|
@@ -2,55 +2,89 @@ package linalg
|
|
|
|
|
|
import "core:math"
|
|
import "core:math"
|
|
|
|
|
|
|
|
+euler_angles_from_matrix3_f32 :: proc(m: Matrix3f32, order: Euler_Angle_Order) -> (t1, t2, t3: f32) {
|
|
|
|
+ switch order {
|
|
|
|
+ case .XYZ: t1, t2, t3 = euler_angles_xyz_from_matrix3(m);
|
|
|
|
+ case .XZY: t1, t2, t3 = euler_angles_xzy_from_matrix3(m);
|
|
|
|
+ case .YXZ: t1, t2, t3 = euler_angles_yxz_from_matrix3(m);
|
|
|
|
+ case .YZX: t1, t2, t3 = euler_angles_yzx_from_matrix3(m);
|
|
|
|
+ case .ZXY: t1, t2, t3 = euler_angles_zxy_from_matrix3(m);
|
|
|
|
+ case .ZYX: t1, t2, t3 = euler_angles_zyx_from_matrix3(m);
|
|
|
|
+ case .XYX: t1, t2, t3 = euler_angles_xyx_from_matrix3(m);
|
|
|
|
+ case .XZX: t1, t2, t3 = euler_angles_xzx_from_matrix3(m);
|
|
|
|
+ case .YXY: t1, t2, t3 = euler_angles_yxy_from_matrix3(m);
|
|
|
|
+ case .YZY: t1, t2, t3 = euler_angles_yzy_from_matrix3(m);
|
|
|
|
+ case .ZXZ: t1, t2, t3 = euler_angles_zxz_from_matrix3(m);
|
|
|
|
+ case .ZYZ: t1, t2, t3 = euler_angles_zyz_from_matrix3(m);
|
|
|
|
+ }
|
|
|
|
+ return;
|
|
|
|
+}
|
|
euler_angles_from_matrix4_f32 :: proc(m: Matrix4f32, order: Euler_Angle_Order) -> (t1, t2, t3: f32) {
|
|
euler_angles_from_matrix4_f32 :: proc(m: Matrix4f32, order: Euler_Angle_Order) -> (t1, t2, t3: f32) {
|
|
switch order {
|
|
switch order {
|
|
- case .XYZ: t1, t2, t3 = euler_angles_xyz_from_matrix4_f32(m);
|
|
|
|
- case .XZY: t1, t2, t3 = euler_angles_xzy_from_matrix4_f32(m);
|
|
|
|
- case .YXZ: t1, t2, t3 = euler_angles_yxz_from_matrix4_f32(m);
|
|
|
|
- case .YZX: t1, t2, t3 = euler_angles_yzx_from_matrix4_f32(m);
|
|
|
|
- case .ZXY: t1, t2, t3 = euler_angles_zxy_from_matrix4_f32(m);
|
|
|
|
- case .ZYX: t1, t2, t3 = euler_angles_zyx_from_matrix4_f32(m);
|
|
|
|
- case .XYX: t1, t2, t3 = euler_angles_xyx_from_matrix4_f32(m);
|
|
|
|
- case .XZX: t1, t2, t3 = euler_angles_xzx_from_matrix4_f32(m);
|
|
|
|
- case .YXY: t1, t2, t3 = euler_angles_yxy_from_matrix4_f32(m);
|
|
|
|
- case .YZY: t1, t2, t3 = euler_angles_yzy_from_matrix4_f32(m);
|
|
|
|
- case .ZXZ: t1, t2, t3 = euler_angles_zxz_from_matrix4_f32(m);
|
|
|
|
- case .ZYZ: t1, t2, t3 = euler_angles_zyz_from_matrix4_f32(m);
|
|
|
|
|
|
+ case .XYZ: t1, t2, t3 = euler_angles_xyz_from_matrix4(m);
|
|
|
|
+ case .XZY: t1, t2, t3 = euler_angles_xzy_from_matrix4(m);
|
|
|
|
+ case .YXZ: t1, t2, t3 = euler_angles_yxz_from_matrix4(m);
|
|
|
|
+ case .YZX: t1, t2, t3 = euler_angles_yzx_from_matrix4(m);
|
|
|
|
+ case .ZXY: t1, t2, t3 = euler_angles_zxy_from_matrix4(m);
|
|
|
|
+ case .ZYX: t1, t2, t3 = euler_angles_zyx_from_matrix4(m);
|
|
|
|
+ case .XYX: t1, t2, t3 = euler_angles_xyx_from_matrix4(m);
|
|
|
|
+ case .XZX: t1, t2, t3 = euler_angles_xzx_from_matrix4(m);
|
|
|
|
+ case .YXY: t1, t2, t3 = euler_angles_yxy_from_matrix4(m);
|
|
|
|
+ case .YZY: t1, t2, t3 = euler_angles_yzy_from_matrix4(m);
|
|
|
|
+ case .ZXZ: t1, t2, t3 = euler_angles_zxz_from_matrix4(m);
|
|
|
|
+ case .ZYZ: t1, t2, t3 = euler_angles_zyz_from_matrix4(m);
|
|
}
|
|
}
|
|
return;
|
|
return;
|
|
}
|
|
}
|
|
euler_angles_from_quaternion_f32 :: proc(m: Quaternionf32, order: Euler_Angle_Order) -> (t1, t2, t3: f32) {
|
|
euler_angles_from_quaternion_f32 :: proc(m: Quaternionf32, order: Euler_Angle_Order) -> (t1, t2, t3: f32) {
|
|
switch order {
|
|
switch order {
|
|
- case .XYZ: t1, t2, t3 = euler_angles_xyz_from_quaternion_f32(m);
|
|
|
|
- case .XZY: t1, t2, t3 = euler_angles_xzy_from_quaternion_f32(m);
|
|
|
|
- case .YXZ: t1, t2, t3 = euler_angles_yxz_from_quaternion_f32(m);
|
|
|
|
- case .YZX: t1, t2, t3 = euler_angles_yzx_from_quaternion_f32(m);
|
|
|
|
- case .ZXY: t1, t2, t3 = euler_angles_zxy_from_quaternion_f32(m);
|
|
|
|
- case .ZYX: t1, t2, t3 = euler_angles_zyx_from_quaternion_f32(m);
|
|
|
|
- case .XYX: t1, t2, t3 = euler_angles_xyx_from_quaternion_f32(m);
|
|
|
|
- case .XZX: t1, t2, t3 = euler_angles_xzx_from_quaternion_f32(m);
|
|
|
|
- case .YXY: t1, t2, t3 = euler_angles_yxy_from_quaternion_f32(m);
|
|
|
|
- case .YZY: t1, t2, t3 = euler_angles_yzy_from_quaternion_f32(m);
|
|
|
|
- case .ZXZ: t1, t2, t3 = euler_angles_zxz_from_quaternion_f32(m);
|
|
|
|
- case .ZYZ: t1, t2, t3 = euler_angles_zyz_from_quaternion_f32(m);
|
|
|
|
|
|
+ case .XYZ: t1, t2, t3 = euler_angles_xyz_from_quaternion(m);
|
|
|
|
+ case .XZY: t1, t2, t3 = euler_angles_xzy_from_quaternion(m);
|
|
|
|
+ case .YXZ: t1, t2, t3 = euler_angles_yxz_from_quaternion(m);
|
|
|
|
+ case .YZX: t1, t2, t3 = euler_angles_yzx_from_quaternion(m);
|
|
|
|
+ case .ZXY: t1, t2, t3 = euler_angles_zxy_from_quaternion(m);
|
|
|
|
+ case .ZYX: t1, t2, t3 = euler_angles_zyx_from_quaternion(m);
|
|
|
|
+ case .XYX: t1, t2, t3 = euler_angles_xyx_from_quaternion(m);
|
|
|
|
+ case .XZX: t1, t2, t3 = euler_angles_xzx_from_quaternion(m);
|
|
|
|
+ case .YXY: t1, t2, t3 = euler_angles_yxy_from_quaternion(m);
|
|
|
|
+ case .YZY: t1, t2, t3 = euler_angles_yzy_from_quaternion(m);
|
|
|
|
+ case .ZXZ: t1, t2, t3 = euler_angles_zxz_from_quaternion(m);
|
|
|
|
+ case .ZYZ: t1, t2, t3 = euler_angles_zyz_from_quaternion(m);
|
|
}
|
|
}
|
|
return;
|
|
return;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
+matrix3_from_euler_angles_f32 :: proc(t1, t2, t3: f32, order: Euler_Angle_Order) -> (m: Matrix3f32) {
|
|
|
|
+ switch order {
|
|
|
|
+ case .XYZ: return matrix3_from_euler_angles_xyz(t1, t2, t3); // m1, m2, m3 = X(t1), Y(t2), Z(t3);
|
|
|
|
+ case .XZY: return matrix3_from_euler_angles_xzy(t1, t2, t3); // m1, m2, m3 = X(t1), Z(t2), Y(t3);
|
|
|
|
+ case .YXZ: return matrix3_from_euler_angles_yxz(t1, t2, t3); // m1, m2, m3 = Y(t1), X(t2), Z(t3);
|
|
|
|
+ case .YZX: return matrix3_from_euler_angles_yzx(t1, t2, t3); // m1, m2, m3 = Y(t1), Z(t2), X(t3);
|
|
|
|
+ case .ZXY: return matrix3_from_euler_angles_zxy(t1, t2, t3); // m1, m2, m3 = Z(t1), X(t2), Y(t3);
|
|
|
|
+ case .ZYX: return matrix3_from_euler_angles_zyx(t1, t2, t3); // m1, m2, m3 = Z(t1), Y(t2), X(t3);
|
|
|
|
+ case .XYX: return matrix3_from_euler_angles_xyx(t1, t2, t3); // m1, m2, m3 = X(t1), Y(t2), X(t3);
|
|
|
|
+ case .XZX: return matrix3_from_euler_angles_xzx(t1, t2, t3); // m1, m2, m3 = X(t1), Z(t2), X(t3);
|
|
|
|
+ case .YXY: return matrix3_from_euler_angles_yxy(t1, t2, t3); // m1, m2, m3 = Y(t1), X(t2), Y(t3);
|
|
|
|
+ case .YZY: return matrix3_from_euler_angles_yzy(t1, t2, t3); // m1, m2, m3 = Y(t1), Z(t2), Y(t3);
|
|
|
|
+ case .ZXZ: return matrix3_from_euler_angles_zxz(t1, t2, t3); // m1, m2, m3 = Z(t1), X(t2), Z(t3);
|
|
|
|
+ case .ZYZ: return matrix3_from_euler_angles_zyz(t1, t2, t3); // m1, m2, m3 = Z(t1), Y(t2), Z(t3);
|
|
|
|
+ }
|
|
|
|
+ return;
|
|
|
|
+}
|
|
matrix4_from_euler_angles_f32 :: proc(t1, t2, t3: f32, order: Euler_Angle_Order) -> (m: Matrix4f32) {
|
|
matrix4_from_euler_angles_f32 :: proc(t1, t2, t3: f32, order: Euler_Angle_Order) -> (m: Matrix4f32) {
|
|
switch order {
|
|
switch order {
|
|
- case .XYZ: return matrix4_from_euler_angles_xyz_f32(t1, t2, t3); // m1, m2, m3 = X(t1), Y(t2), Z(t3);
|
|
|
|
- case .XZY: return matrix4_from_euler_angles_xzy_f32(t1, t2, t3); // m1, m2, m3 = X(t1), Z(t2), Y(t3);
|
|
|
|
- case .YXZ: return matrix4_from_euler_angles_yxz_f32(t1, t2, t3); // m1, m2, m3 = Y(t1), X(t2), Z(t3);
|
|
|
|
- case .YZX: return matrix4_from_euler_angles_yzx_f32(t1, t2, t3); // m1, m2, m3 = Y(t1), Z(t2), X(t3);
|
|
|
|
- case .ZXY: return matrix4_from_euler_angles_zxy_f32(t1, t2, t3); // m1, m2, m3 = Z(t1), X(t2), Y(t3);
|
|
|
|
- case .ZYX: return matrix4_from_euler_angles_zyx_f32(t1, t2, t3); // m1, m2, m3 = Z(t1), Y(t2), X(t3);
|
|
|
|
- case .XYX: return matrix4_from_euler_angles_xyx_f32(t1, t2, t3); // m1, m2, m3 = X(t1), Y(t2), X(t3);
|
|
|
|
- case .XZX: return matrix4_from_euler_angles_xzx_f32(t1, t2, t3); // m1, m2, m3 = X(t1), Z(t2), X(t3);
|
|
|
|
- case .YXY: return matrix4_from_euler_angles_yxy_f32(t1, t2, t3); // m1, m2, m3 = Y(t1), X(t2), Y(t3);
|
|
|
|
- case .YZY: return matrix4_from_euler_angles_yzy_f32(t1, t2, t3); // m1, m2, m3 = Y(t1), Z(t2), Y(t3);
|
|
|
|
- case .ZXZ: return matrix4_from_euler_angles_zxz_f32(t1, t2, t3); // m1, m2, m3 = Z(t1), X(t2), Z(t3);
|
|
|
|
- case .ZYZ: return matrix4_from_euler_angles_zyz_f32(t1, t2, t3); // m1, m2, m3 = Z(t1), Y(t2), Z(t3);
|
|
|
|
|
|
+ case .XYZ: return matrix4_from_euler_angles_xyz(t1, t2, t3); // m1, m2, m3 = X(t1), Y(t2), Z(t3);
|
|
|
|
+ case .XZY: return matrix4_from_euler_angles_xzy(t1, t2, t3); // m1, m2, m3 = X(t1), Z(t2), Y(t3);
|
|
|
|
+ case .YXZ: return matrix4_from_euler_angles_yxz(t1, t2, t3); // m1, m2, m3 = Y(t1), X(t2), Z(t3);
|
|
|
|
+ case .YZX: return matrix4_from_euler_angles_yzx(t1, t2, t3); // m1, m2, m3 = Y(t1), Z(t2), X(t3);
|
|
|
|
+ case .ZXY: return matrix4_from_euler_angles_zxy(t1, t2, t3); // m1, m2, m3 = Z(t1), X(t2), Y(t3);
|
|
|
|
+ case .ZYX: return matrix4_from_euler_angles_zyx(t1, t2, t3); // m1, m2, m3 = Z(t1), Y(t2), X(t3);
|
|
|
|
+ case .XYX: return matrix4_from_euler_angles_xyx(t1, t2, t3); // m1, m2, m3 = X(t1), Y(t2), X(t3);
|
|
|
|
+ case .XZX: return matrix4_from_euler_angles_xzx(t1, t2, t3); // m1, m2, m3 = X(t1), Z(t2), X(t3);
|
|
|
|
+ case .YXY: return matrix4_from_euler_angles_yxy(t1, t2, t3); // m1, m2, m3 = Y(t1), X(t2), Y(t3);
|
|
|
|
+ case .YZY: return matrix4_from_euler_angles_yzy(t1, t2, t3); // m1, m2, m3 = Y(t1), Z(t2), Y(t3);
|
|
|
|
+ case .ZXZ: return matrix4_from_euler_angles_zxz(t1, t2, t3); // m1, m2, m3 = Z(t1), X(t2), Z(t3);
|
|
|
|
+ case .ZYZ: return matrix4_from_euler_angles_zyz(t1, t2, t3); // m1, m2, m3 = Z(t1), Y(t2), Z(t3);
|
|
}
|
|
}
|
|
return;
|
|
return;
|
|
}
|
|
}
|
|
@@ -173,7 +207,532 @@ euler_angles_zxy_from_quaternion_f32 :: proc(q: Quaternionf32) -> (t1, t2, t3: f
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
-// Matrices
|
|
|
|
|
|
+// Matrix3
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+matrix3_from_euler_angle_x_f32 :: proc(angle_x: f32) -> (m: Matrix3f32) {
|
|
|
|
+ cos_x, sin_x := math.cos(angle_x), math.sin(angle_x);
|
|
|
|
+ m[0][0] = 1;
|
|
|
|
+ m[1][1] = +cos_x;
|
|
|
|
+ m[2][1] = +sin_x;
|
|
|
|
+ m[1][2] = -sin_x;
|
|
|
|
+ m[2][2] = +cos_x;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+matrix3_from_euler_angle_y_f32 :: proc(angle_y: f32) -> (m: Matrix3f32) {
|
|
|
|
+ cos_y, sin_y := math.cos(angle_y), math.sin(angle_y);
|
|
|
|
+ m[0][0] = +cos_y;
|
|
|
|
+ m[2][0] = -sin_y;
|
|
|
|
+ m[1][1] = 1;
|
|
|
|
+ m[0][2] = +sin_y;
|
|
|
|
+ m[2][2] = +cos_y;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+matrix3_from_euler_angle_z_f32 :: proc(angle_z: f32) -> (m: Matrix3f32) {
|
|
|
|
+ cos_z, sin_z := math.cos(angle_z), math.sin(angle_z);
|
|
|
|
+ m[0][0] = +cos_z;
|
|
|
|
+ m[1][0] = +sin_z;
|
|
|
|
+ m[1][1] = +cos_z;
|
|
|
|
+ m[0][1] = -sin_z;
|
|
|
|
+ m[2][2] = 1;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+matrix3_from_derived_euler_angle_x_f32 :: proc(angle_x: f32, angular_velocity_x: f32) -> (m: Matrix3f32) {
|
|
|
|
+ cos_x := math.cos(angle_x) * angular_velocity_x;
|
|
|
|
+ sin_x := math.sin(angle_x) * angular_velocity_x;
|
|
|
|
+ m[0][0] = 1;
|
|
|
|
+ m[1][1] = +cos_x;
|
|
|
|
+ m[2][1] = +sin_x;
|
|
|
|
+ m[1][2] = -sin_x;
|
|
|
|
+ m[2][2] = +cos_x;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+matrix3_from_derived_euler_angle_y_f32 :: proc(angle_y: f32, angular_velocity_y: f32) -> (m: Matrix3f32) {
|
|
|
|
+ cos_y := math.cos(angle_y) * angular_velocity_y;
|
|
|
|
+ sin_y := math.sin(angle_y) * angular_velocity_y;
|
|
|
|
+ m[0][0] = +cos_y;
|
|
|
|
+ m[2][0] = -sin_y;
|
|
|
|
+ m[1][1] = 1;
|
|
|
|
+ m[0][2] = +sin_y;
|
|
|
|
+ m[2][2] = +cos_y;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+matrix3_from_derived_euler_angle_z_f32 :: proc(angle_z: f32, angular_velocity_z: f32) -> (m: Matrix3f32) {
|
|
|
|
+ cos_z := math.cos(angle_z) * angular_velocity_z;
|
|
|
|
+ sin_z := math.sin(angle_z) * angular_velocity_z;
|
|
|
|
+ m[0][0] = +cos_z;
|
|
|
|
+ m[1][0] = +sin_z;
|
|
|
|
+ m[1][1] = +cos_z;
|
|
|
|
+ m[0][1] = -sin_z;
|
|
|
|
+ m[2][2] = 1;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+matrix3_from_euler_angles_xy_f32 :: proc(angle_x, angle_y: f32) -> (m: Matrix3f32) {
|
|
|
|
+ cos_x, sin_x := math.cos(angle_x), math.sin(angle_x);
|
|
|
|
+ cos_y, sin_y := math.cos(angle_y), math.sin(angle_y);
|
|
|
|
+ m[0][0] = cos_y;
|
|
|
|
+ m[1][0] = -sin_x * - sin_y;
|
|
|
|
+ m[2][0] = -cos_x * - sin_y;
|
|
|
|
+ m[1][1] = cos_x;
|
|
|
|
+ m[2][1] = sin_x;
|
|
|
|
+ m[0][2] = sin_y;
|
|
|
|
+ m[1][2] = -sin_x * cos_y;
|
|
|
|
+ m[2][2] = cos_x * cos_y;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+matrix3_from_euler_angles_yx_f32 :: proc(angle_y, angle_x: f32) -> (m: Matrix3f32) {
|
|
|
|
+ cos_x, sin_x := math.cos(angle_x), math.sin(angle_x);
|
|
|
|
+ cos_y, sin_y := math.cos(angle_y), math.sin(angle_y);
|
|
|
|
+ m[0][0] = cos_y;
|
|
|
|
+ m[2][0] = -sin_y;
|
|
|
|
+ m[0][1] = sin_y*sin_x;
|
|
|
|
+ m[1][1] = cos_x;
|
|
|
|
+ m[2][1] = cos_y*sin_x;
|
|
|
|
+ m[0][2] = sin_y*cos_x;
|
|
|
|
+ m[1][2] = -sin_x;
|
|
|
|
+ m[2][2] = cos_y*cos_x;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+matrix3_from_euler_angles_xz_f32 :: proc(angle_x, angle_z: f32) -> (m: Matrix3f32) {
|
|
|
|
+ return mul(matrix3_from_euler_angle_x(angle_x), matrix3_from_euler_angle_z(angle_z));
|
|
|
|
+}
|
|
|
|
+matrix3_from_euler_angles_zx_f32 :: proc(angle_z, angle_x: f32) -> (m: Matrix3f32) {
|
|
|
|
+ return mul(matrix3_from_euler_angle_z(angle_z), matrix3_from_euler_angle_x(angle_x));
|
|
|
|
+}
|
|
|
|
+matrix3_from_euler_angles_yz_f32 :: proc(angle_y, angle_z: f32) -> (m: Matrix3f32) {
|
|
|
|
+ return mul(matrix3_from_euler_angle_y(angle_y), matrix3_from_euler_angle_z(angle_z));
|
|
|
|
+}
|
|
|
|
+matrix3_from_euler_angles_zy_f32 :: proc(angle_z, angle_y: f32) -> (m: Matrix3f32) {
|
|
|
|
+ return mul(matrix3_from_euler_angle_z(angle_z), matrix3_from_euler_angle_y(angle_y));
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+matrix3_from_euler_angles_xyz_f32 :: proc(t1, t2, t3: f32) -> (m: Matrix3f32) {
|
|
|
|
+ c1 := math.cos(-t1);
|
|
|
|
+ c2 := math.cos(-t2);
|
|
|
|
+ c3 := math.cos(-t3);
|
|
|
|
+ s1 := math.sin(-t1);
|
|
|
|
+ s2 := math.sin(-t2);
|
|
|
|
+ s3 := math.sin(-t3);
|
|
|
|
+
|
|
|
|
+ m[0][0] = c2 * c3;
|
|
|
|
+ m[0][1] =-c1 * s3 + s1 * s2 * c3;
|
|
|
|
+ m[0][2] = s1 * s3 + c1 * s2 * c3;
|
|
|
|
+ m[1][0] = c2 * s3;
|
|
|
|
+ m[1][1] = c1 * c3 + s1 * s2 * s3;
|
|
|
|
+ m[1][2] =-s1 * c3 + c1 * s2 * s3;
|
|
|
|
+ m[2][0] =-s2;
|
|
|
|
+ m[2][1] = s1 * c2;
|
|
|
|
+ m[2][2] = c1 * c2;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+matrix3_from_euler_angles_yxz_f32 :: proc(yaw, pitch, roll: f32) -> (m: Matrix3f32) {
|
|
|
|
+ ch := math.cos(yaw);
|
|
|
|
+ sh := math.sin(yaw);
|
|
|
|
+ cp := math.cos(pitch);
|
|
|
|
+ sp := math.sin(pitch);
|
|
|
|
+ cb := math.cos(roll);
|
|
|
|
+ sb := math.sin(roll);
|
|
|
|
+
|
|
|
|
+ m[0][0] = ch * cb + sh * sp * sb;
|
|
|
|
+ m[0][1] = sb * cp;
|
|
|
|
+ m[0][2] = -sh * cb + ch * sp * sb;
|
|
|
|
+ m[1][0] = -ch * sb + sh * sp * cb;
|
|
|
|
+ m[1][1] = cb * cp;
|
|
|
|
+ m[1][2] = sb * sh + ch * sp * cb;
|
|
|
|
+ m[2][0] = sh * cp;
|
|
|
|
+ m[2][1] = -sp;
|
|
|
|
+ m[2][2] = ch * cp;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+matrix3_from_euler_angles_xzx_f32 :: proc(t1, t2, t3: f32) -> (m: Matrix3f32) {
|
|
|
|
+ c1 := math.cos(t1);
|
|
|
|
+ s1 := math.sin(t1);
|
|
|
|
+ c2 := math.cos(t2);
|
|
|
|
+ s2 := math.sin(t2);
|
|
|
|
+ c3 := math.cos(t3);
|
|
|
|
+ s3 := math.sin(t3);
|
|
|
|
+
|
|
|
|
+ m[0][0] = c2;
|
|
|
|
+ m[0][1] = c1 * s2;
|
|
|
|
+ m[0][2] = s1 * s2;
|
|
|
|
+ m[1][0] =-c3 * s2;
|
|
|
|
+ m[1][1] = c1 * c2 * c3 - s1 * s3;
|
|
|
|
+ m[1][2] = c1 * s3 + c2 * c3 * s1;
|
|
|
|
+ m[2][0] = s2 * s3;
|
|
|
|
+ m[2][1] =-c3 * s1 - c1 * c2 * s3;
|
|
|
|
+ m[2][2] = c1 * c3 - c2 * s1 * s3;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+matrix3_from_euler_angles_xyx_f32 :: proc(t1, t2, t3: f32) -> (m: Matrix3f32) {
|
|
|
|
+ c1 := math.cos(t1);
|
|
|
|
+ s1 := math.sin(t1);
|
|
|
|
+ c2 := math.cos(t2);
|
|
|
|
+ s2 := math.sin(t2);
|
|
|
|
+ c3 := math.cos(t3);
|
|
|
|
+ s3 := math.sin(t3);
|
|
|
|
+
|
|
|
|
+ m[0][0] = c2;
|
|
|
|
+ m[0][1] = s1 * s2;
|
|
|
|
+ m[0][2] =-c1 * s2;
|
|
|
|
+ m[1][0] = s2 * s3;
|
|
|
|
+ m[1][1] = c1 * c3 - c2 * s1 * s3;
|
|
|
|
+ m[1][2] = c3 * s1 + c1 * c2 * s3;
|
|
|
|
+ m[2][0] = c3 * s2;
|
|
|
|
+ m[2][1] =-c1 * s3 - c2 * c3 * s1;
|
|
|
|
+ m[2][2] = c1 * c2 * c3 - s1 * s3;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+matrix3_from_euler_angles_yxy_f32 :: proc(t1, t2, t3: f32) -> (m: Matrix3f32) {
|
|
|
|
+ c1 := math.cos(t1);
|
|
|
|
+ s1 := math.sin(t1);
|
|
|
|
+ c2 := math.cos(t2);
|
|
|
|
+ s2 := math.sin(t2);
|
|
|
|
+ c3 := math.cos(t3);
|
|
|
|
+ s3 := math.sin(t3);
|
|
|
|
+
|
|
|
|
+ m[0][0] = c1 * c3 - c2 * s1 * s3;
|
|
|
|
+ m[0][1] = s2* s3;
|
|
|
|
+ m[0][2] =-c3 * s1 - c1 * c2 * s3;
|
|
|
|
+ m[1][0] = s1 * s2;
|
|
|
|
+ m[1][1] = c2;
|
|
|
|
+ m[1][2] = c1 * s2;
|
|
|
|
+ m[2][0] = c1 * s3 + c2 * c3 * s1;
|
|
|
|
+ m[2][1] =-c3 * s2;
|
|
|
|
+ m[2][2] = c1 * c2 * c3 - s1 * s3;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+matrix3_from_euler_angles_yzy_f32 :: proc(t1, t2, t3: f32) -> (m: Matrix3f32) {
|
|
|
|
+ c1 := math.cos(t1);
|
|
|
|
+ s1 := math.sin(t1);
|
|
|
|
+ c2 := math.cos(t2);
|
|
|
|
+ s2 := math.sin(t2);
|
|
|
|
+ c3 := math.cos(t3);
|
|
|
|
+ s3 := math.sin(t3);
|
|
|
|
+
|
|
|
|
+ m[0][0] = c1 * c2 * c3 - s1 * s3;
|
|
|
|
+ m[0][1] = c3 * s2;
|
|
|
|
+ m[0][2] =-c1 * s3 - c2 * c3 * s1;
|
|
|
|
+ m[1][0] =-c1 * s2;
|
|
|
|
+ m[1][1] = c2;
|
|
|
|
+ m[1][2] = s1 * s2;
|
|
|
|
+ m[2][0] = c3 * s1 + c1 * c2 * s3;
|
|
|
|
+ m[2][1] = s2 * s3;
|
|
|
|
+ m[2][2] = c1 * c3 - c2 * s1 * s3;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+matrix3_from_euler_angles_zyz_f32 :: proc(t1, t2, t3: f32) -> (m: Matrix3f32) {
|
|
|
|
+ c1 := math.cos(t1);
|
|
|
|
+ s1 := math.sin(t1);
|
|
|
|
+ c2 := math.cos(t2);
|
|
|
|
+ s2 := math.sin(t2);
|
|
|
|
+ c3 := math.cos(t3);
|
|
|
|
+ s3 := math.sin(t3);
|
|
|
|
+
|
|
|
|
+ m[0][0] = c1 * c2 * c3 - s1 * s3;
|
|
|
|
+ m[0][1] = c1 * s3 + c2 * c3 * s1;
|
|
|
|
+ m[0][2] =-c3 * s2;
|
|
|
|
+ m[1][0] =-c3 * s1 - c1 * c2 * s3;
|
|
|
|
+ m[1][1] = c1 * c3 - c2 * s1 * s3;
|
|
|
|
+ m[1][2] = s2 * s3;
|
|
|
|
+ m[2][0] = c1 * s2;
|
|
|
|
+ m[2][1] = s1 * s2;
|
|
|
|
+ m[2][2] = c2;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+matrix3_from_euler_angles_zxz_f32 :: proc(t1, t2, t3: f32) -> (m: Matrix3f32) {
|
|
|
|
+ c1 := math.cos(t1);
|
|
|
|
+ s1 := math.sin(t1);
|
|
|
|
+ c2 := math.cos(t2);
|
|
|
|
+ s2 := math.sin(t2);
|
|
|
|
+ c3 := math.cos(t3);
|
|
|
|
+ s3 := math.sin(t3);
|
|
|
|
+
|
|
|
|
+ m[0][0] = c1 * c3 - c2 * s1 * s3;
|
|
|
|
+ m[0][1] = c3 * s1 + c1 * c2 * s3;
|
|
|
|
+ m[0][2] = s2 *s3;
|
|
|
|
+ m[1][0] =-c1 * s3 - c2 * c3 * s1;
|
|
|
|
+ m[1][1] = c1 * c2 * c3 - s1 * s3;
|
|
|
|
+ m[1][2] = c3 * s2;
|
|
|
|
+ m[2][0] = s1 * s2;
|
|
|
|
+ m[2][1] =-c1 * s2;
|
|
|
|
+ m[2][2] = c2;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+matrix3_from_euler_angles_xzy_f32 :: proc(t1, t2, t3: f32) -> (m: Matrix3f32) {
|
|
|
|
+ c1 := math.cos(t1);
|
|
|
|
+ s1 := math.sin(t1);
|
|
|
|
+ c2 := math.cos(t2);
|
|
|
|
+ s2 := math.sin(t2);
|
|
|
|
+ c3 := math.cos(t3);
|
|
|
|
+ s3 := math.sin(t3);
|
|
|
|
+
|
|
|
|
+ m[0][0] = c2 * c3;
|
|
|
|
+ m[0][1] = s1 * s3 + c1 * c3 * s2;
|
|
|
|
+ m[0][2] = c3 * s1 * s2 - c1 * s3;
|
|
|
|
+ m[1][0] =-s2;
|
|
|
|
+ m[1][1] = c1 * c2;
|
|
|
|
+ m[1][2] = c2 * s1;
|
|
|
|
+ m[2][0] = c2 * s3;
|
|
|
|
+ m[2][1] = c1 * s2 * s3 - c3 * s1;
|
|
|
|
+ m[2][2] = c1 * c3 + s1 * s2 *s3;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+matrix3_from_euler_angles_yzx_f32 :: proc(t1, t2, t3: f32) -> (m: Matrix3f32) {
|
|
|
|
+ c1 := math.cos(t1);
|
|
|
|
+ s1 := math.sin(t1);
|
|
|
|
+ c2 := math.cos(t2);
|
|
|
|
+ s2 := math.sin(t2);
|
|
|
|
+ c3 := math.cos(t3);
|
|
|
|
+ s3 := math.sin(t3);
|
|
|
|
+
|
|
|
|
+ m[0][0] = c1 * c2;
|
|
|
|
+ m[0][1] = s2;
|
|
|
|
+ m[0][2] =-c2 * s1;
|
|
|
|
+ m[1][0] = s1 * s3 - c1 * c3 * s2;
|
|
|
|
+ m[1][1] = c2 * c3;
|
|
|
|
+ m[1][2] = c1 * s3 + c3 * s1 * s2;
|
|
|
|
+ m[2][0] = c3 * s1 + c1 * s2 * s3;
|
|
|
|
+ m[2][1] =-c2 * s3;
|
|
|
|
+ m[2][2] = c1 * c3 - s1 * s2 * s3;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+matrix3_from_euler_angles_zyx_f32 :: proc(t1, t2, t3: f32) -> (m: Matrix3f32) {
|
|
|
|
+ c1 := math.cos(t1);
|
|
|
|
+ s1 := math.sin(t1);
|
|
|
|
+ c2 := math.cos(t2);
|
|
|
|
+ s2 := math.sin(t2);
|
|
|
|
+ c3 := math.cos(t3);
|
|
|
|
+ s3 := math.sin(t3);
|
|
|
|
+
|
|
|
|
+ m[0][0] = c1 * c2;
|
|
|
|
+ m[0][1] = c2 * s1;
|
|
|
|
+ m[0][2] =-s2;
|
|
|
|
+ m[1][0] = c1 * s2 * s3 - c3 * s1;
|
|
|
|
+ m[1][1] = c1 * c3 + s1 * s2 * s3;
|
|
|
|
+ m[1][2] = c2 * s3;
|
|
|
|
+ m[2][0] = s1 * s3 + c1 * c3 * s2;
|
|
|
|
+ m[2][1] = c3 * s1 * s2 - c1 * s3;
|
|
|
|
+ m[2][2] = c2 * c3;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+matrix3_from_euler_angles_zxy_f32 :: proc(t1, t2, t3: f32) -> (m: Matrix3f32) {
|
|
|
|
+ c1 := math.cos(t1);
|
|
|
|
+ s1 := math.sin(t1);
|
|
|
|
+ c2 := math.cos(t2);
|
|
|
|
+ s2 := math.sin(t2);
|
|
|
|
+ c3 := math.cos(t3);
|
|
|
|
+ s3 := math.sin(t3);
|
|
|
|
+
|
|
|
|
+ m[0][0] = c1 * c3 - s1 * s2 * s3;
|
|
|
|
+ m[0][1] = c3 * s1 + c1 * s2 * s3;
|
|
|
|
+ m[0][2] =-c2 * s3;
|
|
|
|
+ m[1][0] =-c2 * s1;
|
|
|
|
+ m[1][1] = c1 * c2;
|
|
|
|
+ m[1][2] = s2;
|
|
|
|
+ m[2][0] = c1 * s3 + c3 * s1 * s2;
|
|
|
|
+ m[2][1] = s1 * s3 - c1 * c3 * s2;
|
|
|
|
+ m[2][2] = c2 * c3;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+matrix3_from_yaw_pitch_roll_f32 :: proc(yaw, pitch, roll: f32) -> (m: Matrix3f32) {
|
|
|
|
+ ch := math.cos(yaw);
|
|
|
|
+ sh := math.sin(yaw);
|
|
|
|
+ cp := math.cos(pitch);
|
|
|
|
+ sp := math.sin(pitch);
|
|
|
|
+ cb := math.cos(roll);
|
|
|
|
+ sb := math.sin(roll);
|
|
|
|
+
|
|
|
|
+ m[0][0] = ch * cb + sh * sp * sb;
|
|
|
|
+ m[0][1] = sb * cp;
|
|
|
|
+ m[0][2] = -sh * cb + ch * sp * sb;
|
|
|
|
+ m[1][0] = -ch * sb + sh * sp * cb;
|
|
|
|
+ m[1][1] = cb * cp;
|
|
|
|
+ m[1][2] = sb * sh + ch * sp * cb;
|
|
|
|
+ m[2][0] = sh * cp;
|
|
|
|
+ m[2][1] = -sp;
|
|
|
|
+ m[2][2] = ch * cp;
|
|
|
|
+ return m;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+euler_angles_xyz_from_matrix3_f32 :: proc(m: Matrix3f32) -> (t1, t2, t3: f32) {
|
|
|
|
+ T1 := math.atan2(m[2][1], m[2][2]);
|
|
|
|
+ C2 := math.sqrt(m[0][0]*m[0][0] + m[1][0]*m[1][0]);
|
|
|
|
+ T2 := math.atan2(-m[2][0], C2);
|
|
|
|
+ S1 := math.sin(T1);
|
|
|
|
+ C1 := math.cos(T1);
|
|
|
|
+ T3 := math.atan2(S1*m[0][2] - C1*m[0][1], C1*m[1][1] - S1*m[1][2]);
|
|
|
|
+ t1 = -T1;
|
|
|
|
+ t2 = -T2;
|
|
|
|
+ t3 = -T3;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+euler_angles_yxz_from_matrix3_f32 :: proc(m: Matrix3f32) -> (t1, t2, t3: f32) {
|
|
|
|
+ T1 := math.atan2(m[2][0], m[2][2]);
|
|
|
|
+ C2 := math.sqrt(m[0][1]*m[0][1] + m[1][1]*m[1][1]);
|
|
|
|
+ T2 := math.atan2(-m[2][1], C2);
|
|
|
|
+ S1 := math.sin(T1);
|
|
|
|
+ C1 := math.cos(T1);
|
|
|
|
+ T3 := math.atan2(S1*m[1][2] - C1*m[1][0], C1*m[0][0] - S1*m[0][2]);
|
|
|
|
+ t1 = T1;
|
|
|
|
+ t2 = T2;
|
|
|
|
+ t3 = T3;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+euler_angles_xzx_from_matrix3_f32 :: proc(m: Matrix3f32) -> (t1, t2, t3: f32) {
|
|
|
|
+ T1 := math.atan2(m[0][2], m[0][1]);
|
|
|
|
+ S2 := math.sqrt(m[1][0]*m[1][0] + m[2][0]*m[2][0]);
|
|
|
|
+ T2 := math.atan2(S2, m[0][0]);
|
|
|
|
+ S1 := math.sin(T1);
|
|
|
|
+ C1 := math.cos(T1);
|
|
|
|
+ T3 := math.atan2(C1*m[1][2] - S1*m[1][1], C1*m[2][2] - S1*m[2][1]);
|
|
|
|
+ t1 = T1;
|
|
|
|
+ t2 = T2;
|
|
|
|
+ t3 = T3;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+euler_angles_xyx_from_matrix3_f32 :: proc(m: Matrix3f32) -> (t1, t2, t3: f32) {
|
|
|
|
+ T1 := math.atan2(m[0][1], -m[0][2]);
|
|
|
|
+ S2 := math.sqrt(m[1][0]*m[1][0] + m[2][0]*m[2][0]);
|
|
|
|
+ T2 := math.atan2(S2, m[0][0]);
|
|
|
|
+ S1 := math.sin(T1);
|
|
|
|
+ C1 := math.cos(T1);
|
|
|
|
+ T3 := math.atan2(-C1*m[2][1] - S1*m[2][2], C1*m[1][1] + S1*m[1][2]);
|
|
|
|
+ t1 = T1;
|
|
|
|
+ t2 = T2;
|
|
|
|
+ t3 = T3;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+euler_angles_yxy_from_matrix3_f32 :: proc(m: Matrix3f32) -> (t1, t2, t3: f32) {
|
|
|
|
+ T1 := math.atan2(m[1][0], m[1][2]);
|
|
|
|
+ S2 := math.sqrt(m[0][1]*m[0][1] + m[2][1]*m[2][1]);
|
|
|
|
+ T2 := math.atan2(S2, m[1][1]);
|
|
|
|
+ S1 := math.sin(T1);
|
|
|
|
+ C1 := math.cos(T1);
|
|
|
|
+ T3 := math.atan2(C1*m[2][0] - S1*m[2][2], C1*m[0][0] - S1*m[0][2]);
|
|
|
|
+ t1 = T1;
|
|
|
|
+ t2 = T2;
|
|
|
|
+ t3 = T3;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+euler_angles_yzy_from_matrix3_f32 :: proc(m: Matrix3f32) -> (t1, t2, t3: f32) {
|
|
|
|
+ T1 := math.atan2(m[1][2], -m[1][0]);
|
|
|
|
+ S2 := math.sqrt(m[0][1]*m[0][1] + m[2][1]*m[2][1]);
|
|
|
|
+ T2 := math.atan2(S2, m[1][1]);
|
|
|
|
+ S1 := math.sin(T1);
|
|
|
|
+ C1 := math.cos(T1);
|
|
|
|
+ T3 := math.atan2(-S1*m[0][0] - C1*m[0][2], S1*m[2][0] + C1*m[2][2]);
|
|
|
|
+ t1 = T1;
|
|
|
|
+ t2 = T2;
|
|
|
|
+ t3 = T3;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+euler_angles_zyz_from_matrix3_f32 :: proc(m: Matrix3f32) -> (t1, t2, t3: f32) {
|
|
|
|
+ T1 := math.atan2(m[2][1], m[2][0]);
|
|
|
|
+ S2 := math.sqrt(m[0][2]*m[0][2] + m[1][2]*m[1][2]);
|
|
|
|
+ T2 := math.atan2(S2, m[2][2]);
|
|
|
|
+ S1 := math.sin(T1);
|
|
|
|
+ C1 := math.cos(T1);
|
|
|
|
+ T3 := math.atan2(C1*m[0][1] - S1*m[0][0], C1*m[1][1] - S1*m[1][0]);
|
|
|
|
+ t1 = T1;
|
|
|
|
+ t2 = T2;
|
|
|
|
+ t3 = T3;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+euler_angles_zxz_from_matrix3_f32 :: proc(m: Matrix3f32) -> (t1, t2, t3: f32) {
|
|
|
|
+ T1 := math.atan2(m[2][0], -m[2][1]);
|
|
|
|
+ S2 := math.sqrt(m[0][2]*m[0][2] + m[1][2]*m[1][2]);
|
|
|
|
+ T2 := math.atan2(S2, m[2][2]);
|
|
|
|
+ S1 := math.sin(T1);
|
|
|
|
+ C1 := math.cos(T1);
|
|
|
|
+ T3 := math.atan2(-C1*m[1][0] - S1*m[1][1], C1*m[0][0] + S1*m[0][1]);
|
|
|
|
+ t1 = T1;
|
|
|
|
+ t2 = T2;
|
|
|
|
+ t3 = T3;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+euler_angles_xzy_from_matrix3_f32 :: proc(m: Matrix3f32) -> (t1, t2, t3: f32) {
|
|
|
|
+ T1 := math.atan2(m[1][2], m[1][1]);
|
|
|
|
+ C2 := math.sqrt(m[0][0]*m[0][0] + m[2][0]*m[2][0]);
|
|
|
|
+ T2 := math.atan2(-m[1][0], C2);
|
|
|
|
+ S1 := math.sin(T1);
|
|
|
|
+ C1 := math.cos(T1);
|
|
|
|
+ T3 := math.atan2(S1*m[0][1] - C1*m[0][2], C1*m[2][2] - S1*m[2][1]);
|
|
|
|
+ t1 = T1;
|
|
|
|
+ t2 = T2;
|
|
|
|
+ t3 = T3;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+euler_angles_yzx_from_matrix3_f32 :: proc(m: Matrix3f32) -> (t1, t2, t3: f32) {
|
|
|
|
+ T1 := math.atan2(-m[0][2], m[0][0]);
|
|
|
|
+ C2 := math.sqrt(m[1][1]*m[1][1] + m[2][1]*m[2][1]);
|
|
|
|
+ T2 := math.atan2(m[0][1], C2);
|
|
|
|
+ S1 := math.sin(T1);
|
|
|
|
+ C1 := math.cos(T1);
|
|
|
|
+ T3 := math.atan2(S1*m[1][0] + C1*m[1][2], S1*m[2][0] + C1*m[2][2]);
|
|
|
|
+ t1 = T1;
|
|
|
|
+ t2 = T2;
|
|
|
|
+ t3 = T3;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+euler_angles_zyx_from_matrix3_f32 :: proc(m: Matrix3f32) -> (t1, t2, t3: f32) {
|
|
|
|
+ T1 := math.atan2(m[0][1], m[0][0]);
|
|
|
|
+ C2 := math.sqrt(m[1][2]*m[1][2] + m[2][2]*m[2][2]);
|
|
|
|
+ T2 := math.atan2(-m[0][2], C2);
|
|
|
|
+ S1 := math.sin(T1);
|
|
|
|
+ C1 := math.cos(T1);
|
|
|
|
+ T3 := math.atan2(S1*m[2][0] - C1*m[2][1], C1*m[1][1] - S1*m[1][0]);
|
|
|
|
+ t1 = T1;
|
|
|
|
+ t2 = T2;
|
|
|
|
+ t3 = T3;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+euler_angles_zxy_from_matrix3_f32 :: proc(m: Matrix3f32) -> (t1, t2, t3: f32) {
|
|
|
|
+ T1 := math.atan2(-m[1][0], m[1][1]);
|
|
|
|
+ C2 := math.sqrt(m[0][2]*m[0][2] + m[2][2]*m[2][2]);
|
|
|
|
+ T2 := math.atan2(m[1][2], C2);
|
|
|
|
+ S1 := math.sin(T1);
|
|
|
|
+ C1 := math.cos(T1);
|
|
|
|
+ T3 := math.atan2(C1*m[2][0] + S1*m[2][1], C1*m[0][0] + S1*m[0][1]);
|
|
|
|
+ t1 = T1;
|
|
|
|
+ t2 = T2;
|
|
|
|
+ t3 = T3;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+// Matrix4
|
|
|
|
|
|
|
|
|
|
matrix4_from_euler_angle_x_f32 :: proc(angle_x: f32) -> (m: Matrix4f32) {
|
|
matrix4_from_euler_angle_x_f32 :: proc(angle_x: f32) -> (m: Matrix4f32) {
|