|
@@ -669,4 +669,65 @@ _int_sub :: proc(dest, number, decrease: ^Int) -> (err: Error) {
|
|
|
Adjust dest.used based on leading zeroes.
|
|
|
*/
|
|
|
return clamp(dest);
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+/*
|
|
|
+ Multiplies |a| * |b| and only computes upto digs digits of result.
|
|
|
+ HAC pp. 595, Algorithm 14.12 Modified so you can control how
|
|
|
+ many digits of output are created.
|
|
|
+*/
|
|
|
+_int_mul :: proc(dest, a, b: ^Int, digits: int) -> (err: Error) {
|
|
|
+
|
|
|
+ /*
|
|
|
+ Can we use the fast multiplier?
|
|
|
+ */
|
|
|
+ when false { // Have Comba?
|
|
|
+ if digits < _WARRAY && min(a.used, b.used) < _MAX_COMBA {
|
|
|
+ return _int_mul_comba(dest, a, b, digits);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ if err = grow(dest, digits); err != .None { return err; }
|
|
|
+ dest.used = digits;
|
|
|
+
|
|
|
+ /*
|
|
|
+
|
|
|
+ /* compute the digits of the product directly */
|
|
|
+ pa = a->used;
|
|
|
+ for (ix = 0; ix < pa; ix++) {
|
|
|
+ int iy, pb;
|
|
|
+ mp_digit u = 0;
|
|
|
+
|
|
|
+ /* limit ourselves to making digs digits of output */
|
|
|
+ pb = MP_MIN(b->used, digs - ix);
|
|
|
+
|
|
|
+ /* compute the columns of the output and propagate the carry */
|
|
|
+ for (iy = 0; iy < pb; iy++) {
|
|
|
+ /* compute the column as a mp_word */
|
|
|
+ mp_word r = (mp_word)t.dp[ix + iy] +
|
|
|
+ ((mp_word)a->dp[ix] * (mp_word)b->dp[iy]) +
|
|
|
+ (mp_word)u;
|
|
|
+
|
|
|
+ /* the new column is the lower part of the result */
|
|
|
+ t.dp[ix + iy] = (mp_digit)(r & (mp_word)MP_MASK);
|
|
|
+
|
|
|
+ /* get the carry word from the result */
|
|
|
+ u = (mp_digit)(r >> (mp_word)MP_DIGIT_BIT);
|
|
|
+ }
|
|
|
+ /* set carry if it is placed below digs */
|
|
|
+ if ((ix + iy) < digs) {
|
|
|
+ t.dp[ix + pb] = u;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ mp_clamp(&t);
|
|
|
+ mp_exch(&t, c);
|
|
|
+
|
|
|
+ mp_clear(&t);
|
|
|
+ return MP_OKAY;
|
|
|
+}
|
|
|
+
|
|
|
+*/
|
|
|
+ return .None;
|
|
|
}
|