Browse Source

Split linalg into general and specific parts

gingerBill 5 years ago
parent
commit
11c705508d
2 changed files with 393 additions and 388 deletions
  1. 393 0
      core/math/linalg/general.odin
  2. 0 388
      core/math/linalg/specific.odin

+ 393 - 0
core/math/linalg/general.odin

@@ -0,0 +1,393 @@
+package linalg
+
+import "core:math"
+import "intrinsics"
+
+// Generic
+
+@private IS_NUMERIC :: intrinsics.type_is_numeric;
+@private IS_QUATERNION :: intrinsics.type_is_quaternion;
+@private IS_ARRAY :: intrinsics.type_is_array;
+
+
+vector_dot :: proc(a, b: $T/[$N]$E) -> (c: E) where IS_NUMERIC(E) {
+	for i in 0..<N {
+		c += a[i] * b[i];
+	}
+	return;
+}
+quaternion128_dot :: proc(a, b: $T/quaternion128) -> (c: f32) {
+	return real(a)*real(a) + imag(a)*imag(b) + jmag(a)*jmag(b) + kmag(a)*kmag(b);
+}
+quaternion256_dot :: proc(a, b: $T/quaternion256) -> (c: f64) {
+	return real(a)*real(a) + imag(a)*imag(b) + jmag(a)*jmag(b) + kmag(a)*kmag(b);
+}
+
+dot :: proc{vector_dot, quaternion128_dot, quaternion256_dot};
+
+quaternion_inverse :: proc(q: $Q) -> Q where IS_QUATERNION(Q) {
+	return conj(q) * quaternion(1.0/dot(q, q), 0, 0, 0);
+}
+
+
+vector_cross2 :: proc(a, b: $T/[2]$E) -> E where IS_NUMERIC(E) {
+	return a[0]*b[1] - b[0]*a[1];
+}
+
+vector_cross3 :: proc(a, b: $T/[3]$E) -> (c: T) where IS_NUMERIC(E) {
+	c[0] = a[1]*b[2] - b[1]*a[2];
+	c[1] = a[2]*b[0] - b[2]*a[0];
+	c[2] = a[0]*b[1] - b[0]*a[1];
+	return;
+}
+
+vector_cross :: proc{vector_cross2, vector_cross3};
+cross :: vector_cross;
+
+vector_normalize :: proc(v: $T/[$N]$E) -> T where IS_NUMERIC(E) {
+	return v / length(v);
+}
+quaternion_normalize :: proc(q: $Q) -> Q where IS_QUATERNION(Q) {
+	return q/abs(q);
+}
+normalize :: proc{vector_normalize, quaternion_normalize};
+
+vector_normalize0 :: proc(v: $T/[$N]$E) -> T where IS_NUMERIC(E) {
+	m := length(v);
+	return m == 0 ? 0 : v/m;
+}
+quaternion_normalize0 :: proc(q: $Q) -> Q  where IS_QUATERNION(Q) {
+	m := abs(q);
+	return m == 0 ? 0 : q/m;
+}
+normalize0 :: proc{vector_normalize0, quaternion_normalize0};
+
+
+vector_length :: proc(v: $T/[$N]$E) -> E where IS_NUMERIC(E) {
+	return math.sqrt(dot(v, v));
+}
+
+vector_length2 :: proc(v: $T/[$N]$E) -> E where IS_NUMERIC(E) {
+	return dot(v, v);
+}
+
+quaternion_length :: proc(q: $Q) -> Q where IS_QUATERNION(Q) {
+	return abs(q);
+}
+
+quaternion_length2 :: proc(q: $Q) -> Q where IS_QUATERNION(Q) {
+	return dot(q, q);
+}
+
+length :: proc{vector_length, quaternion_length};
+length2 :: proc{vector_length2, quaternion_length2};
+
+
+vector_lerp :: proc(x, y, t: $V/[$N]$E) -> V where IS_NUMERIC(E) {
+	s: V;
+	for i in 0..<N {
+		ti := t[i];
+		s[i] = x[i]*(1-ti) + y[i]*ti;
+	}
+	return s;
+}
+
+vector_unlerp :: proc(a, b, x: $V/[$N]$E) -> V where IS_NUMERIC(E) {
+	s: V;
+	for i in 0..<N {
+		ai := a[i];
+		s[i] = (x[i]-ai)/(b[i]-ai);
+	}
+	return s;
+}
+
+vector_sin :: proc(angle: $V/[$N]$E) -> V where IS_NUMERIC(E) {
+	s: V;
+	for i in 0..<N {
+		s[i] = math.sin(angle[i]);
+	}
+	return s;
+}
+
+vector_cos :: proc(angle: $V/[$N]$E) -> V where IS_NUMERIC(E) {
+	s: V;
+	for i in 0..<N {
+		s[i] = math.cos(angle[i]);
+	}
+	return s;
+}
+
+vector_tan :: proc(angle: $V/[$N]$E) -> V where IS_NUMERIC(E) {
+	s: V;
+	for i in 0..<N {
+		s[i] = math.tan(angle[i]);
+	}
+	return s;
+}
+
+
+vector_asin :: proc(x: $V/[$N]$E) -> V where IS_NUMERIC(E) {
+	s: V;
+	for i in 0..<N {
+		s[i] = math.asin(x[i]);
+	}
+	return s;
+}
+
+vector_acos :: proc(x: $V/[$N]$E) -> V where IS_NUMERIC(E) {
+	s: V;
+	for i in 0..<N {
+		s[i] = math.acos(x[i]);
+	}
+	return s;
+}
+
+vector_atan :: proc(x: $V/[$N]$E) -> V where IS_NUMERIC(E) {
+	s: V;
+	for i in 0..<N {
+		s[i] = math.atan(x[i]);
+	}
+	return s;
+}
+
+vector_atan2 :: proc(y, x: $V/[$N]$E) -> V where IS_NUMERIC(E) {
+	s: V;
+	for i in 0..<N {
+		s[i] = math.atan(y[i], x[i]);
+	}
+	return s;
+}
+
+vector_pow :: proc(x, y: $V/[$N]$E) -> V where IS_NUMERIC(E) {
+	s: V;
+	for i in 0..<N {
+		s[i] = math.pow(x[i], y[i]);
+	}
+	return s;
+}
+
+vector_expr :: proc(x: $V/[$N]$E) -> V where IS_NUMERIC(E) {
+	s: V;
+	for i in 0..<N {
+		s[i] = math.expr(x[i]);
+	}
+	return s;
+}
+
+vector_sqrt :: proc(x: $V/[$N]$E) -> V where IS_NUMERIC(E) {
+	s: V;
+	for i in 0..<N {
+		s[i] = math.sqrt(x[i]);
+	}
+	return s;
+}
+
+vector_abs :: proc(x: $V/[$N]$E) -> V where IS_NUMERIC(E) {
+	s: V;
+	for i in 0..<N {
+		s[i] = abs(x[i]);
+	}
+	return s;
+}
+
+vector_sign :: proc(v: $V/[$N]$E) -> V where IS_NUMERIC(E) {
+	s: V;
+	for i in 0..<N {
+		s[i] = math.sign(v[i]);
+	}
+	return s;
+}
+
+vector_floor :: proc(v: $V/[$N]$E) -> V where IS_NUMERIC(E) {
+	s: V;
+	for i in 0..<N {
+		s[i] = math.floor(v[i]);
+	}
+	return s;
+}
+
+vector_ceil :: proc(v: $V/[$N]$E) -> V where IS_NUMERIC(E) {
+	s: V;
+	for i in 0..<N {
+		s[i] = math.ceil(v[i]);
+	}
+	return s;
+}
+
+
+vector_mod :: proc(x, y: $V/[$N]$E) -> V where IS_NUMERIC(E) {
+	s: V;
+	for i in 0..<N {
+		s[i] = math.mod(x[i], y[i]);
+	}
+	return s;
+}
+
+vector_min :: proc(a, b: $V/[$N]$E) -> V where IS_NUMERIC(E) {
+	s: V;
+	for i in 0..<N {
+		s[i] = min(a[i], b[i]);
+	}
+	return s;
+}
+
+vector_max :: proc(a, b: $V/[$N]$E) -> V where IS_NUMERIC(E) {
+	s: V;
+	for i in 0..<N {
+		s[i] = max(a[i], b[i]);
+	}
+	return s;
+}
+
+vector_clamp :: proc(x, a, b: $V/[$N]$E) -> V where IS_NUMERIC(E) {
+	s: V;
+	for i in 0..<N {
+		s[i] = clamp(x[i], a[i], b[i]);
+	}
+	return s;
+}
+
+vector_mix :: proc(x, y, a: $V/[$N]$E) -> V where IS_NUMERIC(E) {
+	s: V;
+	for i in 0..<N {
+		s[i] = x[i]*(1-a[i]) + y[i]*a[i];
+	}
+	return s;
+}
+
+vector_step :: proc(edge, x: $V/[$N]$E) -> V where IS_NUMERIC(E) {
+	s: V;
+	for i in 0..<N {
+		s[i] = x[i] < edge[i] ? 0 : 1;
+	}
+	return s;
+}
+
+vector_smoothstep :: proc(edge0, edge1, x: $V/[$N]$E) -> V where IS_NUMERIC(E) {
+	s: V;
+	for i in 0..<N {
+		e0, e1 := edge0[i], edge1[i];
+		t := clamp((x[i] - e0) / (e1 - e0), 0, 1);
+		s[i] = t * t * (3 - 2*t);
+	}
+	return s;
+}
+
+vector_smootherstep :: proc(edge0, edge1, x: $V/[$N]$E) -> V where IS_NUMERIC(E) {
+	s: V;
+	for i in 0..<N {
+		e0, e1 := edge0[i], edge1[i];
+		t := clamp((x[i] - e0) / (e1 - e0), 0, 1);
+		s[i] = t * t * t * (t * (6*t - 15) + 10);
+	}
+	return s;
+}
+
+vector_distance :: proc(p0, p1: $V/[$N]$E) -> V where IS_NUMERIC(E) {
+	return length(p1 - p0);
+}
+
+vector_reflect :: proc(i, n: $V/[$N]$E) -> V where IS_NUMERIC(E) {
+	b := n * (2 * dot(n, i));
+	return i - b;
+}
+
+vector_refract :: proc(i, n: $V/[$N]$E, eta: E) -> V where IS_NUMERIC(E) {
+	dv := dot(n, i);
+	k := 1 - eta*eta - (1 - dv*dv);
+	a := i * eta;
+	b := n * eta*dv*math.sqrt(k);
+	return (a - b) * E(int(k >= 0));
+}
+
+
+
+identity :: proc($T: typeid/[$N][N]$E) -> (m: T) {
+	for i in 0..<N do m[i][i] = E(1);
+	return m;
+}
+
+transpose :: proc(a: $T/[$N][$M]$E) -> (m: T) {
+	for j in 0..<M {
+		for i in 0..<N {
+			m[j][i] = a[i][j];
+		}
+	}
+	return;
+}
+
+matrix_mul :: proc(a, b: $M/[$N][N]$E) -> (c: M)
+	where !IS_ARRAY(E),
+		  IS_NUMERIC(E) {
+	for i in 0..<N {
+		for k in 0..<N {
+			for j in 0..<N {
+				c[k][i] += a[j][i] * b[k][j];
+			}
+		}
+	}
+	return;
+}
+
+matrix_mul_differ :: proc(a: $A/[$J][$I]$E, b: $B/[$K][J]E) -> (c: [K][I]E)
+	where !IS_ARRAY(E),
+		  IS_NUMERIC(E),
+		  I != K {
+	for k in 0..<K {
+		for j in 0..<J {
+			for i in 0..<I {
+				c[k][i] += a[j][i] * b[k][j];
+			}
+		}
+	}
+	return;
+}
+
+
+matrix_mul_vector :: proc(a: $A/[$I][$J]$E, b: $B/[I]E) -> (c: B)
+	where !IS_ARRAY(E),
+		  IS_NUMERIC(E) {
+	for i in 0..<I {
+		for j in 0..<J {
+			c[i] += a[i][j] * b[i];
+		}
+	}
+	return;
+}
+
+quaternion128_mul_vector3 :: proc(q: $Q/quaternion128, v: $V/[3]$F/f32) -> V {
+	Raw_Quaternion :: struct {xyz: [3]f32, r: f32};
+
+	q := transmute(Raw_Quaternion)q;
+	v := transmute([3]f32)v;
+
+	t := cross(2*q.xyz, v);
+	return V(v + q.r*t + cross(q.xyz, t));
+}
+
+quaternion256_mul_vector3 :: proc(q: $Q/quaternion256, v: $V/[3]$F/f64) -> V {
+	Raw_Quaternion :: struct {xyz: [3]f64, r: f64};
+
+	q := transmute(Raw_Quaternion)q;
+	v := transmute([3]f64)v;
+
+	t := cross(2*q.xyz, v);
+	return V(v + q.r*t + cross(q.xyz, t));
+}
+quaternion_mul_vector3 :: proc{quaternion128_mul_vector3, quaternion256_mul_vector3};
+
+mul :: proc{
+	matrix_mul,
+	matrix_mul_differ,
+	matrix_mul_vector,
+	quaternion128_mul_vector3,
+	quaternion256_mul_vector3,
+};
+
+vector_to_ptr :: proc(v: ^$V/[$N]$E) -> ^E where IS_NUMERIC(E) {
+	return &v[0];
+}
+matrix_to_ptr :: proc(m: ^$A/[$I][$J]$E) -> ^E where IS_NUMERIC(E) {
+	return &m[0][0];
+}
+

+ 0 - 388
core/math/linalg/linalg.odin → core/math/linalg/specific.odin

@@ -3,394 +3,6 @@ package linalg
 import "core:math"
 import "core:math"
 import "intrinsics"
 import "intrinsics"
 
 
-// Generic
-
-@private IS_NUMERIC :: intrinsics.type_is_numeric;
-@private IS_QUATERNION :: intrinsics.type_is_quaternion;
-@private IS_ARRAY :: intrinsics.type_is_array;
-
-
-vector_dot :: proc(a, b: $T/[$N]$E) -> (c: E) where IS_NUMERIC(E) {
-	for i in 0..<N {
-		c += a[i] * b[i];
-	}
-	return;
-}
-quaternion128_dot :: proc(a, b: $T/quaternion128) -> (c: f32) {
-	return real(a)*real(a) + imag(a)*imag(b) + jmag(a)*jmag(b) + kmag(a)*kmag(b);
-}
-quaternion256_dot :: proc(a, b: $T/quaternion256) -> (c: f64) {
-	return real(a)*real(a) + imag(a)*imag(b) + jmag(a)*jmag(b) + kmag(a)*kmag(b);
-}
-
-dot :: proc{vector_dot, quaternion128_dot, quaternion256_dot};
-
-quaternion_inverse :: proc(q: $Q) -> Q where IS_QUATERNION(Q) {
-	return conj(q) * quaternion(1.0/dot(q, q), 0, 0, 0);
-}
-
-
-vector_cross2 :: proc(a, b: $T/[2]$E) -> E where IS_NUMERIC(E) {
-	return a[0]*b[1] - b[0]*a[1];
-}
-
-vector_cross3 :: proc(a, b: $T/[3]$E) -> (c: T) where IS_NUMERIC(E) {
-	c[0] = a[1]*b[2] - b[1]*a[2];
-	c[1] = a[2]*b[0] - b[2]*a[0];
-	c[2] = a[0]*b[1] - b[0]*a[1];
-	return;
-}
-
-vector_cross :: proc{vector_cross2, vector_cross3};
-cross :: vector_cross;
-
-vector_normalize :: proc(v: $T/[$N]$E) -> T where IS_NUMERIC(E) {
-	return v / length(v);
-}
-quaternion_normalize :: proc(q: $Q) -> Q where IS_QUATERNION(Q) {
-	return q/abs(q);
-}
-normalize :: proc{vector_normalize, quaternion_normalize};
-
-vector_normalize0 :: proc(v: $T/[$N]$E) -> T where IS_NUMERIC(E) {
-	m := length(v);
-	return m == 0 ? 0 : v/m;
-}
-quaternion_normalize0 :: proc(q: $Q) -> Q  where IS_QUATERNION(Q) {
-	m := abs(q);
-	return m == 0 ? 0 : q/m;
-}
-normalize0 :: proc{vector_normalize0, quaternion_normalize0};
-
-
-vector_length :: proc(v: $T/[$N]$E) -> E where IS_NUMERIC(E) {
-	return math.sqrt(dot(v, v));
-}
-
-vector_length2 :: proc(v: $T/[$N]$E) -> E where IS_NUMERIC(E) {
-	return dot(v, v);
-}
-
-quaternion_length :: proc(q: $Q) -> Q where IS_QUATERNION(Q) {
-	return abs(q);
-}
-
-quaternion_length2 :: proc(q: $Q) -> Q where IS_QUATERNION(Q) {
-	return dot(q, q);
-}
-
-length :: proc{vector_length, quaternion_length};
-length2 :: proc{vector_length2, quaternion_length2};
-
-
-vector_lerp :: proc(x, y, t: $V/[$N]$E) -> V where IS_NUMERIC(E) {
-	s: V;
-	for i in 0..<N {
-		ti := t[i];
-		s[i] = x[i]*(1-ti) + y[i]*ti;
-	}
-	return s;
-}
-
-vector_unlerp :: proc(a, b, x: $V/[$N]$E) -> V where IS_NUMERIC(E) {
-	s: V;
-	for i in 0..<N {
-		ai := a[i];
-		s[i] = (x[i]-ai)/(b[i]-ai);
-	}
-	return s;
-}
-
-vector_sin :: proc(angle: $V/[$N]$E) -> V where IS_NUMERIC(E) {
-	s: V;
-	for i in 0..<N {
-		s[i] = math.sin(angle[i]);
-	}
-	return s;
-}
-
-vector_cos :: proc(angle: $V/[$N]$E) -> V where IS_NUMERIC(E) {
-	s: V;
-	for i in 0..<N {
-		s[i] = math.cos(angle[i]);
-	}
-	return s;
-}
-
-vector_tan :: proc(angle: $V/[$N]$E) -> V where IS_NUMERIC(E) {
-	s: V;
-	for i in 0..<N {
-		s[i] = math.tan(angle[i]);
-	}
-	return s;
-}
-
-
-vector_asin :: proc(x: $V/[$N]$E) -> V where IS_NUMERIC(E) {
-	s: V;
-	for i in 0..<N {
-		s[i] = math.asin(x[i]);
-	}
-	return s;
-}
-
-vector_acos :: proc(x: $V/[$N]$E) -> V where IS_NUMERIC(E) {
-	s: V;
-	for i in 0..<N {
-		s[i] = math.acos(x[i]);
-	}
-	return s;
-}
-
-vector_atan :: proc(x: $V/[$N]$E) -> V where IS_NUMERIC(E) {
-	s: V;
-	for i in 0..<N {
-		s[i] = math.atan(x[i]);
-	}
-	return s;
-}
-
-vector_atan2 :: proc(y, x: $V/[$N]$E) -> V where IS_NUMERIC(E) {
-	s: V;
-	for i in 0..<N {
-		s[i] = math.atan(y[i], x[i]);
-	}
-	return s;
-}
-
-vector_pow :: proc(x, y: $V/[$N]$E) -> V where IS_NUMERIC(E) {
-	s: V;
-	for i in 0..<N {
-		s[i] = math.pow(x[i], y[i]);
-	}
-	return s;
-}
-
-vector_expr :: proc(x: $V/[$N]$E) -> V where IS_NUMERIC(E) {
-	s: V;
-	for i in 0..<N {
-		s[i] = math.expr(x[i]);
-	}
-	return s;
-}
-
-vector_sqrt :: proc(x: $V/[$N]$E) -> V where IS_NUMERIC(E) {
-	s: V;
-	for i in 0..<N {
-		s[i] = math.sqrt(x[i]);
-	}
-	return s;
-}
-
-vector_abs :: proc(x: $V/[$N]$E) -> V where IS_NUMERIC(E) {
-	s: V;
-	for i in 0..<N {
-		s[i] = abs(x[i]);
-	}
-	return s;
-}
-
-vector_sign :: proc(v: $V/[$N]$E) -> V where IS_NUMERIC(E) {
-	s: V;
-	for i in 0..<N {
-		s[i] = math.sign(v[i]);
-	}
-	return s;
-}
-
-vector_floor :: proc(v: $V/[$N]$E) -> V where IS_NUMERIC(E) {
-	s: V;
-	for i in 0..<N {
-		s[i] = math.floor(v[i]);
-	}
-	return s;
-}
-
-vector_ceil :: proc(v: $V/[$N]$E) -> V where IS_NUMERIC(E) {
-	s: V;
-	for i in 0..<N {
-		s[i] = math.ceil(v[i]);
-	}
-	return s;
-}
-
-
-vector_mod :: proc(x, y: $V/[$N]$E) -> V where IS_NUMERIC(E) {
-	s: V;
-	for i in 0..<N {
-		s[i] = math.mod(x[i], y[i]);
-	}
-	return s;
-}
-
-vector_min :: proc(a, b: $V/[$N]$E) -> V where IS_NUMERIC(E) {
-	s: V;
-	for i in 0..<N {
-		s[i] = min(a[i], b[i]);
-	}
-	return s;
-}
-
-vector_max :: proc(a, b: $V/[$N]$E) -> V where IS_NUMERIC(E) {
-	s: V;
-	for i in 0..<N {
-		s[i] = max(a[i], b[i]);
-	}
-	return s;
-}
-
-vector_clamp :: proc(x, a, b: $V/[$N]$E) -> V where IS_NUMERIC(E) {
-	s: V;
-	for i in 0..<N {
-		s[i] = clamp(x[i], a[i], b[i]);
-	}
-	return s;
-}
-
-vector_mix :: proc(x, y, a: $V/[$N]$E) -> V where IS_NUMERIC(E) {
-	s: V;
-	for i in 0..<N {
-		s[i] = x[i]*(1-a[i]) + y[i]*a[i];
-	}
-	return s;
-}
-
-vector_step :: proc(edge, x: $V/[$N]$E) -> V where IS_NUMERIC(E) {
-	s: V;
-	for i in 0..<N {
-		s[i] = x[i] < edge[i] ? 0 : 1;
-	}
-	return s;
-}
-
-vector_smoothstep :: proc(edge0, edge1, x: $V/[$N]$E) -> V where IS_NUMERIC(E) {
-	s: V;
-	for i in 0..<N {
-		e0, e1 := edge0[i], edge1[i];
-		t := clamp((x[i] - e0) / (e1 - e0), 0, 1);
-		s[i] = t * t * (3 - 2*t);
-	}
-	return s;
-}
-
-vector_smootherstep :: proc(edge0, edge1, x: $V/[$N]$E) -> V where IS_NUMERIC(E) {
-	s: V;
-	for i in 0..<N {
-		e0, e1 := edge0[i], edge1[i];
-		t := clamp((x[i] - e0) / (e1 - e0), 0, 1);
-		s[i] = t * t * t * (t * (6*t - 15) + 10);
-	}
-	return s;
-}
-
-vector_distance :: proc(p0, p1: $V/[$N]$E) -> V where IS_NUMERIC(E) {
-	return length(p1 - p0);
-}
-
-vector_reflect :: proc(i, n: $V/[$N]$E) -> V where IS_NUMERIC(E) {
-	b := n * (2 * dot(n, i));
-	return i - b;
-}
-
-vector_refract :: proc(i, n: $V/[$N]$E, eta: E) -> V where IS_NUMERIC(E) {
-	dv := dot(n, i);
-	k := 1 - eta*eta - (1 - dv*dv);
-	a := i * eta;
-	b := n * eta*dv*math.sqrt(k);
-	return (a - b) * E(int(k >= 0));
-}
-
-
-
-identity :: proc($T: typeid/[$N][N]$E) -> (m: T) {
-	for i in 0..<N do m[i][i] = E(1);
-	return m;
-}
-
-transpose :: proc(a: $T/[$N][$M]$E) -> (m: T) {
-	for j in 0..<M {
-		for i in 0..<N {
-			m[j][i] = a[i][j];
-		}
-	}
-	return;
-}
-
-matrix_mul :: proc(a, b: $M/[$N][N]$E) -> (c: M)
-	where !IS_ARRAY(E),
-		  IS_NUMERIC(E) {
-	for i in 0..<N {
-		for k in 0..<N {
-			for j in 0..<N {
-				c[k][i] += a[j][i] * b[k][j];
-			}
-		}
-	}
-	return;
-}
-
-matrix_mul_differ :: proc(a: $A/[$J][$I]$E, b: $B/[$K][J]E) -> (c: [K][I]E)
-	where !IS_ARRAY(E),
-		  IS_NUMERIC(E),
-		  I != K {
-	for k in 0..<K {
-		for j in 0..<J {
-			for i in 0..<I {
-				c[k][i] += a[j][i] * b[k][j];
-			}
-		}
-	}
-	return;
-}
-
-
-matrix_mul_vector :: proc(a: $A/[$I][$J]$E, b: $B/[I]E) -> (c: B)
-	where !IS_ARRAY(E),
-		  IS_NUMERIC(E) {
-	for i in 0..<I {
-		for j in 0..<J {
-			c[i] += a[i][j] * b[i];
-		}
-	}
-	return;
-}
-
-quaternion128_mul_vector3 :: proc(q: $Q/quaternion128, v: $V/[3]$F/f32) -> V {
-	Raw_Quaternion :: struct {xyz: [3]f32, r: f32};
-
-	q := transmute(Raw_Quaternion)q;
-	v := transmute([3]f32)v;
-
-	t := cross(2*q.xyz, v);
-	return V(v + q.r*t + cross(q.xyz, t));
-}
-
-quaternion256_mul_vector3 :: proc(q: $Q/quaternion256, v: $V/[3]$F/f64) -> V {
-	Raw_Quaternion :: struct {xyz: [3]f64, r: f64};
-
-	q := transmute(Raw_Quaternion)q;
-	v := transmute([3]f64)v;
-
-	t := cross(2*q.xyz, v);
-	return V(v + q.r*t + cross(q.xyz, t));
-}
-quaternion_mul_vector3 :: proc{quaternion128_mul_vector3, quaternion256_mul_vector3};
-
-mul :: proc{
-	matrix_mul,
-	matrix_mul_differ,
-	matrix_mul_vector,
-	quaternion128_mul_vector3,
-	quaternion256_mul_vector3,
-};
-
-vector_to_ptr :: proc(v: ^$V/[$N]$E) -> ^E where IS_NUMERIC(E) {
-	return &v[0];
-}
-matrix_to_ptr :: proc(m: ^$A/[$I][$J]$E) -> ^E where IS_NUMERIC(E) {
-	return &m[0][0];
-}
-
 
 
 // Specific
 // Specific