| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366 |
- //
- // SymmetricKeyWrap.cs - Implements symmetric key wrap algorithms
- //
- // Author:
- // Tim Coleman ([email protected])
- //
- // Copyright (C) Tim Coleman, 2004
- //
- //
- // Permission is hereby granted, free of charge, to any person obtaining
- // a copy of this software and associated documentation files (the
- // "Software"), to deal in the Software without restriction, including
- // without limitation the rights to use, copy, modify, merge, publish,
- // distribute, sublicense, and/or sell copies of the Software, and to
- // permit persons to whom the Software is furnished to do so, subject to
- // the following conditions:
- //
- // The above copyright notice and this permission notice shall be
- // included in all copies or substantial portions of the Software.
- //
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
- // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
- // MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
- // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
- // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
- // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
- // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
- //
- using System.IO;
- using System.Security.Cryptography;
- namespace System.Security.Cryptography.Xml {
- internal class SymmetricKeyWrap {
- public SymmetricKeyWrap ()
- {
- }
- public static byte[] AESKeyWrapEncrypt (byte[] rgbKey, byte[] rgbWrappedKeyData)
- {
- SymmetricAlgorithm symAlg = SymmetricAlgorithm.Create ("Rijndael");
- // Apparently no one felt the need to document that this requires Electronic Codebook mode.
- symAlg.Mode = CipherMode.ECB;
- // This was also not documented anywhere.
- symAlg.IV = new byte [16] {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
-
- ICryptoTransform transform = symAlg.CreateEncryptor (rgbKey, symAlg.IV);
- int N = rgbWrappedKeyData.Length / 8;
- byte[] A;
- byte[] B = new Byte [16];
- byte [] C = new byte [8 * (N + 1)];
- // 1. if N is 1:
- // B = AES(K)enc(0xA6A6A6A6A6A6A6A6|P(1))
- // C(0) = MSB(B)
- // C(1) = LSB(B)
- if (N == 1) {
- A = new byte [8] {0xa6, 0xa6, 0xa6, 0xa6, 0xa6, 0xa6, 0xa6, 0xa6};
- transform.TransformBlock (Concatenate (A, rgbWrappedKeyData), 0, 16, B, 0);
- Buffer.BlockCopy (MSB(B), 0, C, 0, 8);
- Buffer.BlockCopy (LSB(B), 0, C, 8, 8);
- } else {
- // if N > 1, perform the following steps:
- // 2. Initialize variables:
- // Set A to 0xA6A6A6A6A6A6A6A6
- // For i = 1 to N,
- // R(i) = P(i)
- A = new byte [8] {0xa6, 0xa6, 0xa6, 0xa6, 0xa6, 0xa6, 0xa6, 0xa6};
-
- byte[][] R = new byte [N + 1][];
- for (int i = 1; i <= N; i += 1) {
- R [i] = new byte [8];
- Buffer.BlockCopy (rgbWrappedKeyData, 8 * (i - 1), R [i], 0, 8);
- }
- // 3. Calculate intermediate values:
- // For j = 0 to 5
- // For i = 1 to N
- // t = i + j * N
- // B = AES(K)enc(A|R(i))
- // A = XOR(t, MSB(B))
- // R(i) = LSB(B)
- for (int j = 0; j <= 5; j += 1) {
- for (int i = 1; i <= N; i += 1) {
- transform.TransformBlock (Concatenate (A, R [i]), 0, 16, B, 0);
-
- // Yawn. It was nice of those at NIST to document how exactly we should XOR
- // an integer value with a byte array. Not.
- byte[] T = BitConverter.GetBytes ((long) (N * j + i));
- // This is nice.
- if (BitConverter.IsLittleEndian)
- Array.Reverse (T);
- A = Xor (T, MSB(B));
- R [i] = LSB (B);
- }
- }
- // 4. Output the results:
- // Set C(0) = A
- // For i = 1 to N
- // C(i) = R(i)
- Buffer.BlockCopy (A, 0, C, 0, 8);
- for (int i = 1; i <= N; i += 1)
- Buffer.BlockCopy (R [i], 0, C, 8 * i, 8);
- }
- return C;
- }
- public static byte[] AESKeyWrapDecrypt (byte[] rgbKey, byte[] rgbEncryptedWrappedKeyData)
- {
- SymmetricAlgorithm symAlg = SymmetricAlgorithm.Create ("Rijndael");
- symAlg.Mode = CipherMode.ECB;
- symAlg.Key = rgbKey;
- int N = ( rgbEncryptedWrappedKeyData.Length / 8 ) - 1;
- // From RFC 3394 - Advanced Encryption Standard (AES) Key Wrap Algorithm
- //
- // Inputs: Ciphertext, (n+1) 64-bit values (C0, C1, ..., Cn), and Key, K (the KEK)
- // Outputs: Plaintext, n 64-bit values (P1, P2, ..., Pn)
- //
- // 1. Initialize variables.
- // Set A = C[0]
- byte[] A = new byte [8];
- Buffer.BlockCopy (rgbEncryptedWrappedKeyData, 0, A, 0, 8);
- // For i = 1 to n
- // R[i] = C[i]
- byte[] R = new byte [N * 8];
- Buffer.BlockCopy (rgbEncryptedWrappedKeyData, 8, R, 0, rgbEncryptedWrappedKeyData.Length - 8);
- // 2. Compute intermediate values.
- // For j = 5 to 0
- // For i = n to 1
- // B = AES-1(K, (A^t) | R[i]) where t = n*j+i
- // A = MSB (64,B)
- // R[i] = LSB (64,B)
- ICryptoTransform transform = symAlg.CreateDecryptor ();
- for (int j = 5; j >= 0; j -= 1) {
- for (int i = N; i >= 1; i -= 1) {
- byte[] T = BitConverter.GetBytes ((long) N * j + i);
- if (BitConverter.IsLittleEndian)
- Array.Reverse (T);
- byte[] B = new Byte [16];
- byte[] r = new Byte [8];
- Buffer.BlockCopy (R, 8 * (i - 1), r, 0, 8);
- byte[] ciphertext = Concatenate (Xor (A, T), r);
- transform.TransformBlock (ciphertext, 0, 16, B, 0);
- A = MSB (B);
- Buffer.BlockCopy (LSB (B), 0, R, 8 * (i - 1), 8);
- }
- }
- // 3. Output results
- // If A is an appropriate initial value
- // Then
- // For i = 1 to n
- // P[i] = R[i]
- // Else
- // Return an error
- return R;
- }
- public static byte[] TripleDESKeyWrapEncrypt (byte[] rgbKey, byte[] rgbWrappedKeyData)
- {
- SymmetricAlgorithm symAlg = SymmetricAlgorithm.Create ("TripleDES");
- // Algorithm from http://www.w3.org/TR/xmlenc-core/#sec-Alg-SymmetricKeyWrap
- // The following algorithm wraps (encrypts) a key (the wrapped key, WK) under a TRIPLEDES
- // key-encryption-key (KEK) as adopted from [CMS-Algorithms].
- // 1. Represent the key being wrapped as an octet sequence. If it is a TRIPLEDES key,
- // this is 24 octets (192 bits) with odd parity bit as the bottom bit of each octet.
- // rgbWrappedKeyData is the key being wrapped.
- // 2. Compute the CMS key checksum (Section 5.6.1) call this CKS.
- byte[] cks = ComputeCMSKeyChecksum (rgbWrappedKeyData);
- // 3. Let WKCKS = WK || CKS, where || is concatenation.
- byte[] wkcks = Concatenate (rgbWrappedKeyData, cks);
- // 4. Generate 8 random octets and call this IV.
- symAlg.GenerateIV ();
- // 5. Encrypt WKCKS in CBC mode using KEK as the key and IV as the initialization vector.
- // Call the results TEMP1.
- symAlg.Mode = CipherMode.CBC;
- symAlg.Padding = PaddingMode.None;
- symAlg.Key = rgbKey;
- byte[] temp1 = Transform (wkcks, symAlg.CreateEncryptor ());
- // 6. Let TEMP2 = IV || TEMP1.
- byte[] temp2 = Concatenate (symAlg.IV, temp1);
- // 7. Reverse the order of the octets in TEMP2 and call the result TEMP3.
- Array.Reverse (temp2); // TEMP3 is TEMP2
- // 8. Encrypt TEMP3 in CBC mode using the KEK and an initialization vector of 0x4adda22c79e82105.
- // The resulting cipher text is the desired result. It is 40 octets long if a 168 bit key
- // is being wrapped.
- symAlg.IV = new Byte [8] {0x4a, 0xdd, 0xa2, 0x2c, 0x79, 0xe8, 0x21, 0x05};
- byte[] rtnval = Transform (temp2, symAlg.CreateEncryptor ());
- return rtnval;
- }
- public static byte[] TripleDESKeyWrapDecrypt (byte[] rgbKey, byte[] rgbEncryptedWrappedKeyData)
- {
- SymmetricAlgorithm symAlg = SymmetricAlgorithm.Create ("TripleDES");
- // Algorithm from http://www.w3.org/TR/xmlenc-core/#sec-Alg-SymmetricKeyWrap
- // The following algorithm unwraps (decrypts) a key as adopted from [CMS-Algorithms].
- // 1. Check the length of the cipher text is reasonable given the key type. It must be
- // 40 bytes for a 168 bit key and either 32, 40, or 48 bytes for a 128, 192, or 256 bit
- // key. If the length is not supported or inconsistent with the algorithm for which the
- // key is intended, return error.
- // 2. Decrypt the cipher text with TRIPLEDES in CBC mode using the KEK and an initialization
- // vector (IV) of 0x4adda22c79e82105. Call the output TEMP3.
- symAlg.Mode = CipherMode.CBC;
- symAlg.Padding = PaddingMode.None;
- symAlg.Key = rgbKey;
- symAlg.IV = new Byte [8] {0x4a, 0xdd, 0xa2, 0x2c, 0x79, 0xe8, 0x21, 0x05};
- byte[] temp3 = Transform (rgbEncryptedWrappedKeyData, symAlg.CreateDecryptor ());
- // 3. Reverse the order of the octets in TEMP3 and call the result TEMP2.
- Array.Reverse (temp3); // TEMP2 is TEMP3.
- // 4. Decompose TEMP2 into IV, the first 8 octets, and TEMP1, the remaining octets.
- byte[] temp1 = new Byte [temp3.Length - 8];
- byte[] iv = new Byte [8];
- Buffer.BlockCopy (temp3, 0, iv, 0, 8);
- Buffer.BlockCopy (temp3, 8, temp1, 0, temp1.Length);
- // 5. Decrypt TEMP1 using TRIPLEDES in CBC mode using the KEK and the IV found in the previous step.
- // Call the result WKCKS.
- symAlg.IV = iv;
- byte[] wkcks = Transform (temp1, symAlg.CreateDecryptor ());
- // 6. Decompose WKCKS. CKS is the last 8 octets and WK, the wrapped key, are those octets before
- // the CKS.
- byte[] cks = new byte [8];
- byte[] wk = new byte [wkcks.Length - 8];
- Buffer.BlockCopy (wkcks, 0, wk, 0, wk.Length);
- Buffer.BlockCopy (wkcks, wk.Length, cks, 0, 8);
- // 7. Calculate the CMS key checksum over the WK and compare with the CKS extracted in the above
- // step. If they are not equal, return error.
- // 8. WK is the wrapped key, now extracted for use in data decryption.
- return wk;
- }
- private static byte[] Transform (byte[] data, ICryptoTransform t)
- {
- MemoryStream output = new MemoryStream ();
- CryptoStream crypto = new CryptoStream (output, t, CryptoStreamMode.Write);
- crypto.Write (data, 0, data.Length);
- crypto.FlushFinalBlock ();
- byte[] result = output.ToArray ();
-
- output.Close ();
- crypto.Close ();
- return result;
- }
- private static byte[] ComputeCMSKeyChecksum (byte[] data)
- {
- byte[] hash = HashAlgorithm.Create ("SHA1").ComputeHash (data);
- byte[] output = new byte [8];
- Buffer.BlockCopy (hash, 0, output, 0, 8);
- return output;
- }
- private static byte[] Concatenate (byte[] buf1, byte[] buf2)
- {
- byte[] output = new byte [buf1.Length + buf2.Length];
- Buffer.BlockCopy (buf1, 0, output, 0, buf1.Length);
- Buffer.BlockCopy (buf2, 0, output, buf1.Length, buf2.Length);
- return output;
- }
- private static byte[] MSB (byte[] input)
- {
- return MSB (input, 8);
- }
- private static byte[] MSB (byte[] input, int bytes)
- {
- byte[] output = new byte [bytes];
- Buffer.BlockCopy (input, 0, output, 0, bytes);
- return output;
- }
- private static byte[] LSB (byte[] input)
- {
- return LSB (input, 8);
- }
- private static byte[] LSB (byte[] input, int bytes)
- {
- byte[] output = new byte [bytes];
- Buffer.BlockCopy (input, bytes, output, 0, bytes);
- return output;
- }
- private static byte[] Xor (byte[] x, byte[] y)
- {
- // This should *not* happen.
- if (x.Length != y.Length)
- throw new CryptographicException ("Error performing Xor: arrays different length.");
- byte[] output = new byte [x.Length];
- for (int i = 0; i < x.Length; i += 1)
- output [i] = (byte) (x [i] ^ y [i]);
- return output;
- }
- /* private static byte[] Xor (byte[] x, int n)
- {
- byte[] output = new Byte [x.Length];
- for (int i = 0; i < x.Length; i += 1)
- output [i] = (byte) ((int) x [i] ^ n);
- return output;
- }*/
- }
- }
|