- var tooLow = new DiyFp((low.f - unit), low.e);
- var tooHigh = new DiyFp((high.f + unit), high.e);
- // tooLow and tooHigh are guaranteed to lie outside the interval we want the generated number in.
- DiyFp unsafeInterval = tooHigh.Subtract(in tooLow);
- // We now cut the input number into two parts: the integral digits and the fractional digits.
- // We will not write any decimal separator, but adapt kappa instead.
- //
- // Reminder: we are currently computing the digits (Stored inside the buffer) such that:
- // tooLow < buffer * 10^kappa < tooHigh
- //
- // We use tooHigh for the digitGeneration and stop as soon as possible.
- // If we stop early, we effectively round down.
- var one = new DiyFp((1UL << -w.e), w.e);
- // Division by one is a shift.
- uint integrals = (uint)(tooHigh.f >> -one.e);
- // Modulo by one is an and.
- ulong fractionals = tooHigh.f & (one.f - 1);
- uint divisor = BiggestPowerTen(integrals, (DiyFp.SignificandSize - (-one.e)), out kappa);
- length = 0;
- // Loop invariant:
- // buffer = tooHigh / 10^kappa (integer division)
- // These invariants hold for the first iteration:
- // kappa has been initialized with the divisor exponent + 1
- // The divisor is the biggest power of ten that is smaller than integrals
- while (kappa > 0)
- {
- uint digit = Math.DivRem(integrals, divisor, out integrals);
- Debug.Assert(digit <= 9);
- buffer[length] = (byte)('0' + digit);
- length++;
- kappa--;
- // Note that kappa now equals the exponent of the
- // divisor and that the invariant thus holds again.
- ulong rest = ((ulong)(integrals) << -one.e) + fractionals;
- // Invariant: tooHigh = buffer * 10^kappa + DiyFp(rest, one.e)
- // Reminder: unsafeInterval.e == one.e
- if (rest < unsafeInterval.f)
- {
- // Rounding down (by not emitting the remaining digits)
- // yields a number that lies within the unsafe interval
- return TryRoundWeedShortest(
- buffer,
- length,
- tooHigh.Subtract(w).f,
- unsafeInterval.f,
- rest,
- tenKappa: ((ulong)(divisor)) << -one.e,
- unit
- );
- }
- divisor /= 10;
- }
- // The integrals have been generated and we are at the point of the decimal separator.
- // In the following loop, we simply multiply the remaining digits by 10 and divide by one.
- // We just need to pay attention to multiply associated data (the unit), too.
- // Note that the multiplication by 10 does not overflow because:
- // w.e >= -60 and thus one.e >= -60
- Debug.Assert(one.e >= MinimalTargetExponent);
- Debug.Assert(fractionals < one.f);
- Debug.Assert((ulong.MaxValue / 10) >= one.f);
- while (true)
- {
- fractionals *= 10;
- unit *= 10;
- unsafeInterval = new DiyFp((unsafeInterval.f * 10), unsafeInterval.e);
- // Integer division by one.
- uint digit = (uint)(fractionals >> -one.e);
- Debug.Assert(digit <= 9);
- buffer[length] = (byte)('0' + digit);
- length++;
- kappa--;
- // Modulo by one.
- fractionals &= (one.f - 1);
- if (fractionals < unsafeInterval.f)
- {
- return TryRoundWeedShortest(
- buffer,
- length,
- tooHigh.Subtract(w).f * unit,
- unsafeInterval.f,
- rest: fractionals,
- tenKappa: one.f,
- unit
- );
- }
- }
- }
- // Returns a cached power-of-ten with a binary exponent in the range [minExponent; maxExponent] (boundaries included).
- private static DiyFp GetCachedPowerForBinaryExponentRange(int minExponent, int maxExponent, out int decimalExponent)
- {
- Debug.Assert(s_CachedPowersSignificand.Length == s_CachedPowersBinaryExponent.Length);
- Debug.Assert(s_CachedPowersSignificand.Length == s_CachedPowersDecimalExponent.Length);
- double k = Math.Ceiling((minExponent + DiyFp.SignificandSize - 1) * D1Log210);
- int index = ((CachedPowersOffset + (int)(k) - 1) / CachedPowersDecimalExponentDistance) + 1;
- Debug.Assert((uint)(index) < s_CachedPowersSignificand.Length);
- Debug.Assert(minExponent <= s_CachedPowersBinaryExponent[index]);
- Debug.Assert(s_CachedPowersBinaryExponent[index] <= maxExponent);
- decimalExponent = s_CachedPowersDecimalExponent[index];
- return new DiyFp(s_CachedPowersSignificand[index], s_CachedPowersBinaryExponent[index]);
- }
- // Rounds the buffer upwards if the result is closer to v by possibly adding 1 to the buffer.
- // If the precision of the calculation is not sufficient to round correctly, return false.
- //
- // The rounding might shift the whole buffer, in which case, the kappy is adjusted.
- // For example "99", kappa = 3 might become "10", kappa = 4.
- //
- // If (2 * rest) > tenKappa then the buffer needs to be round up.
- // rest can have an error of +/- 1 unit.
- // This function accounts for the imprecision and returns false if the rounding direction cannot be unambiguously determined.
- //
- // Preconditions:
- // rest < tenKappa
- private static bool TryRoundWeedCounted(Span<byte> buffer, int length, ulong rest, ulong tenKappa, ulong unit, ref int kappa)
- {
- Debug.Assert(rest < tenKappa);
- // The following tests are done in a specific order to avoid overflows.
- // They will work correctly with any ulong values of rest < tenKappa and unit.
- //
- // If the unit is too big, then we don't know which way to round.
- // For example, a unit of 50 means that the real number lies within rest +/- 50.
- // If 10^kappa == 40, then there is no way to tell which way to round.
- //
- // Even if unit is just half the size of 10^kappa we are already completely lost.
- // And after the previous test, we know that the expression will not over/underflow.
- if ((unit >= tenKappa) || ((tenKappa - unit) <= unit))
- {
- return false;
- }
- // If 2 * (rest + unit) <= 10^kappa, we can safely round down.
- if (((tenKappa - rest) > rest) && ((tenKappa - (2 * rest)) >= (2 * unit)))
- {
- return true;
- }
- // If 2 * (rest - unit) >= 10^kappa, we can safely round up.
- if ((rest > unit) && (tenKappa <= (rest - unit) || ((tenKappa - (rest - unit)) <= (rest - unit))))
- {
- // Increment the last digit recursively until we find a non '9' digit.
- buffer[length - 1]++;
- for (int i = (length - 1); i > 0; i--)
- {
- if (buffer[i] != ('0' + 10))
- {
- break;
- }
- buffer[i] = (byte)('0');
- buffer[i - 1]++;
- }
- // If the first digit is now '0'+10, we had a buffer with all '9's.
- // With the exception of the first digit, all digits are now '0'.
- // Simply switch the first digit to '1' and adjust the kappa.
- // For example, "99" becomes "10" and the power (the kappa) is increased.
- if (buffer[0] == ('0' + 10))
- {
- buffer[0] = (byte)('1');
- kappa++;
- }
- return true;
- }
- return false;
- }
- // Adjusts the last digit of the generated number and screens out generated solutions that may be inaccurate.
- // A solution may be inaccurate if it is outside the safe interval or if we cannot provide that it is closer to the input than a neighboring representation of the same length.
- //
- // Input:
- // buffer containing the digits of tooHigh / 10^kappa
- // the buffer's length
- // distanceTooHighW == (tooHigh - w).f * unit
- // unsafeInterval == (tooHigh - tooLow).f * unit
- // rest = (tooHigh - buffer * 10^kapp).f * unit
- // tenKappa = 10^kappa * unit
- // unit = the common multiplier
- //
- // Output:
- // Returns true if the buffer is guaranteed to contain the closest representable number to the input.
- //
- // Modifies the generated digits in the buffer to approach (round towards) w.
- private static bool TryRoundWeedShortest(Span<byte> buffer, int length, ulong distanceTooHighW, ulong unsafeInterval, ulong rest, ulong tenKappa, ulong unit)
- {
- ulong smallDistance = distanceTooHighW - unit;
- ulong bigDistance = distanceTooHighW + unit;
- // Let wLow = tooHigh - bigDistance, and wHigh = tooHigh - smallDistance.
- //
- // Note: wLow < w < wHigh
- //
- // The real w * unit must lie somewhere inside the interval
- // ]w_low; w_high[ (often written as "(w_low; w_high)")
- // Basically the buffer currently contains a number in the unsafe interval
- // ]too_low; too_high[ with too_low < w < too_high
- //
- // tooHigh - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- // ^v 1 unit ^ ^ ^ ^
- // boundaryHigh --------------------- . . . .
- // ^v 1 unit . . . .
- // - - - - - - - - - - - - - - - - - - - + - - + - - - - - - . .
- // . . ^ . .
- // . bigDistance . . .
- // . . . . rest
- // smallDistance . . . .
- // v . . . .
- // wHigh - - - - - - - - - - - - - - - - - - . . . .
- // ^v 1 unit . . . .
- // w --------------------------------------- . . . .
- // ^v 1 unit v . . .
- // wLow - - - - - - - - - - - - - - - - - - - - - . . .
- // . . v
- // buffer -------------------------------------------------+-------+--------
- // . .
- // safeInterval .
- // v .
- // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - .
- // ^v 1 unit .
- // boundaryLow ------------------------- unsafeInterval
- // ^v 1 unit v
- // tooLow - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- //
- //
- // Note that the value of buffer could lie anywhere inside the range tooLow to tooHigh.
- //
- // boundaryLow, boundaryHigh and w are approximations of the real boundaries and v (the input number).
- // They are guaranteed to be precise up to one unit.
- // In fact the error is guaranteed to be strictly less than one unit.
- //
- // Anything that lies outside the unsafe interval is guaranteed not to round to v when read again.
- // Anything that lies inside the safe interval is guaranteed to round to v when read again.
- //
- // If the number inside the buffer lies inside the unsafe interval but not inside the safe interval
- // then we simply do not know and bail out (returning false).
- //
- // Similarly we have to take into account the imprecision of 'w' when finding the closest representation of 'w'.
- // If we have two potential representations, and one is closer to both wLow and wHigh, then we know it is closer to the actual value v.
- //
- // By generating the digits of tooHigh we got the largest (closest to tooHigh) buffer that is still in the unsafe interval.
- // In the case where wHigh < buffer < tooHigh we try to decrement the buffer.
- // This way the buffer approaches (rounds towards) w.
- //
- // There are 3 conditions that stop the decrementation process:
- // 1) the buffer is already below wHigh
- // 2) decrementing the buffer would make it leave the unsafe interval
- // 3) decrementing the buffer would yield a number below wHigh and farther away than the current number.
- //
- // In other words:
- // (buffer{-1} < wHigh) && wHigh - buffer{-1} > buffer - wHigh
- //
- // Instead of using the buffer directly we use its distance to tooHigh.
- //
- // Conceptually rest ~= tooHigh - buffer
- //
- // We need to do the following tests in this order to avoid over- and underflows.
- Debug.Assert(rest <= unsafeInterval);
- while ((rest < smallDistance) && ((unsafeInterval - rest) >= tenKappa) && (((rest + tenKappa) < smallDistance) || ((smallDistance - rest) >= (rest + tenKappa - smallDistance))))
- {
- buffer[length - 1]--;
- rest += tenKappa;
- }
- // We have approached w+ as much as possible.
- // We now test if approaching w- would require changing the buffer.
- // If yes, then we have two possible representations close to w, but we cannot decide which one is closer.
- if ((rest < bigDistance) && ((unsafeInterval - rest) >= tenKappa) && (((rest + tenKappa) < bigDistance) || ((bigDistance - rest) > (rest + tenKappa - bigDistance))))
- {
- return false;
- }
- // Weeding test.
- //
- // The safe interval is [tooLow + 2 ulp; tooHigh - 2 ulp]
- // Since tooLow = tooHigh - unsafeInterval this is equivalent to
- // [tooHigh - unsafeInterval + 4 ulp; tooHigh - 2 ulp]
- //
- // Conceptually we have: rest ~= tooHigh - buffer
- return ((2 * unit) <= rest) && (rest <= (unsafeInterval - 4 * unit));
- }
- }
- }
- }
|