|
@@ -0,0 +1,1356 @@
|
|
|
|
+package linalg
|
|
|
|
+
|
|
|
|
+import "core:math"
|
|
|
|
+
|
|
|
|
+euler_angles_from_matrix3_f16 :: proc(m: Matrix3f16, order: Euler_Angle_Order) -> (t1, t2, t3: f16) {
|
|
|
|
+ switch order {
|
|
|
|
+ case .XYZ: t1, t2, t3 = euler_angles_xyz_from_matrix3(m);
|
|
|
|
+ case .XZY: t1, t2, t3 = euler_angles_xzy_from_matrix3(m);
|
|
|
|
+ case .YXZ: t1, t2, t3 = euler_angles_yxz_from_matrix3(m);
|
|
|
|
+ case .YZX: t1, t2, t3 = euler_angles_yzx_from_matrix3(m);
|
|
|
|
+ case .ZXY: t1, t2, t3 = euler_angles_zxy_from_matrix3(m);
|
|
|
|
+ case .ZYX: t1, t2, t3 = euler_angles_zyx_from_matrix3(m);
|
|
|
|
+ case .XYX: t1, t2, t3 = euler_angles_xyx_from_matrix3(m);
|
|
|
|
+ case .XZX: t1, t2, t3 = euler_angles_xzx_from_matrix3(m);
|
|
|
|
+ case .YXY: t1, t2, t3 = euler_angles_yxy_from_matrix3(m);
|
|
|
|
+ case .YZY: t1, t2, t3 = euler_angles_yzy_from_matrix3(m);
|
|
|
|
+ case .ZXZ: t1, t2, t3 = euler_angles_zxz_from_matrix3(m);
|
|
|
|
+ case .ZYZ: t1, t2, t3 = euler_angles_zyz_from_matrix3(m);
|
|
|
|
+ }
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+euler_angles_from_matrix4_f16 :: proc(m: Matrix4f16, order: Euler_Angle_Order) -> (t1, t2, t3: f16) {
|
|
|
|
+ switch order {
|
|
|
|
+ case .XYZ: t1, t2, t3 = euler_angles_xyz_from_matrix4(m);
|
|
|
|
+ case .XZY: t1, t2, t3 = euler_angles_xzy_from_matrix4(m);
|
|
|
|
+ case .YXZ: t1, t2, t3 = euler_angles_yxz_from_matrix4(m);
|
|
|
|
+ case .YZX: t1, t2, t3 = euler_angles_yzx_from_matrix4(m);
|
|
|
|
+ case .ZXY: t1, t2, t3 = euler_angles_zxy_from_matrix4(m);
|
|
|
|
+ case .ZYX: t1, t2, t3 = euler_angles_zyx_from_matrix4(m);
|
|
|
|
+ case .XYX: t1, t2, t3 = euler_angles_xyx_from_matrix4(m);
|
|
|
|
+ case .XZX: t1, t2, t3 = euler_angles_xzx_from_matrix4(m);
|
|
|
|
+ case .YXY: t1, t2, t3 = euler_angles_yxy_from_matrix4(m);
|
|
|
|
+ case .YZY: t1, t2, t3 = euler_angles_yzy_from_matrix4(m);
|
|
|
|
+ case .ZXZ: t1, t2, t3 = euler_angles_zxz_from_matrix4(m);
|
|
|
|
+ case .ZYZ: t1, t2, t3 = euler_angles_zyz_from_matrix4(m);
|
|
|
|
+ }
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+euler_angles_from_quaternion_f16 :: proc(m: Quaternionf16, order: Euler_Angle_Order) -> (t1, t2, t3: f16) {
|
|
|
|
+ switch order {
|
|
|
|
+ case .XYZ: t1, t2, t3 = euler_angles_xyz_from_quaternion(m);
|
|
|
|
+ case .XZY: t1, t2, t3 = euler_angles_xzy_from_quaternion(m);
|
|
|
|
+ case .YXZ: t1, t2, t3 = euler_angles_yxz_from_quaternion(m);
|
|
|
|
+ case .YZX: t1, t2, t3 = euler_angles_yzx_from_quaternion(m);
|
|
|
|
+ case .ZXY: t1, t2, t3 = euler_angles_zxy_from_quaternion(m);
|
|
|
|
+ case .ZYX: t1, t2, t3 = euler_angles_zyx_from_quaternion(m);
|
|
|
|
+ case .XYX: t1, t2, t3 = euler_angles_xyx_from_quaternion(m);
|
|
|
|
+ case .XZX: t1, t2, t3 = euler_angles_xzx_from_quaternion(m);
|
|
|
|
+ case .YXY: t1, t2, t3 = euler_angles_yxy_from_quaternion(m);
|
|
|
|
+ case .YZY: t1, t2, t3 = euler_angles_yzy_from_quaternion(m);
|
|
|
|
+ case .ZXZ: t1, t2, t3 = euler_angles_zxz_from_quaternion(m);
|
|
|
|
+ case .ZYZ: t1, t2, t3 = euler_angles_zyz_from_quaternion(m);
|
|
|
|
+ }
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+matrix3_from_euler_angles_f16 :: proc(t1, t2, t3: f16, order: Euler_Angle_Order) -> (m: Matrix3f16) {
|
|
|
|
+ switch order {
|
|
|
|
+ case .XYZ: return matrix3_from_euler_angles_xyz(t1, t2, t3); // m1, m2, m3 = X(t1), Y(t2), Z(t3);
|
|
|
|
+ case .XZY: return matrix3_from_euler_angles_xzy(t1, t2, t3); // m1, m2, m3 = X(t1), Z(t2), Y(t3);
|
|
|
|
+ case .YXZ: return matrix3_from_euler_angles_yxz(t1, t2, t3); // m1, m2, m3 = Y(t1), X(t2), Z(t3);
|
|
|
|
+ case .YZX: return matrix3_from_euler_angles_yzx(t1, t2, t3); // m1, m2, m3 = Y(t1), Z(t2), X(t3);
|
|
|
|
+ case .ZXY: return matrix3_from_euler_angles_zxy(t1, t2, t3); // m1, m2, m3 = Z(t1), X(t2), Y(t3);
|
|
|
|
+ case .ZYX: return matrix3_from_euler_angles_zyx(t1, t2, t3); // m1, m2, m3 = Z(t1), Y(t2), X(t3);
|
|
|
|
+ case .XYX: return matrix3_from_euler_angles_xyx(t1, t2, t3); // m1, m2, m3 = X(t1), Y(t2), X(t3);
|
|
|
|
+ case .XZX: return matrix3_from_euler_angles_xzx(t1, t2, t3); // m1, m2, m3 = X(t1), Z(t2), X(t3);
|
|
|
|
+ case .YXY: return matrix3_from_euler_angles_yxy(t1, t2, t3); // m1, m2, m3 = Y(t1), X(t2), Y(t3);
|
|
|
|
+ case .YZY: return matrix3_from_euler_angles_yzy(t1, t2, t3); // m1, m2, m3 = Y(t1), Z(t2), Y(t3);
|
|
|
|
+ case .ZXZ: return matrix3_from_euler_angles_zxz(t1, t2, t3); // m1, m2, m3 = Z(t1), X(t2), Z(t3);
|
|
|
|
+ case .ZYZ: return matrix3_from_euler_angles_zyz(t1, t2, t3); // m1, m2, m3 = Z(t1), Y(t2), Z(t3);
|
|
|
|
+ }
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+matrix4_from_euler_angles_f16 :: proc(t1, t2, t3: f16, order: Euler_Angle_Order) -> (m: Matrix4f16) {
|
|
|
|
+ switch order {
|
|
|
|
+ case .XYZ: return matrix4_from_euler_angles_xyz(t1, t2, t3); // m1, m2, m3 = X(t1), Y(t2), Z(t3);
|
|
|
|
+ case .XZY: return matrix4_from_euler_angles_xzy(t1, t2, t3); // m1, m2, m3 = X(t1), Z(t2), Y(t3);
|
|
|
|
+ case .YXZ: return matrix4_from_euler_angles_yxz(t1, t2, t3); // m1, m2, m3 = Y(t1), X(t2), Z(t3);
|
|
|
|
+ case .YZX: return matrix4_from_euler_angles_yzx(t1, t2, t3); // m1, m2, m3 = Y(t1), Z(t2), X(t3);
|
|
|
|
+ case .ZXY: return matrix4_from_euler_angles_zxy(t1, t2, t3); // m1, m2, m3 = Z(t1), X(t2), Y(t3);
|
|
|
|
+ case .ZYX: return matrix4_from_euler_angles_zyx(t1, t2, t3); // m1, m2, m3 = Z(t1), Y(t2), X(t3);
|
|
|
|
+ case .XYX: return matrix4_from_euler_angles_xyx(t1, t2, t3); // m1, m2, m3 = X(t1), Y(t2), X(t3);
|
|
|
|
+ case .XZX: return matrix4_from_euler_angles_xzx(t1, t2, t3); // m1, m2, m3 = X(t1), Z(t2), X(t3);
|
|
|
|
+ case .YXY: return matrix4_from_euler_angles_yxy(t1, t2, t3); // m1, m2, m3 = Y(t1), X(t2), Y(t3);
|
|
|
|
+ case .YZY: return matrix4_from_euler_angles_yzy(t1, t2, t3); // m1, m2, m3 = Y(t1), Z(t2), Y(t3);
|
|
|
|
+ case .ZXZ: return matrix4_from_euler_angles_zxz(t1, t2, t3); // m1, m2, m3 = Z(t1), X(t2), Z(t3);
|
|
|
|
+ case .ZYZ: return matrix4_from_euler_angles_zyz(t1, t2, t3); // m1, m2, m3 = Z(t1), Y(t2), Z(t3);
|
|
|
|
+ }
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+quaternion_from_euler_angles_f16 :: proc(t1, t2, t3: f16, order: Euler_Angle_Order) -> Quaternionf16 {
|
|
|
|
+ X :: quaternion_from_euler_angle_x;
|
|
|
|
+ Y :: quaternion_from_euler_angle_y;
|
|
|
|
+ Z :: quaternion_from_euler_angle_z;
|
|
|
|
+
|
|
|
|
+ q1, q2, q3: Quaternionf16;
|
|
|
|
+
|
|
|
|
+ switch order {
|
|
|
|
+ case .XYZ: q1, q2, q3 = X(t1), Y(t2), Z(t3);
|
|
|
|
+ case .XZY: q1, q2, q3 = X(t1), Z(t2), Y(t3);
|
|
|
|
+ case .YXZ: q1, q2, q3 = Y(t1), X(t2), Z(t3);
|
|
|
|
+ case .YZX: q1, q2, q3 = Y(t1), Z(t2), X(t3);
|
|
|
|
+ case .ZXY: q1, q2, q3 = Z(t1), X(t2), Y(t3);
|
|
|
|
+ case .ZYX: q1, q2, q3 = Z(t1), Y(t2), X(t3);
|
|
|
|
+ case .XYX: q1, q2, q3 = X(t1), Y(t2), X(t3);
|
|
|
|
+ case .XZX: q1, q2, q3 = X(t1), Z(t2), X(t3);
|
|
|
|
+ case .YXY: q1, q2, q3 = Y(t1), X(t2), Y(t3);
|
|
|
|
+ case .YZY: q1, q2, q3 = Y(t1), Z(t2), Y(t3);
|
|
|
|
+ case .ZXZ: q1, q2, q3 = Z(t1), X(t2), Z(t3);
|
|
|
|
+ case .ZYZ: q1, q2, q3 = Z(t1), Y(t2), Z(t3);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ return q1 * (q2 * q3);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+// Quaternionf16s
|
|
|
|
+
|
|
|
|
+quaternion_from_euler_angle_x_f16 :: proc(angle_x: f16) -> (q: Quaternionf16) {
|
|
|
|
+ return quaternion_angle_axis_f16(angle_x, {1, 0, 0});
|
|
|
|
+}
|
|
|
|
+quaternion_from_euler_angle_y_f16 :: proc(angle_y: f16) -> (q: Quaternionf16) {
|
|
|
|
+ return quaternion_angle_axis_f16(angle_y, {0, 1, 0});
|
|
|
|
+}
|
|
|
|
+quaternion_from_euler_angle_z_f16 :: proc(angle_z: f16) -> (q: Quaternionf16) {
|
|
|
|
+ return quaternion_angle_axis_f16(angle_z, {0, 0, 1});
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+quaternion_from_pitch_yaw_roll_f16 :: proc(pitch, yaw, roll: f16) -> Quaternionf16 {
|
|
|
|
+ a, b, c := pitch, yaw, roll;
|
|
|
|
+
|
|
|
|
+ ca, sa := math.cos(a*0.5), math.sin(a*0.5);
|
|
|
|
+ cb, sb := math.cos(b*0.5), math.sin(b*0.5);
|
|
|
|
+ cc, sc := math.cos(c*0.5), math.sin(c*0.5);
|
|
|
|
+
|
|
|
|
+ q: Quaternionf16;
|
|
|
|
+ q.x = sa*cb*cc - ca*sb*sc;
|
|
|
|
+ q.y = ca*sb*cc + sa*cb*sc;
|
|
|
|
+ q.z = ca*cb*sc - sa*sb*cc;
|
|
|
|
+ q.w = ca*cb*cc + sa*sb*sc;
|
|
|
|
+ return q;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+roll_from_quaternion_f16 :: proc(q: Quaternionf16) -> f16 {
|
|
|
|
+ return math.atan2(2 * q.x*q.y + q.w*q.z, q.w*q.w + q.x*q.x - q.y*q.y - q.z*q.z);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+pitch_from_quaternion_f16 :: proc(q: Quaternionf16) -> f16 {
|
|
|
|
+ y := 2 * (q.y*q.z + q.w*q.w);
|
|
|
|
+ x := q.w*q.w - q.x*q.x - q.y*q.y + q.z*q.z;
|
|
|
|
+
|
|
|
|
+ if abs(x) <= F16_EPSILON && abs(y) <= F16_EPSILON {
|
|
|
|
+ return 2 * math.atan2(q.x, q.w);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ return math.atan2(y, x);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+yaw_from_quaternion_f16 :: proc(q: Quaternionf16) -> f16 {
|
|
|
|
+ return math.asin(clamp(-2 * (q.x*q.z - q.w*q.y), -1, 1));
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+pitch_yaw_roll_from_quaternion_f16 :: proc(q: Quaternionf16) -> (pitch, yaw, roll: f16) {
|
|
|
|
+ pitch = pitch_from_quaternion(q);
|
|
|
|
+ yaw = yaw_from_quaternion(q);
|
|
|
|
+ roll = roll_from_quaternion(q);
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+euler_angles_xyz_from_quaternion_f16 :: proc(q: Quaternionf16) -> (t1, t2, t3: f16) {
|
|
|
|
+ return euler_angles_xyz_from_matrix4(matrix4_from_quaternion(q));
|
|
|
|
+}
|
|
|
|
+euler_angles_yxz_from_quaternion_f16 :: proc(q: Quaternionf16) -> (t1, t2, t3: f16) {
|
|
|
|
+ return euler_angles_yxz_from_matrix4(matrix4_from_quaternion(q));
|
|
|
|
+}
|
|
|
|
+euler_angles_xzx_from_quaternion_f16 :: proc(q: Quaternionf16) -> (t1, t2, t3: f16) {
|
|
|
|
+ return euler_angles_xzx_from_matrix4(matrix4_from_quaternion(q));
|
|
|
|
+}
|
|
|
|
+euler_angles_xyx_from_quaternion_f16 :: proc(q: Quaternionf16) -> (t1, t2, t3: f16) {
|
|
|
|
+ return euler_angles_xyx_from_matrix4(matrix4_from_quaternion(q));
|
|
|
|
+}
|
|
|
|
+euler_angles_yxy_from_quaternion_f16 :: proc(q: Quaternionf16) -> (t1, t2, t3: f16) {
|
|
|
|
+ return euler_angles_yxy_from_matrix4(matrix4_from_quaternion(q));
|
|
|
|
+}
|
|
|
|
+euler_angles_yzy_from_quaternion_f16 :: proc(q: Quaternionf16) -> (t1, t2, t3: f16) {
|
|
|
|
+ return euler_angles_yzy_from_matrix4(matrix4_from_quaternion(q));
|
|
|
|
+}
|
|
|
|
+euler_angles_zyz_from_quaternion_f16 :: proc(q: Quaternionf16) -> (t1, t2, t3: f16) {
|
|
|
|
+ return euler_angles_zyz_from_matrix4(matrix4_from_quaternion(q));
|
|
|
|
+}
|
|
|
|
+euler_angles_zxz_from_quaternion_f16 :: proc(q: Quaternionf16) -> (t1, t2, t3: f16) {
|
|
|
|
+ return euler_angles_zxz_from_matrix4(matrix4_from_quaternion(q));
|
|
|
|
+}
|
|
|
|
+euler_angles_xzy_from_quaternion_f16 :: proc(q: Quaternionf16) -> (t1, t2, t3: f16) {
|
|
|
|
+ return euler_angles_xzy_from_matrix4(matrix4_from_quaternion(q));
|
|
|
|
+}
|
|
|
|
+euler_angles_yzx_from_quaternion_f16 :: proc(q: Quaternionf16) -> (t1, t2, t3: f16) {
|
|
|
|
+ return euler_angles_yzx_from_matrix4(matrix4_from_quaternion(q));
|
|
|
|
+}
|
|
|
|
+euler_angles_zyx_from_quaternion_f16 :: proc(q: Quaternionf16) -> (t1, t2, t3: f16) {
|
|
|
|
+ return euler_angles_zyx_from_matrix4(matrix4_from_quaternion(q));
|
|
|
|
+}
|
|
|
|
+euler_angles_zxy_from_quaternion_f16 :: proc(q: Quaternionf16) -> (t1, t2, t3: f16) {
|
|
|
|
+ return euler_angles_zxy_from_matrix4(matrix4_from_quaternion(q));
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+// Matrix3
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+matrix3_from_euler_angle_x_f16 :: proc(angle_x: f16) -> (m: Matrix3f16) {
|
|
|
|
+ cos_x, sin_x := math.cos(angle_x), math.sin(angle_x);
|
|
|
|
+ m[0][0] = 1;
|
|
|
|
+ m[1][1] = +cos_x;
|
|
|
|
+ m[2][1] = +sin_x;
|
|
|
|
+ m[1][2] = -sin_x;
|
|
|
|
+ m[2][2] = +cos_x;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+matrix3_from_euler_angle_y_f16 :: proc(angle_y: f16) -> (m: Matrix3f16) {
|
|
|
|
+ cos_y, sin_y := math.cos(angle_y), math.sin(angle_y);
|
|
|
|
+ m[0][0] = +cos_y;
|
|
|
|
+ m[2][0] = -sin_y;
|
|
|
|
+ m[1][1] = 1;
|
|
|
|
+ m[0][2] = +sin_y;
|
|
|
|
+ m[2][2] = +cos_y;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+matrix3_from_euler_angle_z_f16 :: proc(angle_z: f16) -> (m: Matrix3f16) {
|
|
|
|
+ cos_z, sin_z := math.cos(angle_z), math.sin(angle_z);
|
|
|
|
+ m[0][0] = +cos_z;
|
|
|
|
+ m[1][0] = +sin_z;
|
|
|
|
+ m[1][1] = +cos_z;
|
|
|
|
+ m[0][1] = -sin_z;
|
|
|
|
+ m[2][2] = 1;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+matrix3_from_derived_euler_angle_x_f16 :: proc(angle_x: f16, angular_velocity_x: f16) -> (m: Matrix3f16) {
|
|
|
|
+ cos_x := math.cos(angle_x) * angular_velocity_x;
|
|
|
|
+ sin_x := math.sin(angle_x) * angular_velocity_x;
|
|
|
|
+ m[0][0] = 1;
|
|
|
|
+ m[1][1] = +cos_x;
|
|
|
|
+ m[2][1] = +sin_x;
|
|
|
|
+ m[1][2] = -sin_x;
|
|
|
|
+ m[2][2] = +cos_x;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+matrix3_from_derived_euler_angle_y_f16 :: proc(angle_y: f16, angular_velocity_y: f16) -> (m: Matrix3f16) {
|
|
|
|
+ cos_y := math.cos(angle_y) * angular_velocity_y;
|
|
|
|
+ sin_y := math.sin(angle_y) * angular_velocity_y;
|
|
|
|
+ m[0][0] = +cos_y;
|
|
|
|
+ m[2][0] = -sin_y;
|
|
|
|
+ m[1][1] = 1;
|
|
|
|
+ m[0][2] = +sin_y;
|
|
|
|
+ m[2][2] = +cos_y;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+matrix3_from_derived_euler_angle_z_f16 :: proc(angle_z: f16, angular_velocity_z: f16) -> (m: Matrix3f16) {
|
|
|
|
+ cos_z := math.cos(angle_z) * angular_velocity_z;
|
|
|
|
+ sin_z := math.sin(angle_z) * angular_velocity_z;
|
|
|
|
+ m[0][0] = +cos_z;
|
|
|
|
+ m[1][0] = +sin_z;
|
|
|
|
+ m[1][1] = +cos_z;
|
|
|
|
+ m[0][1] = -sin_z;
|
|
|
|
+ m[2][2] = 1;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+matrix3_from_euler_angles_xy_f16 :: proc(angle_x, angle_y: f16) -> (m: Matrix3f16) {
|
|
|
|
+ cos_x, sin_x := math.cos(angle_x), math.sin(angle_x);
|
|
|
|
+ cos_y, sin_y := math.cos(angle_y), math.sin(angle_y);
|
|
|
|
+ m[0][0] = cos_y;
|
|
|
|
+ m[1][0] = -sin_x * - sin_y;
|
|
|
|
+ m[2][0] = -cos_x * - sin_y;
|
|
|
|
+ m[1][1] = cos_x;
|
|
|
|
+ m[2][1] = sin_x;
|
|
|
|
+ m[0][2] = sin_y;
|
|
|
|
+ m[1][2] = -sin_x * cos_y;
|
|
|
|
+ m[2][2] = cos_x * cos_y;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+matrix3_from_euler_angles_yx_f16 :: proc(angle_y, angle_x: f16) -> (m: Matrix3f16) {
|
|
|
|
+ cos_x, sin_x := math.cos(angle_x), math.sin(angle_x);
|
|
|
|
+ cos_y, sin_y := math.cos(angle_y), math.sin(angle_y);
|
|
|
|
+ m[0][0] = cos_y;
|
|
|
|
+ m[2][0] = -sin_y;
|
|
|
|
+ m[0][1] = sin_y*sin_x;
|
|
|
|
+ m[1][1] = cos_x;
|
|
|
|
+ m[2][1] = cos_y*sin_x;
|
|
|
|
+ m[0][2] = sin_y*cos_x;
|
|
|
|
+ m[1][2] = -sin_x;
|
|
|
|
+ m[2][2] = cos_y*cos_x;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+matrix3_from_euler_angles_xz_f16 :: proc(angle_x, angle_z: f16) -> (m: Matrix3f16) {
|
|
|
|
+ return mul(matrix3_from_euler_angle_x(angle_x), matrix3_from_euler_angle_z(angle_z));
|
|
|
|
+}
|
|
|
|
+matrix3_from_euler_angles_zx_f16 :: proc(angle_z, angle_x: f16) -> (m: Matrix3f16) {
|
|
|
|
+ return mul(matrix3_from_euler_angle_z(angle_z), matrix3_from_euler_angle_x(angle_x));
|
|
|
|
+}
|
|
|
|
+matrix3_from_euler_angles_yz_f16 :: proc(angle_y, angle_z: f16) -> (m: Matrix3f16) {
|
|
|
|
+ return mul(matrix3_from_euler_angle_y(angle_y), matrix3_from_euler_angle_z(angle_z));
|
|
|
|
+}
|
|
|
|
+matrix3_from_euler_angles_zy_f16 :: proc(angle_z, angle_y: f16) -> (m: Matrix3f16) {
|
|
|
|
+ return mul(matrix3_from_euler_angle_z(angle_z), matrix3_from_euler_angle_y(angle_y));
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+matrix3_from_euler_angles_xyz_f16 :: proc(t1, t2, t3: f16) -> (m: Matrix3f16) {
|
|
|
|
+ c1 := math.cos(-t1);
|
|
|
|
+ c2 := math.cos(-t2);
|
|
|
|
+ c3 := math.cos(-t3);
|
|
|
|
+ s1 := math.sin(-t1);
|
|
|
|
+ s2 := math.sin(-t2);
|
|
|
|
+ s3 := math.sin(-t3);
|
|
|
|
+
|
|
|
|
+ m[0][0] = c2 * c3;
|
|
|
|
+ m[0][1] =-c1 * s3 + s1 * s2 * c3;
|
|
|
|
+ m[0][2] = s1 * s3 + c1 * s2 * c3;
|
|
|
|
+ m[1][0] = c2 * s3;
|
|
|
|
+ m[1][1] = c1 * c3 + s1 * s2 * s3;
|
|
|
|
+ m[1][2] =-s1 * c3 + c1 * s2 * s3;
|
|
|
|
+ m[2][0] =-s2;
|
|
|
|
+ m[2][1] = s1 * c2;
|
|
|
|
+ m[2][2] = c1 * c2;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+matrix3_from_euler_angles_yxz_f16 :: proc(yaw, pitch, roll: f16) -> (m: Matrix3f16) {
|
|
|
|
+ ch := math.cos(yaw);
|
|
|
|
+ sh := math.sin(yaw);
|
|
|
|
+ cp := math.cos(pitch);
|
|
|
|
+ sp := math.sin(pitch);
|
|
|
|
+ cb := math.cos(roll);
|
|
|
|
+ sb := math.sin(roll);
|
|
|
|
+
|
|
|
|
+ m[0][0] = ch * cb + sh * sp * sb;
|
|
|
|
+ m[0][1] = sb * cp;
|
|
|
|
+ m[0][2] = -sh * cb + ch * sp * sb;
|
|
|
|
+ m[1][0] = -ch * sb + sh * sp * cb;
|
|
|
|
+ m[1][1] = cb * cp;
|
|
|
|
+ m[1][2] = sb * sh + ch * sp * cb;
|
|
|
|
+ m[2][0] = sh * cp;
|
|
|
|
+ m[2][1] = -sp;
|
|
|
|
+ m[2][2] = ch * cp;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+matrix3_from_euler_angles_xzx_f16 :: proc(t1, t2, t3: f16) -> (m: Matrix3f16) {
|
|
|
|
+ c1 := math.cos(t1);
|
|
|
|
+ s1 := math.sin(t1);
|
|
|
|
+ c2 := math.cos(t2);
|
|
|
|
+ s2 := math.sin(t2);
|
|
|
|
+ c3 := math.cos(t3);
|
|
|
|
+ s3 := math.sin(t3);
|
|
|
|
+
|
|
|
|
+ m[0][0] = c2;
|
|
|
|
+ m[0][1] = c1 * s2;
|
|
|
|
+ m[0][2] = s1 * s2;
|
|
|
|
+ m[1][0] =-c3 * s2;
|
|
|
|
+ m[1][1] = c1 * c2 * c3 - s1 * s3;
|
|
|
|
+ m[1][2] = c1 * s3 + c2 * c3 * s1;
|
|
|
|
+ m[2][0] = s2 * s3;
|
|
|
|
+ m[2][1] =-c3 * s1 - c1 * c2 * s3;
|
|
|
|
+ m[2][2] = c1 * c3 - c2 * s1 * s3;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+matrix3_from_euler_angles_xyx_f16 :: proc(t1, t2, t3: f16) -> (m: Matrix3f16) {
|
|
|
|
+ c1 := math.cos(t1);
|
|
|
|
+ s1 := math.sin(t1);
|
|
|
|
+ c2 := math.cos(t2);
|
|
|
|
+ s2 := math.sin(t2);
|
|
|
|
+ c3 := math.cos(t3);
|
|
|
|
+ s3 := math.sin(t3);
|
|
|
|
+
|
|
|
|
+ m[0][0] = c2;
|
|
|
|
+ m[0][1] = s1 * s2;
|
|
|
|
+ m[0][2] =-c1 * s2;
|
|
|
|
+ m[1][0] = s2 * s3;
|
|
|
|
+ m[1][1] = c1 * c3 - c2 * s1 * s3;
|
|
|
|
+ m[1][2] = c3 * s1 + c1 * c2 * s3;
|
|
|
|
+ m[2][0] = c3 * s2;
|
|
|
|
+ m[2][1] =-c1 * s3 - c2 * c3 * s1;
|
|
|
|
+ m[2][2] = c1 * c2 * c3 - s1 * s3;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+matrix3_from_euler_angles_yxy_f16 :: proc(t1, t2, t3: f16) -> (m: Matrix3f16) {
|
|
|
|
+ c1 := math.cos(t1);
|
|
|
|
+ s1 := math.sin(t1);
|
|
|
|
+ c2 := math.cos(t2);
|
|
|
|
+ s2 := math.sin(t2);
|
|
|
|
+ c3 := math.cos(t3);
|
|
|
|
+ s3 := math.sin(t3);
|
|
|
|
+
|
|
|
|
+ m[0][0] = c1 * c3 - c2 * s1 * s3;
|
|
|
|
+ m[0][1] = s2* s3;
|
|
|
|
+ m[0][2] =-c3 * s1 - c1 * c2 * s3;
|
|
|
|
+ m[1][0] = s1 * s2;
|
|
|
|
+ m[1][1] = c2;
|
|
|
|
+ m[1][2] = c1 * s2;
|
|
|
|
+ m[2][0] = c1 * s3 + c2 * c3 * s1;
|
|
|
|
+ m[2][1] =-c3 * s2;
|
|
|
|
+ m[2][2] = c1 * c2 * c3 - s1 * s3;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+matrix3_from_euler_angles_yzy_f16 :: proc(t1, t2, t3: f16) -> (m: Matrix3f16) {
|
|
|
|
+ c1 := math.cos(t1);
|
|
|
|
+ s1 := math.sin(t1);
|
|
|
|
+ c2 := math.cos(t2);
|
|
|
|
+ s2 := math.sin(t2);
|
|
|
|
+ c3 := math.cos(t3);
|
|
|
|
+ s3 := math.sin(t3);
|
|
|
|
+
|
|
|
|
+ m[0][0] = c1 * c2 * c3 - s1 * s3;
|
|
|
|
+ m[0][1] = c3 * s2;
|
|
|
|
+ m[0][2] =-c1 * s3 - c2 * c3 * s1;
|
|
|
|
+ m[1][0] =-c1 * s2;
|
|
|
|
+ m[1][1] = c2;
|
|
|
|
+ m[1][2] = s1 * s2;
|
|
|
|
+ m[2][0] = c3 * s1 + c1 * c2 * s3;
|
|
|
|
+ m[2][1] = s2 * s3;
|
|
|
|
+ m[2][2] = c1 * c3 - c2 * s1 * s3;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+matrix3_from_euler_angles_zyz_f16 :: proc(t1, t2, t3: f16) -> (m: Matrix3f16) {
|
|
|
|
+ c1 := math.cos(t1);
|
|
|
|
+ s1 := math.sin(t1);
|
|
|
|
+ c2 := math.cos(t2);
|
|
|
|
+ s2 := math.sin(t2);
|
|
|
|
+ c3 := math.cos(t3);
|
|
|
|
+ s3 := math.sin(t3);
|
|
|
|
+
|
|
|
|
+ m[0][0] = c1 * c2 * c3 - s1 * s3;
|
|
|
|
+ m[0][1] = c1 * s3 + c2 * c3 * s1;
|
|
|
|
+ m[0][2] =-c3 * s2;
|
|
|
|
+ m[1][0] =-c3 * s1 - c1 * c2 * s3;
|
|
|
|
+ m[1][1] = c1 * c3 - c2 * s1 * s3;
|
|
|
|
+ m[1][2] = s2 * s3;
|
|
|
|
+ m[2][0] = c1 * s2;
|
|
|
|
+ m[2][1] = s1 * s2;
|
|
|
|
+ m[2][2] = c2;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+matrix3_from_euler_angles_zxz_f16 :: proc(t1, t2, t3: f16) -> (m: Matrix3f16) {
|
|
|
|
+ c1 := math.cos(t1);
|
|
|
|
+ s1 := math.sin(t1);
|
|
|
|
+ c2 := math.cos(t2);
|
|
|
|
+ s2 := math.sin(t2);
|
|
|
|
+ c3 := math.cos(t3);
|
|
|
|
+ s3 := math.sin(t3);
|
|
|
|
+
|
|
|
|
+ m[0][0] = c1 * c3 - c2 * s1 * s3;
|
|
|
|
+ m[0][1] = c3 * s1 + c1 * c2 * s3;
|
|
|
|
+ m[0][2] = s2 *s3;
|
|
|
|
+ m[1][0] =-c1 * s3 - c2 * c3 * s1;
|
|
|
|
+ m[1][1] = c1 * c2 * c3 - s1 * s3;
|
|
|
|
+ m[1][2] = c3 * s2;
|
|
|
|
+ m[2][0] = s1 * s2;
|
|
|
|
+ m[2][1] =-c1 * s2;
|
|
|
|
+ m[2][2] = c2;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+matrix3_from_euler_angles_xzy_f16 :: proc(t1, t2, t3: f16) -> (m: Matrix3f16) {
|
|
|
|
+ c1 := math.cos(t1);
|
|
|
|
+ s1 := math.sin(t1);
|
|
|
|
+ c2 := math.cos(t2);
|
|
|
|
+ s2 := math.sin(t2);
|
|
|
|
+ c3 := math.cos(t3);
|
|
|
|
+ s3 := math.sin(t3);
|
|
|
|
+
|
|
|
|
+ m[0][0] = c2 * c3;
|
|
|
|
+ m[0][1] = s1 * s3 + c1 * c3 * s2;
|
|
|
|
+ m[0][2] = c3 * s1 * s2 - c1 * s3;
|
|
|
|
+ m[1][0] =-s2;
|
|
|
|
+ m[1][1] = c1 * c2;
|
|
|
|
+ m[1][2] = c2 * s1;
|
|
|
|
+ m[2][0] = c2 * s3;
|
|
|
|
+ m[2][1] = c1 * s2 * s3 - c3 * s1;
|
|
|
|
+ m[2][2] = c1 * c3 + s1 * s2 *s3;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+matrix3_from_euler_angles_yzx_f16 :: proc(t1, t2, t3: f16) -> (m: Matrix3f16) {
|
|
|
|
+ c1 := math.cos(t1);
|
|
|
|
+ s1 := math.sin(t1);
|
|
|
|
+ c2 := math.cos(t2);
|
|
|
|
+ s2 := math.sin(t2);
|
|
|
|
+ c3 := math.cos(t3);
|
|
|
|
+ s3 := math.sin(t3);
|
|
|
|
+
|
|
|
|
+ m[0][0] = c1 * c2;
|
|
|
|
+ m[0][1] = s2;
|
|
|
|
+ m[0][2] =-c2 * s1;
|
|
|
|
+ m[1][0] = s1 * s3 - c1 * c3 * s2;
|
|
|
|
+ m[1][1] = c2 * c3;
|
|
|
|
+ m[1][2] = c1 * s3 + c3 * s1 * s2;
|
|
|
|
+ m[2][0] = c3 * s1 + c1 * s2 * s3;
|
|
|
|
+ m[2][1] =-c2 * s3;
|
|
|
|
+ m[2][2] = c1 * c3 - s1 * s2 * s3;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+matrix3_from_euler_angles_zyx_f16 :: proc(t1, t2, t3: f16) -> (m: Matrix3f16) {
|
|
|
|
+ c1 := math.cos(t1);
|
|
|
|
+ s1 := math.sin(t1);
|
|
|
|
+ c2 := math.cos(t2);
|
|
|
|
+ s2 := math.sin(t2);
|
|
|
|
+ c3 := math.cos(t3);
|
|
|
|
+ s3 := math.sin(t3);
|
|
|
|
+
|
|
|
|
+ m[0][0] = c1 * c2;
|
|
|
|
+ m[0][1] = c2 * s1;
|
|
|
|
+ m[0][2] =-s2;
|
|
|
|
+ m[1][0] = c1 * s2 * s3 - c3 * s1;
|
|
|
|
+ m[1][1] = c1 * c3 + s1 * s2 * s3;
|
|
|
|
+ m[1][2] = c2 * s3;
|
|
|
|
+ m[2][0] = s1 * s3 + c1 * c3 * s2;
|
|
|
|
+ m[2][1] = c3 * s1 * s2 - c1 * s3;
|
|
|
|
+ m[2][2] = c2 * c3;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+matrix3_from_euler_angles_zxy_f16 :: proc(t1, t2, t3: f16) -> (m: Matrix3f16) {
|
|
|
|
+ c1 := math.cos(t1);
|
|
|
|
+ s1 := math.sin(t1);
|
|
|
|
+ c2 := math.cos(t2);
|
|
|
|
+ s2 := math.sin(t2);
|
|
|
|
+ c3 := math.cos(t3);
|
|
|
|
+ s3 := math.sin(t3);
|
|
|
|
+
|
|
|
|
+ m[0][0] = c1 * c3 - s1 * s2 * s3;
|
|
|
|
+ m[0][1] = c3 * s1 + c1 * s2 * s3;
|
|
|
|
+ m[0][2] =-c2 * s3;
|
|
|
|
+ m[1][0] =-c2 * s1;
|
|
|
|
+ m[1][1] = c1 * c2;
|
|
|
|
+ m[1][2] = s2;
|
|
|
|
+ m[2][0] = c1 * s3 + c3 * s1 * s2;
|
|
|
|
+ m[2][1] = s1 * s3 - c1 * c3 * s2;
|
|
|
|
+ m[2][2] = c2 * c3;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+matrix3_from_yaw_pitch_roll_f16 :: proc(yaw, pitch, roll: f16) -> (m: Matrix3f16) {
|
|
|
|
+ ch := math.cos(yaw);
|
|
|
|
+ sh := math.sin(yaw);
|
|
|
|
+ cp := math.cos(pitch);
|
|
|
|
+ sp := math.sin(pitch);
|
|
|
|
+ cb := math.cos(roll);
|
|
|
|
+ sb := math.sin(roll);
|
|
|
|
+
|
|
|
|
+ m[0][0] = ch * cb + sh * sp * sb;
|
|
|
|
+ m[0][1] = sb * cp;
|
|
|
|
+ m[0][2] = -sh * cb + ch * sp * sb;
|
|
|
|
+ m[1][0] = -ch * sb + sh * sp * cb;
|
|
|
|
+ m[1][1] = cb * cp;
|
|
|
|
+ m[1][2] = sb * sh + ch * sp * cb;
|
|
|
|
+ m[2][0] = sh * cp;
|
|
|
|
+ m[2][1] = -sp;
|
|
|
|
+ m[2][2] = ch * cp;
|
|
|
|
+ return m;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+euler_angles_xyz_from_matrix3_f16 :: proc(m: Matrix3f16) -> (t1, t2, t3: f16) {
|
|
|
|
+ T1 := math.atan2(m[2][1], m[2][2]);
|
|
|
|
+ C2 := math.sqrt(m[0][0]*m[0][0] + m[1][0]*m[1][0]);
|
|
|
|
+ T2 := math.atan2(-m[2][0], C2);
|
|
|
|
+ S1 := math.sin(T1);
|
|
|
|
+ C1 := math.cos(T1);
|
|
|
|
+ T3 := math.atan2(S1*m[0][2] - C1*m[0][1], C1*m[1][1] - S1*m[1][2]);
|
|
|
|
+ t1 = -T1;
|
|
|
|
+ t2 = -T2;
|
|
|
|
+ t3 = -T3;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+euler_angles_yxz_from_matrix3_f16 :: proc(m: Matrix3f16) -> (t1, t2, t3: f16) {
|
|
|
|
+ T1 := math.atan2(m[2][0], m[2][2]);
|
|
|
|
+ C2 := math.sqrt(m[0][1]*m[0][1] + m[1][1]*m[1][1]);
|
|
|
|
+ T2 := math.atan2(-m[2][1], C2);
|
|
|
|
+ S1 := math.sin(T1);
|
|
|
|
+ C1 := math.cos(T1);
|
|
|
|
+ T3 := math.atan2(S1*m[1][2] - C1*m[1][0], C1*m[0][0] - S1*m[0][2]);
|
|
|
|
+ t1 = T1;
|
|
|
|
+ t2 = T2;
|
|
|
|
+ t3 = T3;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+euler_angles_xzx_from_matrix3_f16 :: proc(m: Matrix3f16) -> (t1, t2, t3: f16) {
|
|
|
|
+ T1 := math.atan2(m[0][2], m[0][1]);
|
|
|
|
+ S2 := math.sqrt(m[1][0]*m[1][0] + m[2][0]*m[2][0]);
|
|
|
|
+ T2 := math.atan2(S2, m[0][0]);
|
|
|
|
+ S1 := math.sin(T1);
|
|
|
|
+ C1 := math.cos(T1);
|
|
|
|
+ T3 := math.atan2(C1*m[1][2] - S1*m[1][1], C1*m[2][2] - S1*m[2][1]);
|
|
|
|
+ t1 = T1;
|
|
|
|
+ t2 = T2;
|
|
|
|
+ t3 = T3;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+euler_angles_xyx_from_matrix3_f16 :: proc(m: Matrix3f16) -> (t1, t2, t3: f16) {
|
|
|
|
+ T1 := math.atan2(m[0][1], -m[0][2]);
|
|
|
|
+ S2 := math.sqrt(m[1][0]*m[1][0] + m[2][0]*m[2][0]);
|
|
|
|
+ T2 := math.atan2(S2, m[0][0]);
|
|
|
|
+ S1 := math.sin(T1);
|
|
|
|
+ C1 := math.cos(T1);
|
|
|
|
+ T3 := math.atan2(-C1*m[2][1] - S1*m[2][2], C1*m[1][1] + S1*m[1][2]);
|
|
|
|
+ t1 = T1;
|
|
|
|
+ t2 = T2;
|
|
|
|
+ t3 = T3;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+euler_angles_yxy_from_matrix3_f16 :: proc(m: Matrix3f16) -> (t1, t2, t3: f16) {
|
|
|
|
+ T1 := math.atan2(m[1][0], m[1][2]);
|
|
|
|
+ S2 := math.sqrt(m[0][1]*m[0][1] + m[2][1]*m[2][1]);
|
|
|
|
+ T2 := math.atan2(S2, m[1][1]);
|
|
|
|
+ S1 := math.sin(T1);
|
|
|
|
+ C1 := math.cos(T1);
|
|
|
|
+ T3 := math.atan2(C1*m[2][0] - S1*m[2][2], C1*m[0][0] - S1*m[0][2]);
|
|
|
|
+ t1 = T1;
|
|
|
|
+ t2 = T2;
|
|
|
|
+ t3 = T3;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+euler_angles_yzy_from_matrix3_f16 :: proc(m: Matrix3f16) -> (t1, t2, t3: f16) {
|
|
|
|
+ T1 := math.atan2(m[1][2], -m[1][0]);
|
|
|
|
+ S2 := math.sqrt(m[0][1]*m[0][1] + m[2][1]*m[2][1]);
|
|
|
|
+ T2 := math.atan2(S2, m[1][1]);
|
|
|
|
+ S1 := math.sin(T1);
|
|
|
|
+ C1 := math.cos(T1);
|
|
|
|
+ T3 := math.atan2(-S1*m[0][0] - C1*m[0][2], S1*m[2][0] + C1*m[2][2]);
|
|
|
|
+ t1 = T1;
|
|
|
|
+ t2 = T2;
|
|
|
|
+ t3 = T3;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+euler_angles_zyz_from_matrix3_f16 :: proc(m: Matrix3f16) -> (t1, t2, t3: f16) {
|
|
|
|
+ T1 := math.atan2(m[2][1], m[2][0]);
|
|
|
|
+ S2 := math.sqrt(m[0][2]*m[0][2] + m[1][2]*m[1][2]);
|
|
|
|
+ T2 := math.atan2(S2, m[2][2]);
|
|
|
|
+ S1 := math.sin(T1);
|
|
|
|
+ C1 := math.cos(T1);
|
|
|
|
+ T3 := math.atan2(C1*m[0][1] - S1*m[0][0], C1*m[1][1] - S1*m[1][0]);
|
|
|
|
+ t1 = T1;
|
|
|
|
+ t2 = T2;
|
|
|
|
+ t3 = T3;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+euler_angles_zxz_from_matrix3_f16 :: proc(m: Matrix3f16) -> (t1, t2, t3: f16) {
|
|
|
|
+ T1 := math.atan2(m[2][0], -m[2][1]);
|
|
|
|
+ S2 := math.sqrt(m[0][2]*m[0][2] + m[1][2]*m[1][2]);
|
|
|
|
+ T2 := math.atan2(S2, m[2][2]);
|
|
|
|
+ S1 := math.sin(T1);
|
|
|
|
+ C1 := math.cos(T1);
|
|
|
|
+ T3 := math.atan2(-C1*m[1][0] - S1*m[1][1], C1*m[0][0] + S1*m[0][1]);
|
|
|
|
+ t1 = T1;
|
|
|
|
+ t2 = T2;
|
|
|
|
+ t3 = T3;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+euler_angles_xzy_from_matrix3_f16 :: proc(m: Matrix3f16) -> (t1, t2, t3: f16) {
|
|
|
|
+ T1 := math.atan2(m[1][2], m[1][1]);
|
|
|
|
+ C2 := math.sqrt(m[0][0]*m[0][0] + m[2][0]*m[2][0]);
|
|
|
|
+ T2 := math.atan2(-m[1][0], C2);
|
|
|
|
+ S1 := math.sin(T1);
|
|
|
|
+ C1 := math.cos(T1);
|
|
|
|
+ T3 := math.atan2(S1*m[0][1] - C1*m[0][2], C1*m[2][2] - S1*m[2][1]);
|
|
|
|
+ t1 = T1;
|
|
|
|
+ t2 = T2;
|
|
|
|
+ t3 = T3;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+euler_angles_yzx_from_matrix3_f16 :: proc(m: Matrix3f16) -> (t1, t2, t3: f16) {
|
|
|
|
+ T1 := math.atan2(-m[0][2], m[0][0]);
|
|
|
|
+ C2 := math.sqrt(m[1][1]*m[1][1] + m[2][1]*m[2][1]);
|
|
|
|
+ T2 := math.atan2(m[0][1], C2);
|
|
|
|
+ S1 := math.sin(T1);
|
|
|
|
+ C1 := math.cos(T1);
|
|
|
|
+ T3 := math.atan2(S1*m[1][0] + C1*m[1][2], S1*m[2][0] + C1*m[2][2]);
|
|
|
|
+ t1 = T1;
|
|
|
|
+ t2 = T2;
|
|
|
|
+ t3 = T3;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+euler_angles_zyx_from_matrix3_f16 :: proc(m: Matrix3f16) -> (t1, t2, t3: f16) {
|
|
|
|
+ T1 := math.atan2(m[0][1], m[0][0]);
|
|
|
|
+ C2 := math.sqrt(m[1][2]*m[1][2] + m[2][2]*m[2][2]);
|
|
|
|
+ T2 := math.atan2(-m[0][2], C2);
|
|
|
|
+ S1 := math.sin(T1);
|
|
|
|
+ C1 := math.cos(T1);
|
|
|
|
+ T3 := math.atan2(S1*m[2][0] - C1*m[2][1], C1*m[1][1] - S1*m[1][0]);
|
|
|
|
+ t1 = T1;
|
|
|
|
+ t2 = T2;
|
|
|
|
+ t3 = T3;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+euler_angles_zxy_from_matrix3_f16 :: proc(m: Matrix3f16) -> (t1, t2, t3: f16) {
|
|
|
|
+ T1 := math.atan2(-m[1][0], m[1][1]);
|
|
|
|
+ C2 := math.sqrt(m[0][2]*m[0][2] + m[2][2]*m[2][2]);
|
|
|
|
+ T2 := math.atan2(m[1][2], C2);
|
|
|
|
+ S1 := math.sin(T1);
|
|
|
|
+ C1 := math.cos(T1);
|
|
|
|
+ T3 := math.atan2(C1*m[2][0] + S1*m[2][1], C1*m[0][0] + S1*m[0][1]);
|
|
|
|
+ t1 = T1;
|
|
|
|
+ t2 = T2;
|
|
|
|
+ t3 = T3;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+// Matrix4
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+matrix4_from_euler_angle_x_f16 :: proc(angle_x: f16) -> (m: Matrix4f16) {
|
|
|
|
+ cos_x, sin_x := math.cos(angle_x), math.sin(angle_x);
|
|
|
|
+ m[0][0] = 1;
|
|
|
|
+ m[1][1] = +cos_x;
|
|
|
|
+ m[2][1] = +sin_x;
|
|
|
|
+ m[1][2] = -sin_x;
|
|
|
|
+ m[2][2] = +cos_x;
|
|
|
|
+ m[3][3] = 1;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+matrix4_from_euler_angle_y_f16 :: proc(angle_y: f16) -> (m: Matrix4f16) {
|
|
|
|
+ cos_y, sin_y := math.cos(angle_y), math.sin(angle_y);
|
|
|
|
+ m[0][0] = +cos_y;
|
|
|
|
+ m[2][0] = -sin_y;
|
|
|
|
+ m[1][1] = 1;
|
|
|
|
+ m[0][2] = +sin_y;
|
|
|
|
+ m[2][2] = +cos_y;
|
|
|
|
+ m[3][3] = 1;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+matrix4_from_euler_angle_z_f16 :: proc(angle_z: f16) -> (m: Matrix4f16) {
|
|
|
|
+ cos_z, sin_z := math.cos(angle_z), math.sin(angle_z);
|
|
|
|
+ m[0][0] = +cos_z;
|
|
|
|
+ m[1][0] = +sin_z;
|
|
|
|
+ m[1][1] = +cos_z;
|
|
|
|
+ m[0][1] = -sin_z;
|
|
|
|
+ m[2][2] = 1;
|
|
|
|
+ m[3][3] = 1;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+matrix4_from_derived_euler_angle_x_f16 :: proc(angle_x: f16, angular_velocity_x: f16) -> (m: Matrix4f16) {
|
|
|
|
+ cos_x := math.cos(angle_x) * angular_velocity_x;
|
|
|
|
+ sin_x := math.sin(angle_x) * angular_velocity_x;
|
|
|
|
+ m[0][0] = 1;
|
|
|
|
+ m[1][1] = +cos_x;
|
|
|
|
+ m[2][1] = +sin_x;
|
|
|
|
+ m[1][2] = -sin_x;
|
|
|
|
+ m[2][2] = +cos_x;
|
|
|
|
+ m[3][3] = 1;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+matrix4_from_derived_euler_angle_y_f16 :: proc(angle_y: f16, angular_velocity_y: f16) -> (m: Matrix4f16) {
|
|
|
|
+ cos_y := math.cos(angle_y) * angular_velocity_y;
|
|
|
|
+ sin_y := math.sin(angle_y) * angular_velocity_y;
|
|
|
|
+ m[0][0] = +cos_y;
|
|
|
|
+ m[2][0] = -sin_y;
|
|
|
|
+ m[1][1] = 1;
|
|
|
|
+ m[0][2] = +sin_y;
|
|
|
|
+ m[2][2] = +cos_y;
|
|
|
|
+ m[3][3] = 1;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+matrix4_from_derived_euler_angle_z_f16 :: proc(angle_z: f16, angular_velocity_z: f16) -> (m: Matrix4f16) {
|
|
|
|
+ cos_z := math.cos(angle_z) * angular_velocity_z;
|
|
|
|
+ sin_z := math.sin(angle_z) * angular_velocity_z;
|
|
|
|
+ m[0][0] = +cos_z;
|
|
|
|
+ m[1][0] = +sin_z;
|
|
|
|
+ m[1][1] = +cos_z;
|
|
|
|
+ m[0][1] = -sin_z;
|
|
|
|
+ m[2][2] = 1;
|
|
|
|
+ m[3][3] = 1;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+matrix4_from_euler_angles_xy_f16 :: proc(angle_x, angle_y: f16) -> (m: Matrix4f16) {
|
|
|
|
+ cos_x, sin_x := math.cos(angle_x), math.sin(angle_x);
|
|
|
|
+ cos_y, sin_y := math.cos(angle_y), math.sin(angle_y);
|
|
|
|
+ m[0][0] = cos_y;
|
|
|
|
+ m[1][0] = -sin_x * - sin_y;
|
|
|
|
+ m[2][0] = -cos_x * - sin_y;
|
|
|
|
+ m[1][1] = cos_x;
|
|
|
|
+ m[2][1] = sin_x;
|
|
|
|
+ m[0][2] = sin_y;
|
|
|
|
+ m[1][2] = -sin_x * cos_y;
|
|
|
|
+ m[2][2] = cos_x * cos_y;
|
|
|
|
+ m[3][3] = 1;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+matrix4_from_euler_angles_yx_f16 :: proc(angle_y, angle_x: f16) -> (m: Matrix4f16) {
|
|
|
|
+ cos_x, sin_x := math.cos(angle_x), math.sin(angle_x);
|
|
|
|
+ cos_y, sin_y := math.cos(angle_y), math.sin(angle_y);
|
|
|
|
+ m[0][0] = cos_y;
|
|
|
|
+ m[2][0] = -sin_y;
|
|
|
|
+ m[0][1] = sin_y*sin_x;
|
|
|
|
+ m[1][1] = cos_x;
|
|
|
|
+ m[2][1] = cos_y*sin_x;
|
|
|
|
+ m[0][2] = sin_y*cos_x;
|
|
|
|
+ m[1][2] = -sin_x;
|
|
|
|
+ m[2][2] = cos_y*cos_x;
|
|
|
|
+ m[3][3] = 1;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+matrix4_from_euler_angles_xz_f16 :: proc(angle_x, angle_z: f16) -> (m: Matrix4f16) {
|
|
|
|
+ return mul(matrix4_from_euler_angle_x(angle_x), matrix4_from_euler_angle_z(angle_z));
|
|
|
|
+}
|
|
|
|
+matrix4_from_euler_angles_zx_f16 :: proc(angle_z, angle_x: f16) -> (m: Matrix4f16) {
|
|
|
|
+ return mul(matrix4_from_euler_angle_z(angle_z), matrix4_from_euler_angle_x(angle_x));
|
|
|
|
+}
|
|
|
|
+matrix4_from_euler_angles_yz_f16 :: proc(angle_y, angle_z: f16) -> (m: Matrix4f16) {
|
|
|
|
+ return mul(matrix4_from_euler_angle_y(angle_y), matrix4_from_euler_angle_z(angle_z));
|
|
|
|
+}
|
|
|
|
+matrix4_from_euler_angles_zy_f16 :: proc(angle_z, angle_y: f16) -> (m: Matrix4f16) {
|
|
|
|
+ return mul(matrix4_from_euler_angle_z(angle_z), matrix4_from_euler_angle_y(angle_y));
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+matrix4_from_euler_angles_xyz_f16 :: proc(t1, t2, t3: f16) -> (m: Matrix4f16) {
|
|
|
|
+ c1 := math.cos(-t1);
|
|
|
|
+ c2 := math.cos(-t2);
|
|
|
|
+ c3 := math.cos(-t3);
|
|
|
|
+ s1 := math.sin(-t1);
|
|
|
|
+ s2 := math.sin(-t2);
|
|
|
|
+ s3 := math.sin(-t3);
|
|
|
|
+
|
|
|
|
+ m[0][0] = c2 * c3;
|
|
|
|
+ m[0][1] =-c1 * s3 + s1 * s2 * c3;
|
|
|
|
+ m[0][2] = s1 * s3 + c1 * s2 * c3;
|
|
|
|
+ m[0][3] = 0;
|
|
|
|
+ m[1][0] = c2 * s3;
|
|
|
|
+ m[1][1] = c1 * c3 + s1 * s2 * s3;
|
|
|
|
+ m[1][2] =-s1 * c3 + c1 * s2 * s3;
|
|
|
|
+ m[1][3] = 0;
|
|
|
|
+ m[2][0] =-s2;
|
|
|
|
+ m[2][1] = s1 * c2;
|
|
|
|
+ m[2][2] = c1 * c2;
|
|
|
|
+ m[2][3] = 0;
|
|
|
|
+ m[3][0] = 0;
|
|
|
|
+ m[3][1] = 0;
|
|
|
|
+ m[3][2] = 0;
|
|
|
|
+ m[3][3] = 1;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+matrix4_from_euler_angles_yxz_f16 :: proc(yaw, pitch, roll: f16) -> (m: Matrix4f16) {
|
|
|
|
+ ch := math.cos(yaw);
|
|
|
|
+ sh := math.sin(yaw);
|
|
|
|
+ cp := math.cos(pitch);
|
|
|
|
+ sp := math.sin(pitch);
|
|
|
|
+ cb := math.cos(roll);
|
|
|
|
+ sb := math.sin(roll);
|
|
|
|
+
|
|
|
|
+ m[0][0] = ch * cb + sh * sp * sb;
|
|
|
|
+ m[0][1] = sb * cp;
|
|
|
|
+ m[0][2] = -sh * cb + ch * sp * sb;
|
|
|
|
+ m[0][3] = 0;
|
|
|
|
+ m[1][0] = -ch * sb + sh * sp * cb;
|
|
|
|
+ m[1][1] = cb * cp;
|
|
|
|
+ m[1][2] = sb * sh + ch * sp * cb;
|
|
|
|
+ m[1][3] = 0;
|
|
|
|
+ m[2][0] = sh * cp;
|
|
|
|
+ m[2][1] = -sp;
|
|
|
|
+ m[2][2] = ch * cp;
|
|
|
|
+ m[2][3] = 0;
|
|
|
|
+ m[3][0] = 0;
|
|
|
|
+ m[3][1] = 0;
|
|
|
|
+ m[3][2] = 0;
|
|
|
|
+ m[3][3] = 1;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+matrix4_from_euler_angles_xzx_f16 :: proc(t1, t2, t3: f16) -> (m: Matrix4f16) {
|
|
|
|
+ c1 := math.cos(t1);
|
|
|
|
+ s1 := math.sin(t1);
|
|
|
|
+ c2 := math.cos(t2);
|
|
|
|
+ s2 := math.sin(t2);
|
|
|
|
+ c3 := math.cos(t3);
|
|
|
|
+ s3 := math.sin(t3);
|
|
|
|
+
|
|
|
|
+ m[0][0] = c2;
|
|
|
|
+ m[0][1] = c1 * s2;
|
|
|
|
+ m[0][2] = s1 * s2;
|
|
|
|
+ m[0][3] = 0;
|
|
|
|
+ m[1][0] =-c3 * s2;
|
|
|
|
+ m[1][1] = c1 * c2 * c3 - s1 * s3;
|
|
|
|
+ m[1][2] = c1 * s3 + c2 * c3 * s1;
|
|
|
|
+ m[1][3] = 0;
|
|
|
|
+ m[2][0] = s2 * s3;
|
|
|
|
+ m[2][1] =-c3 * s1 - c1 * c2 * s3;
|
|
|
|
+ m[2][2] = c1 * c3 - c2 * s1 * s3;
|
|
|
|
+ m[2][3] = 0;
|
|
|
|
+ m[3][0] = 0;
|
|
|
|
+ m[3][1] = 0;
|
|
|
|
+ m[3][2] = 0;
|
|
|
|
+ m[3][3] = 1;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+matrix4_from_euler_angles_xyx_f16 :: proc(t1, t2, t3: f16) -> (m: Matrix4f16) {
|
|
|
|
+ c1 := math.cos(t1);
|
|
|
|
+ s1 := math.sin(t1);
|
|
|
|
+ c2 := math.cos(t2);
|
|
|
|
+ s2 := math.sin(t2);
|
|
|
|
+ c3 := math.cos(t3);
|
|
|
|
+ s3 := math.sin(t3);
|
|
|
|
+
|
|
|
|
+ m[0][0] = c2;
|
|
|
|
+ m[0][1] = s1 * s2;
|
|
|
|
+ m[0][2] =-c1 * s2;
|
|
|
|
+ m[0][3] = 0;
|
|
|
|
+ m[1][0] = s2 * s3;
|
|
|
|
+ m[1][1] = c1 * c3 - c2 * s1 * s3;
|
|
|
|
+ m[1][2] = c3 * s1 + c1 * c2 * s3;
|
|
|
|
+ m[1][3] = 0;
|
|
|
|
+ m[2][0] = c3 * s2;
|
|
|
|
+ m[2][1] =-c1 * s3 - c2 * c3 * s1;
|
|
|
|
+ m[2][2] = c1 * c2 * c3 - s1 * s3;
|
|
|
|
+ m[2][3] = 0;
|
|
|
|
+ m[3][0] = 0;
|
|
|
|
+ m[3][1] = 0;
|
|
|
|
+ m[3][2] = 0;
|
|
|
|
+ m[3][3] = 1;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+matrix4_from_euler_angles_yxy_f16 :: proc(t1, t2, t3: f16) -> (m: Matrix4f16) {
|
|
|
|
+ c1 := math.cos(t1);
|
|
|
|
+ s1 := math.sin(t1);
|
|
|
|
+ c2 := math.cos(t2);
|
|
|
|
+ s2 := math.sin(t2);
|
|
|
|
+ c3 := math.cos(t3);
|
|
|
|
+ s3 := math.sin(t3);
|
|
|
|
+
|
|
|
|
+ m[0][0] = c1 * c3 - c2 * s1 * s3;
|
|
|
|
+ m[0][1] = s2* s3;
|
|
|
|
+ m[0][2] =-c3 * s1 - c1 * c2 * s3;
|
|
|
|
+ m[0][3] = 0;
|
|
|
|
+ m[1][0] = s1 * s2;
|
|
|
|
+ m[1][1] = c2;
|
|
|
|
+ m[1][2] = c1 * s2;
|
|
|
|
+ m[1][3] = 0;
|
|
|
|
+ m[2][0] = c1 * s3 + c2 * c3 * s1;
|
|
|
|
+ m[2][1] =-c3 * s2;
|
|
|
|
+ m[2][2] = c1 * c2 * c3 - s1 * s3;
|
|
|
|
+ m[2][3] = 0;
|
|
|
|
+ m[3][0] = 0;
|
|
|
|
+ m[3][1] = 0;
|
|
|
|
+ m[3][2] = 0;
|
|
|
|
+ m[3][3] = 1;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+matrix4_from_euler_angles_yzy_f16 :: proc(t1, t2, t3: f16) -> (m: Matrix4f16) {
|
|
|
|
+ c1 := math.cos(t1);
|
|
|
|
+ s1 := math.sin(t1);
|
|
|
|
+ c2 := math.cos(t2);
|
|
|
|
+ s2 := math.sin(t2);
|
|
|
|
+ c3 := math.cos(t3);
|
|
|
|
+ s3 := math.sin(t3);
|
|
|
|
+
|
|
|
|
+ m[0][0] = c1 * c2 * c3 - s1 * s3;
|
|
|
|
+ m[0][1] = c3 * s2;
|
|
|
|
+ m[0][2] =-c1 * s3 - c2 * c3 * s1;
|
|
|
|
+ m[0][3] = 0;
|
|
|
|
+ m[1][0] =-c1 * s2;
|
|
|
|
+ m[1][1] = c2;
|
|
|
|
+ m[1][2] = s1 * s2;
|
|
|
|
+ m[1][3] = 0;
|
|
|
|
+ m[2][0] = c3 * s1 + c1 * c2 * s3;
|
|
|
|
+ m[2][1] = s2 * s3;
|
|
|
|
+ m[2][2] = c1 * c3 - c2 * s1 * s3;
|
|
|
|
+ m[2][3] = 0;
|
|
|
|
+ m[3][0] = 0;
|
|
|
|
+ m[3][1] = 0;
|
|
|
|
+ m[3][2] = 0;
|
|
|
|
+ m[3][3] = 1;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+matrix4_from_euler_angles_zyz_f16 :: proc(t1, t2, t3: f16) -> (m: Matrix4f16) {
|
|
|
|
+ c1 := math.cos(t1);
|
|
|
|
+ s1 := math.sin(t1);
|
|
|
|
+ c2 := math.cos(t2);
|
|
|
|
+ s2 := math.sin(t2);
|
|
|
|
+ c3 := math.cos(t3);
|
|
|
|
+ s3 := math.sin(t3);
|
|
|
|
+
|
|
|
|
+ m[0][0] = c1 * c2 * c3 - s1 * s3;
|
|
|
|
+ m[0][1] = c1 * s3 + c2 * c3 * s1;
|
|
|
|
+ m[0][2] =-c3 * s2;
|
|
|
|
+ m[0][3] = 0;
|
|
|
|
+ m[1][0] =-c3 * s1 - c1 * c2 * s3;
|
|
|
|
+ m[1][1] = c1 * c3 - c2 * s1 * s3;
|
|
|
|
+ m[1][2] = s2 * s3;
|
|
|
|
+ m[1][3] = 0;
|
|
|
|
+ m[2][0] = c1 * s2;
|
|
|
|
+ m[2][1] = s1 * s2;
|
|
|
|
+ m[2][2] = c2;
|
|
|
|
+ m[2][3] = 0;
|
|
|
|
+ m[3][0] = 0;
|
|
|
|
+ m[3][1] = 0;
|
|
|
|
+ m[3][2] = 0;
|
|
|
|
+ m[3][3] = 1;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+matrix4_from_euler_angles_zxz_f16 :: proc(t1, t2, t3: f16) -> (m: Matrix4f16) {
|
|
|
|
+ c1 := math.cos(t1);
|
|
|
|
+ s1 := math.sin(t1);
|
|
|
|
+ c2 := math.cos(t2);
|
|
|
|
+ s2 := math.sin(t2);
|
|
|
|
+ c3 := math.cos(t3);
|
|
|
|
+ s3 := math.sin(t3);
|
|
|
|
+
|
|
|
|
+ m[0][0] = c1 * c3 - c2 * s1 * s3;
|
|
|
|
+ m[0][1] = c3 * s1 + c1 * c2 * s3;
|
|
|
|
+ m[0][2] = s2 *s3;
|
|
|
|
+ m[0][3] = 0;
|
|
|
|
+ m[1][0] =-c1 * s3 - c2 * c3 * s1;
|
|
|
|
+ m[1][1] = c1 * c2 * c3 - s1 * s3;
|
|
|
|
+ m[1][2] = c3 * s2;
|
|
|
|
+ m[1][3] = 0;
|
|
|
|
+ m[2][0] = s1 * s2;
|
|
|
|
+ m[2][1] =-c1 * s2;
|
|
|
|
+ m[2][2] = c2;
|
|
|
|
+ m[2][3] = 0;
|
|
|
|
+ m[3][0] = 0;
|
|
|
|
+ m[3][1] = 0;
|
|
|
|
+ m[3][2] = 0;
|
|
|
|
+ m[3][3] = 1;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+matrix4_from_euler_angles_xzy_f16 :: proc(t1, t2, t3: f16) -> (m: Matrix4f16) {
|
|
|
|
+ c1 := math.cos(t1);
|
|
|
|
+ s1 := math.sin(t1);
|
|
|
|
+ c2 := math.cos(t2);
|
|
|
|
+ s2 := math.sin(t2);
|
|
|
|
+ c3 := math.cos(t3);
|
|
|
|
+ s3 := math.sin(t3);
|
|
|
|
+
|
|
|
|
+ m[0][0] = c2 * c3;
|
|
|
|
+ m[0][1] = s1 * s3 + c1 * c3 * s2;
|
|
|
|
+ m[0][2] = c3 * s1 * s2 - c1 * s3;
|
|
|
|
+ m[0][3] = 0;
|
|
|
|
+ m[1][0] =-s2;
|
|
|
|
+ m[1][1] = c1 * c2;
|
|
|
|
+ m[1][2] = c2 * s1;
|
|
|
|
+ m[1][3] = 0;
|
|
|
|
+ m[2][0] = c2 * s3;
|
|
|
|
+ m[2][1] = c1 * s2 * s3 - c3 * s1;
|
|
|
|
+ m[2][2] = c1 * c3 + s1 * s2 *s3;
|
|
|
|
+ m[2][3] = 0;
|
|
|
|
+ m[3][0] = 0;
|
|
|
|
+ m[3][1] = 0;
|
|
|
|
+ m[3][2] = 0;
|
|
|
|
+ m[3][3] = 1;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+matrix4_from_euler_angles_yzx_f16 :: proc(t1, t2, t3: f16) -> (m: Matrix4f16) {
|
|
|
|
+ c1 := math.cos(t1);
|
|
|
|
+ s1 := math.sin(t1);
|
|
|
|
+ c2 := math.cos(t2);
|
|
|
|
+ s2 := math.sin(t2);
|
|
|
|
+ c3 := math.cos(t3);
|
|
|
|
+ s3 := math.sin(t3);
|
|
|
|
+
|
|
|
|
+ m[0][0] = c1 * c2;
|
|
|
|
+ m[0][1] = s2;
|
|
|
|
+ m[0][2] =-c2 * s1;
|
|
|
|
+ m[0][3] = 0;
|
|
|
|
+ m[1][0] = s1 * s3 - c1 * c3 * s2;
|
|
|
|
+ m[1][1] = c2 * c3;
|
|
|
|
+ m[1][2] = c1 * s3 + c3 * s1 * s2;
|
|
|
|
+ m[1][3] = 0;
|
|
|
|
+ m[2][0] = c3 * s1 + c1 * s2 * s3;
|
|
|
|
+ m[2][1] =-c2 * s3;
|
|
|
|
+ m[2][2] = c1 * c3 - s1 * s2 * s3;
|
|
|
|
+ m[2][3] = 0;
|
|
|
|
+ m[3][0] = 0;
|
|
|
|
+ m[3][1] = 0;
|
|
|
|
+ m[3][2] = 0;
|
|
|
|
+ m[3][3] = 1;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+matrix4_from_euler_angles_zyx_f16 :: proc(t1, t2, t3: f16) -> (m: Matrix4f16) {
|
|
|
|
+ c1 := math.cos(t1);
|
|
|
|
+ s1 := math.sin(t1);
|
|
|
|
+ c2 := math.cos(t2);
|
|
|
|
+ s2 := math.sin(t2);
|
|
|
|
+ c3 := math.cos(t3);
|
|
|
|
+ s3 := math.sin(t3);
|
|
|
|
+
|
|
|
|
+ m[0][0] = c1 * c2;
|
|
|
|
+ m[0][1] = c2 * s1;
|
|
|
|
+ m[0][2] =-s2;
|
|
|
|
+ m[0][3] = 0;
|
|
|
|
+ m[1][0] = c1 * s2 * s3 - c3 * s1;
|
|
|
|
+ m[1][1] = c1 * c3 + s1 * s2 * s3;
|
|
|
|
+ m[1][2] = c2 * s3;
|
|
|
|
+ m[1][3] = 0;
|
|
|
|
+ m[2][0] = s1 * s3 + c1 * c3 * s2;
|
|
|
|
+ m[2][1] = c3 * s1 * s2 - c1 * s3;
|
|
|
|
+ m[2][2] = c2 * c3;
|
|
|
|
+ m[2][3] = 0;
|
|
|
|
+ m[3][0] = 0;
|
|
|
|
+ m[3][1] = 0;
|
|
|
|
+ m[3][2] = 0;
|
|
|
|
+ m[3][3] = 1;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+matrix4_from_euler_angles_zxy_f16 :: proc(t1, t2, t3: f16) -> (m: Matrix4f16) {
|
|
|
|
+ c1 := math.cos(t1);
|
|
|
|
+ s1 := math.sin(t1);
|
|
|
|
+ c2 := math.cos(t2);
|
|
|
|
+ s2 := math.sin(t2);
|
|
|
|
+ c3 := math.cos(t3);
|
|
|
|
+ s3 := math.sin(t3);
|
|
|
|
+
|
|
|
|
+ m[0][0] = c1 * c3 - s1 * s2 * s3;
|
|
|
|
+ m[0][1] = c3 * s1 + c1 * s2 * s3;
|
|
|
|
+ m[0][2] =-c2 * s3;
|
|
|
|
+ m[0][3] = 0;
|
|
|
|
+ m[1][0] =-c2 * s1;
|
|
|
|
+ m[1][1] = c1 * c2;
|
|
|
|
+ m[1][2] = s2;
|
|
|
|
+ m[1][3] = 0;
|
|
|
|
+ m[2][0] = c1 * s3 + c3 * s1 * s2;
|
|
|
|
+ m[2][1] = s1 * s3 - c1 * c3 * s2;
|
|
|
|
+ m[2][2] = c2 * c3;
|
|
|
|
+ m[2][3] = 0;
|
|
|
|
+ m[3][0] = 0;
|
|
|
|
+ m[3][1] = 0;
|
|
|
|
+ m[3][2] = 0;
|
|
|
|
+ m[3][3] = 1;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+matrix4_from_yaw_pitch_roll_f16 :: proc(yaw, pitch, roll: f16) -> (m: Matrix4f16) {
|
|
|
|
+ ch := math.cos(yaw);
|
|
|
|
+ sh := math.sin(yaw);
|
|
|
|
+ cp := math.cos(pitch);
|
|
|
|
+ sp := math.sin(pitch);
|
|
|
|
+ cb := math.cos(roll);
|
|
|
|
+ sb := math.sin(roll);
|
|
|
|
+
|
|
|
|
+ m[0][0] = ch * cb + sh * sp * sb;
|
|
|
|
+ m[0][1] = sb * cp;
|
|
|
|
+ m[0][2] = -sh * cb + ch * sp * sb;
|
|
|
|
+ m[0][3] = 0;
|
|
|
|
+ m[1][0] = -ch * sb + sh * sp * cb;
|
|
|
|
+ m[1][1] = cb * cp;
|
|
|
|
+ m[1][2] = sb * sh + ch * sp * cb;
|
|
|
|
+ m[1][3] = 0;
|
|
|
|
+ m[2][0] = sh * cp;
|
|
|
|
+ m[2][1] = -sp;
|
|
|
|
+ m[2][2] = ch * cp;
|
|
|
|
+ m[2][3] = 0;
|
|
|
|
+ m[3][0] = 0;
|
|
|
|
+ m[3][1] = 0;
|
|
|
|
+ m[3][2] = 0;
|
|
|
|
+ m[3][3] = 1;
|
|
|
|
+ return m;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+euler_angles_xyz_from_matrix4_f16 :: proc(m: Matrix4f16) -> (t1, t2, t3: f16) {
|
|
|
|
+ T1 := math.atan2(m[2][1], m[2][2]);
|
|
|
|
+ C2 := math.sqrt(m[0][0]*m[0][0] + m[1][0]*m[1][0]);
|
|
|
|
+ T2 := math.atan2(-m[2][0], C2);
|
|
|
|
+ S1 := math.sin(T1);
|
|
|
|
+ C1 := math.cos(T1);
|
|
|
|
+ T3 := math.atan2(S1*m[0][2] - C1*m[0][1], C1*m[1][1] - S1*m[1][2]);
|
|
|
|
+ t1 = -T1;
|
|
|
|
+ t2 = -T2;
|
|
|
|
+ t3 = -T3;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+euler_angles_yxz_from_matrix4_f16 :: proc(m: Matrix4f16) -> (t1, t2, t3: f16) {
|
|
|
|
+ T1 := math.atan2(m[2][0], m[2][2]);
|
|
|
|
+ C2 := math.sqrt(m[0][1]*m[0][1] + m[1][1]*m[1][1]);
|
|
|
|
+ T2 := math.atan2(-m[2][1], C2);
|
|
|
|
+ S1 := math.sin(T1);
|
|
|
|
+ C1 := math.cos(T1);
|
|
|
|
+ T3 := math.atan2(S1*m[1][2] - C1*m[1][0], C1*m[0][0] - S1*m[0][2]);
|
|
|
|
+ t1 = T1;
|
|
|
|
+ t2 = T2;
|
|
|
|
+ t3 = T3;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+euler_angles_xzx_from_matrix4_f16 :: proc(m: Matrix4f16) -> (t1, t2, t3: f16) {
|
|
|
|
+ T1 := math.atan2(m[0][2], m[0][1]);
|
|
|
|
+ S2 := math.sqrt(m[1][0]*m[1][0] + m[2][0]*m[2][0]);
|
|
|
|
+ T2 := math.atan2(S2, m[0][0]);
|
|
|
|
+ S1 := math.sin(T1);
|
|
|
|
+ C1 := math.cos(T1);
|
|
|
|
+ T3 := math.atan2(C1*m[1][2] - S1*m[1][1], C1*m[2][2] - S1*m[2][1]);
|
|
|
|
+ t1 = T1;
|
|
|
|
+ t2 = T2;
|
|
|
|
+ t3 = T3;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+euler_angles_xyx_from_matrix4_f16 :: proc(m: Matrix4f16) -> (t1, t2, t3: f16) {
|
|
|
|
+ T1 := math.atan2(m[0][1], -m[0][2]);
|
|
|
|
+ S2 := math.sqrt(m[1][0]*m[1][0] + m[2][0]*m[2][0]);
|
|
|
|
+ T2 := math.atan2(S2, m[0][0]);
|
|
|
|
+ S1 := math.sin(T1);
|
|
|
|
+ C1 := math.cos(T1);
|
|
|
|
+ T3 := math.atan2(-C1*m[2][1] - S1*m[2][2], C1*m[1][1] + S1*m[1][2]);
|
|
|
|
+ t1 = T1;
|
|
|
|
+ t2 = T2;
|
|
|
|
+ t3 = T3;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+euler_angles_yxy_from_matrix4_f16 :: proc(m: Matrix4f16) -> (t1, t2, t3: f16) {
|
|
|
|
+ T1 := math.atan2(m[1][0], m[1][2]);
|
|
|
|
+ S2 := math.sqrt(m[0][1]*m[0][1] + m[2][1]*m[2][1]);
|
|
|
|
+ T2 := math.atan2(S2, m[1][1]);
|
|
|
|
+ S1 := math.sin(T1);
|
|
|
|
+ C1 := math.cos(T1);
|
|
|
|
+ T3 := math.atan2(C1*m[2][0] - S1*m[2][2], C1*m[0][0] - S1*m[0][2]);
|
|
|
|
+ t1 = T1;
|
|
|
|
+ t2 = T2;
|
|
|
|
+ t3 = T3;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+euler_angles_yzy_from_matrix4_f16 :: proc(m: Matrix4f16) -> (t1, t2, t3: f16) {
|
|
|
|
+ T1 := math.atan2(m[1][2], -m[1][0]);
|
|
|
|
+ S2 := math.sqrt(m[0][1]*m[0][1] + m[2][1]*m[2][1]);
|
|
|
|
+ T2 := math.atan2(S2, m[1][1]);
|
|
|
|
+ S1 := math.sin(T1);
|
|
|
|
+ C1 := math.cos(T1);
|
|
|
|
+ T3 := math.atan2(-S1*m[0][0] - C1*m[0][2], S1*m[2][0] + C1*m[2][2]);
|
|
|
|
+ t1 = T1;
|
|
|
|
+ t2 = T2;
|
|
|
|
+ t3 = T3;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+euler_angles_zyz_from_matrix4_f16 :: proc(m: Matrix4f16) -> (t1, t2, t3: f16) {
|
|
|
|
+ T1 := math.atan2(m[2][1], m[2][0]);
|
|
|
|
+ S2 := math.sqrt(m[0][2]*m[0][2] + m[1][2]*m[1][2]);
|
|
|
|
+ T2 := math.atan2(S2, m[2][2]);
|
|
|
|
+ S1 := math.sin(T1);
|
|
|
|
+ C1 := math.cos(T1);
|
|
|
|
+ T3 := math.atan2(C1*m[0][1] - S1*m[0][0], C1*m[1][1] - S1*m[1][0]);
|
|
|
|
+ t1 = T1;
|
|
|
|
+ t2 = T2;
|
|
|
|
+ t3 = T3;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+euler_angles_zxz_from_matrix4_f16 :: proc(m: Matrix4f16) -> (t1, t2, t3: f16) {
|
|
|
|
+ T1 := math.atan2(m[2][0], -m[2][1]);
|
|
|
|
+ S2 := math.sqrt(m[0][2]*m[0][2] + m[1][2]*m[1][2]);
|
|
|
|
+ T2 := math.atan2(S2, m[2][2]);
|
|
|
|
+ S1 := math.sin(T1);
|
|
|
|
+ C1 := math.cos(T1);
|
|
|
|
+ T3 := math.atan2(-C1*m[1][0] - S1*m[1][1], C1*m[0][0] + S1*m[0][1]);
|
|
|
|
+ t1 = T1;
|
|
|
|
+ t2 = T2;
|
|
|
|
+ t3 = T3;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+euler_angles_xzy_from_matrix4_f16 :: proc(m: Matrix4f16) -> (t1, t2, t3: f16) {
|
|
|
|
+ T1 := math.atan2(m[1][2], m[1][1]);
|
|
|
|
+ C2 := math.sqrt(m[0][0]*m[0][0] + m[2][0]*m[2][0]);
|
|
|
|
+ T2 := math.atan2(-m[1][0], C2);
|
|
|
|
+ S1 := math.sin(T1);
|
|
|
|
+ C1 := math.cos(T1);
|
|
|
|
+ T3 := math.atan2(S1*m[0][1] - C1*m[0][2], C1*m[2][2] - S1*m[2][1]);
|
|
|
|
+ t1 = T1;
|
|
|
|
+ t2 = T2;
|
|
|
|
+ t3 = T3;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+euler_angles_yzx_from_matrix4_f16 :: proc(m: Matrix4f16) -> (t1, t2, t3: f16) {
|
|
|
|
+ T1 := math.atan2(-m[0][2], m[0][0]);
|
|
|
|
+ C2 := math.sqrt(m[1][1]*m[1][1] + m[2][1]*m[2][1]);
|
|
|
|
+ T2 := math.atan2(m[0][1], C2);
|
|
|
|
+ S1 := math.sin(T1);
|
|
|
|
+ C1 := math.cos(T1);
|
|
|
|
+ T3 := math.atan2(S1*m[1][0] + C1*m[1][2], S1*m[2][0] + C1*m[2][2]);
|
|
|
|
+ t1 = T1;
|
|
|
|
+ t2 = T2;
|
|
|
|
+ t3 = T3;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+euler_angles_zyx_from_matrix4_f16 :: proc(m: Matrix4f16) -> (t1, t2, t3: f16) {
|
|
|
|
+ T1 := math.atan2(m[0][1], m[0][0]);
|
|
|
|
+ C2 := math.sqrt(m[1][2]*m[1][2] + m[2][2]*m[2][2]);
|
|
|
|
+ T2 := math.atan2(-m[0][2], C2);
|
|
|
|
+ S1 := math.sin(T1);
|
|
|
|
+ C1 := math.cos(T1);
|
|
|
|
+ T3 := math.atan2(S1*m[2][0] - C1*m[2][1], C1*m[1][1] - S1*m[1][0]);
|
|
|
|
+ t1 = T1;
|
|
|
|
+ t2 = T2;
|
|
|
|
+ t3 = T3;
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+euler_angles_zxy_from_matrix4_f16 :: proc(m: Matrix4f16) -> (t1, t2, t3: f16) {
|
|
|
|
+ T1 := math.atan2(-m[1][0], m[1][1]);
|
|
|
|
+ C2 := math.sqrt(m[0][2]*m[0][2] + m[2][2]*m[2][2]);
|
|
|
|
+ T2 := math.atan2(m[1][2], C2);
|
|
|
|
+ S1 := math.sin(T1);
|
|
|
|
+ C1 := math.cos(T1);
|
|
|
|
+ T3 := math.atan2(C1*m[2][0] + S1*m[2][1], C1*m[0][0] + S1*m[0][1]);
|
|
|
|
+ t1 = T1;
|
|
|
|
+ t2 = T2;
|
|
|
|
+ t3 = T3;
|
|
|
|
+ return;
|
|
|
|
+}
|