|
@@ -8,26 +8,24 @@
|
|
|
|
|
|
// package simd_util implements compositions of SIMD operations for optimizing
|
|
// package simd_util implements compositions of SIMD operations for optimizing
|
|
// the core library where available.
|
|
// the core library where available.
|
|
-
|
|
|
|
-//+build i386, amd64
|
|
|
|
package simd_util
|
|
package simd_util
|
|
|
|
|
|
import "base:intrinsics"
|
|
import "base:intrinsics"
|
|
-import "core:simd/x86"
|
|
|
|
|
|
|
|
-@private SCAN_REGISTER_SIZE :: 16
|
|
|
|
-@private SCAN_REGISTERS :: 4
|
|
|
|
-@private SCAN_WIDTH :: SCAN_REGISTERS * SCAN_REGISTER_SIZE
|
|
|
|
|
|
+@private SCAN_WIDTH :: 32
|
|
|
|
|
|
-// How long should a string be before using any of the `index_*` procedures in
|
|
|
|
-// this package.
|
|
|
|
-RECOMMENDED_SCAN_SIZE :: SCAN_REGISTER_SIZE
|
|
|
|
|
|
+@(private, rodata)
|
|
|
|
+simd_scanner_indices := #simd[SCAN_WIDTH]u8 {
|
|
|
|
+ 0, 1, 2, 3, 4, 5, 6, 7,
|
|
|
|
+ 8, 9, 10, 11, 12, 13, 14, 15,
|
|
|
|
+ 16, 17, 18, 19, 20, 21, 22, 23,
|
|
|
|
+ 24, 25, 26, 27, 28, 29, 30, 31,
|
|
|
|
+}
|
|
|
|
|
|
/*
|
|
/*
|
|
Scan a slice of bytes for a specific byte.
|
|
Scan a slice of bytes for a specific byte.
|
|
|
|
|
|
-This procedure safely handles padding out slices of any length, including empty
|
|
|
|
-slices.
|
|
|
|
|
|
+This procedure safely handles slices of any length, including empty slices.
|
|
|
|
|
|
Inputs:
|
|
Inputs:
|
|
- data: A slice of bytes.
|
|
- data: A slice of bytes.
|
|
@@ -36,83 +34,54 @@ Inputs:
|
|
Returns:
|
|
Returns:
|
|
- index: The index of the byte `c`, or -1 if it was not found.
|
|
- index: The index of the byte `c`, or -1 if it was not found.
|
|
*/
|
|
*/
|
|
-@(enable_target_feature="sse2")
|
|
|
|
index_byte :: proc(data: []u8, c: byte) -> (index: int) #no_bounds_check {
|
|
index_byte :: proc(data: []u8, c: byte) -> (index: int) #no_bounds_check {
|
|
- scanner_data: [SCAN_REGISTER_SIZE]u8 = c
|
|
|
|
- scanner := intrinsics.unaligned_load(cast(^x86.__m128i)&scanner_data[0])
|
|
|
|
-
|
|
|
|
- i: int
|
|
|
|
length := len(data)
|
|
length := len(data)
|
|
- full_chunks_length := length - length % SCAN_WIDTH
|
|
|
|
-
|
|
|
|
- for /**/; i < full_chunks_length; i += SCAN_WIDTH {
|
|
|
|
- simd_load := intrinsics.unaligned_load(cast(^[SCAN_REGISTERS]x86.__m128i)&data[i])
|
|
|
|
-
|
|
|
|
- #unroll for j in 0..<SCAN_REGISTERS {
|
|
|
|
- cmp := x86._mm_cmpeq_epi8(simd_load[j], scanner)
|
|
|
|
- mask := x86._mm_movemask_epi8(cmp)
|
|
|
|
-
|
|
|
|
- // NOTE(Feoramund): I experimented with ORing all the masks onto a
|
|
|
|
- // 128-bit integer before performing the `mask != 0` check to see
|
|
|
|
- // if that might be faster. However, the cost to avoid 3
|
|
|
|
- // compares resulted in a marginally slower runtime on my machine.
|
|
|
|
- //
|
|
|
|
- // Simpler won out here.
|
|
|
|
- if mask != 0 {
|
|
|
|
- ctz := intrinsics.count_trailing_zeros(mask)
|
|
|
|
- return i + j * SCAN_REGISTER_SIZE + cast(int)ctz
|
|
|
|
|
|
+ i := 0
|
|
|
|
+
|
|
|
|
+ // Guard against small strings.
|
|
|
|
+ if length < SCAN_WIDTH {
|
|
|
|
+ for /**/; i < length; i += 1 {
|
|
|
|
+ if data[i] == c {
|
|
|
|
+ return i
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
+ return -1
|
|
}
|
|
}
|
|
|
|
|
|
- if i < length {
|
|
|
|
- // The data is not exactly divisible by SCAN_WIDTH, and we haven't found
|
|
|
|
- // what we're looking for yet, so we must pad out the end, then run our
|
|
|
|
- // algorithm on it.
|
|
|
|
- padded_data_end: [SCAN_WIDTH]u8 = ---
|
|
|
|
- remnant_length := length % SCAN_WIDTH
|
|
|
|
- intrinsics.mem_copy_non_overlapping(
|
|
|
|
- &padded_data_end[0],
|
|
|
|
- &raw_data(data)[full_chunks_length],
|
|
|
|
- remnant_length,
|
|
|
|
- )
|
|
|
|
-
|
|
|
|
- simd_load := intrinsics.unaligned_load(cast(^[SCAN_REGISTERS]x86.__m128i)&padded_data_end[0])
|
|
|
|
-
|
|
|
|
- #unroll for j in 0..<SCAN_REGISTERS {
|
|
|
|
- cmp := x86._mm_cmpeq_epi8(simd_load[j], scanner)
|
|
|
|
- mask := x86._mm_movemask_epi8(cmp)
|
|
|
|
-
|
|
|
|
- // Because this data is padded out, it's possible that we could
|
|
|
|
- // match on uninitialized memory, so we must guard against that.
|
|
|
|
-
|
|
|
|
- // Create a relevancy mask: (Example)
|
|
|
|
- //
|
|
|
|
- // max(u64) = 0xFFFF_FFFF_FFFF_FFFF
|
|
|
|
- //
|
|
|
|
- // Convert an integer into a stream of on-bits by using the
|
|
|
|
- // shifted negation of the maximum. The subtraction selects which
|
|
|
|
- // section of the overall mask we should apply.
|
|
|
|
- //
|
|
|
|
- // << 17 - (1 * SCAN_REGISTER_SIZE)
|
|
|
|
- // = 0xFFFF_FFFF_FFFF_FFFE
|
|
|
|
- //
|
|
|
|
- submask := max(u64) << u64(remnant_length - (j * SCAN_REGISTER_SIZE))
|
|
|
|
- //
|
|
|
|
- // ~submask = 0x0000_0000_0000_0001
|
|
|
|
- // (submask >> 63) = 0x0000_0000_0000_0001
|
|
|
|
- //
|
|
|
|
- // The multiplication is a guard against zero.
|
|
|
|
- //
|
|
|
|
- submask = ~submask * (submask >> 63)
|
|
|
|
- //
|
|
|
|
- // Finally, mask out any irrelevant bits with the submask.
|
|
|
|
- mask &= i32(submask)
|
|
|
|
-
|
|
|
|
- if mask != 0 {
|
|
|
|
- ctz := int(intrinsics.count_trailing_zeros(mask))
|
|
|
|
- return i + j * SCAN_REGISTER_SIZE + ctz
|
|
|
|
- }
|
|
|
|
|
|
+ ptr := cast(int)cast(uintptr)raw_data(data)
|
|
|
|
+
|
|
|
|
+ alignment_start := (SCAN_WIDTH - ptr % SCAN_WIDTH) % SCAN_WIDTH
|
|
|
|
+
|
|
|
|
+ // Iterate as a scalar until the data is aligned on a `SCAN_WIDTH` boundary.
|
|
|
|
+ //
|
|
|
|
+ // This way, every load in the vector loop will be aligned, which should be
|
|
|
|
+ // the fastest possible scenario.
|
|
|
|
+ for /**/; i < alignment_start; i += 1 {
|
|
|
|
+ if data[i] == c {
|
|
|
|
+ return i
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ // Iterate as a vector over every aligned chunk, evaluating each byte simultaneously at the CPU level.
|
|
|
|
+ scanner: #simd[SCAN_WIDTH]u8 = c
|
|
|
|
+ tail := length - (length - alignment_start) % SCAN_WIDTH
|
|
|
|
+
|
|
|
|
+ for /**/; i < tail; i += SCAN_WIDTH {
|
|
|
|
+ load := (cast(^#simd[SCAN_WIDTH]u8)(&data[i]))^
|
|
|
|
+ comparison := intrinsics.simd_lanes_eq(load, scanner)
|
|
|
|
+ match := intrinsics.simd_reduce_or(comparison)
|
|
|
|
+ if match > 0 {
|
|
|
|
+ sentinel: #simd[SCAN_WIDTH]u8 = u8(0xFF)
|
|
|
|
+ index_select := intrinsics.simd_select(comparison, simd_scanner_indices, sentinel)
|
|
|
|
+ index_reduce := intrinsics.simd_reduce_min(index_select)
|
|
|
|
+ return i + cast(int)index_reduce
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ // Iterate as a scalar over the remaining unaligned portion.
|
|
|
|
+ for /**/; i < length; i += 1 {
|
|
|
|
+ if data[i] == c {
|
|
|
|
+ return i
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
@@ -123,8 +92,7 @@ index_byte :: proc(data: []u8, c: byte) -> (index: int) #no_bounds_check {
|
|
Scan a slice of bytes for a specific byte, starting from the end and working
|
|
Scan a slice of bytes for a specific byte, starting from the end and working
|
|
backwards to the start.
|
|
backwards to the start.
|
|
|
|
|
|
-This procedure safely handles padding out slices of any length, including empty
|
|
|
|
-slices.
|
|
|
|
|
|
+This procedure safely handles slices of any length, including empty slices.
|
|
|
|
|
|
Inputs:
|
|
Inputs:
|
|
- data: A slice of bytes.
|
|
- data: A slice of bytes.
|
|
@@ -133,54 +101,58 @@ Inputs:
|
|
Returns:
|
|
Returns:
|
|
- index: The index of the byte `c`, or -1 if it was not found.
|
|
- index: The index of the byte `c`, or -1 if it was not found.
|
|
*/
|
|
*/
|
|
-@(enable_target_feature="sse2")
|
|
|
|
last_index_byte :: proc(data: []u8, c: byte) -> int #no_bounds_check {
|
|
last_index_byte :: proc(data: []u8, c: byte) -> int #no_bounds_check {
|
|
- scanner_data: [SCAN_REGISTER_SIZE]u8 = c
|
|
|
|
- scanner := intrinsics.unaligned_load(cast(^x86.__m128i)&scanner_data[0])
|
|
|
|
-
|
|
|
|
- i := len(data) - SCAN_WIDTH
|
|
|
|
-
|
|
|
|
- for /**/; i >= 0; i -= SCAN_WIDTH {
|
|
|
|
- simd_load := intrinsics.unaligned_load(cast(^[SCAN_REGISTERS]x86.__m128i)&data[i])
|
|
|
|
-
|
|
|
|
- // There is no #reverse #unroll at the time of this writing, so we use
|
|
|
|
- // `j` to count down by subtraction.
|
|
|
|
- #unroll for j in 1..=SCAN_REGISTERS {
|
|
|
|
- cmp := x86._mm_cmpeq_epi8(simd_load[SCAN_REGISTERS-j], scanner)
|
|
|
|
- mask := x86._mm_movemask_epi8(cmp)
|
|
|
|
|
|
+ length := len(data)
|
|
|
|
+ i := length - 1
|
|
|
|
|
|
- if mask != 0 {
|
|
|
|
- // CLZ is used instead to get the on-bit from the other end.
|
|
|
|
- clz := (8 * size_of(mask) - 1) - int(intrinsics.count_leading_zeros(mask))
|
|
|
|
- return i + SCAN_WIDTH - j * SCAN_REGISTER_SIZE + clz
|
|
|
|
|
|
+ // Guard against small strings.
|
|
|
|
+ if length < SCAN_WIDTH {
|
|
|
|
+ for /**/; i >= 0; i -= 1 {
|
|
|
|
+ if data[i] == c {
|
|
|
|
+ return i
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
+ return -1
|
|
}
|
|
}
|
|
|
|
|
|
- if i < 0 {
|
|
|
|
- padded_data_end: [SCAN_WIDTH]u8 = ---
|
|
|
|
- remnant_length := len(data) % SCAN_WIDTH
|
|
|
|
- intrinsics.mem_copy_non_overlapping(
|
|
|
|
- &padded_data_end[0],
|
|
|
|
- &raw_data(data)[0],
|
|
|
|
- remnant_length,
|
|
|
|
- )
|
|
|
|
-
|
|
|
|
- simd_load := intrinsics.unaligned_load(cast(^[SCAN_REGISTERS]x86.__m128i)&padded_data_end[0])
|
|
|
|
|
|
+ ptr := cast(int)cast(uintptr)raw_data(data)
|
|
|
|
|
|
- #unroll for j in 1..=SCAN_REGISTERS {
|
|
|
|
- cmp := x86._mm_cmpeq_epi8(simd_load[SCAN_REGISTERS-j], scanner)
|
|
|
|
- mask := x86._mm_movemask_epi8(cmp)
|
|
|
|
|
|
+ tail := length - (ptr + length) % SCAN_WIDTH
|
|
|
|
|
|
- submask := max(u64) << u64(remnant_length - (SCAN_REGISTERS-j) * SCAN_REGISTER_SIZE)
|
|
|
|
- submask = ~submask * (submask >> 63)
|
|
|
|
|
|
+ // Iterate as a scalar until the data is aligned on a `SCAN_WIDTH` boundary.
|
|
|
|
+ //
|
|
|
|
+ // This way, every load in the vector loop will be aligned, which should be
|
|
|
|
+ // the fastest possible scenario.
|
|
|
|
+ for /**/; i >= tail; i -= 1 {
|
|
|
|
+ if data[i] == c {
|
|
|
|
+ return i
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
|
|
- mask &= i32(submask)
|
|
|
|
|
|
+ // Iterate as a vector over every aligned chunk, evaluating each byte simultaneously at the CPU level.
|
|
|
|
+ scanner: #simd[SCAN_WIDTH]u8 = c
|
|
|
|
+ alignment_start := (SCAN_WIDTH - ptr % SCAN_WIDTH) % SCAN_WIDTH
|
|
|
|
+
|
|
|
|
+ i -= SCAN_WIDTH - 1
|
|
|
|
+
|
|
|
|
+ for /**/; i >= alignment_start; i -= SCAN_WIDTH {
|
|
|
|
+ load := (cast(^#simd[SCAN_WIDTH]u8)(&data[i]))^
|
|
|
|
+ comparison := intrinsics.simd_lanes_eq(load, scanner)
|
|
|
|
+ match := intrinsics.simd_reduce_or(comparison)
|
|
|
|
+ if match > 0 {
|
|
|
|
+ sentinel: #simd[SCAN_WIDTH]u8
|
|
|
|
+ index_select := intrinsics.simd_select(comparison, simd_scanner_indices, sentinel)
|
|
|
|
+ index_reduce := intrinsics.simd_reduce_max(index_select)
|
|
|
|
+ return i + cast(int)index_reduce
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
|
|
- if mask != 0 {
|
|
|
|
- clz := (8 * size_of(mask) - 1) - int(intrinsics.count_leading_zeros(mask))
|
|
|
|
- return SCAN_WIDTH - j * SCAN_REGISTER_SIZE + clz
|
|
|
|
- }
|
|
|
|
|
|
+ // Iterate as a scalar over the remaining unaligned portion.
|
|
|
|
+ i += SCAN_WIDTH - 1
|
|
|
|
+
|
|
|
|
+ for /**/; i >= 0; i -= 1 {
|
|
|
|
+ if data[i] == c {
|
|
|
|
+ return i
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|