|
@@ -531,59 +531,59 @@ _private_int_div_small :: proc(quotient, remainder, numerator, denominator: ^Int
|
|
|
/*
|
|
|
Binary split factorial algo due to: http://www.luschny.de/math/factorial/binarysplitfact.html
|
|
|
*/
|
|
|
-_private_int_factorial_binary_split :: proc(res: ^Int, n: int) -> (err: Error) {
|
|
|
+_private_int_factorial_binary_split :: proc(res: ^Int, n: int, allocator := context.allocator) -> (err: Error) {
|
|
|
|
|
|
inner, outer, start, stop, temp := &Int{}, &Int{}, &Int{}, &Int{}, &Int{};
|
|
|
- defer destroy(inner, outer, start, stop, temp);
|
|
|
+ defer internal_destroy(inner, outer, start, stop, temp);
|
|
|
|
|
|
- if err = set(inner, 1); err != nil { return err; }
|
|
|
- if err = set(outer, 1); err != nil { return err; }
|
|
|
+ if err = internal_one(inner, false, allocator); err != nil { return err; }
|
|
|
+ if err = internal_one(outer, false, allocator); err != nil { return err; }
|
|
|
|
|
|
bits_used := int(_DIGIT_TYPE_BITS - intrinsics.count_leading_zeros(n));
|
|
|
|
|
|
for i := bits_used; i >= 0; i -= 1 {
|
|
|
start := (n >> (uint(i) + 1)) + 1 | 1;
|
|
|
stop := (n >> uint(i)) + 1 | 1;
|
|
|
- if err = _private_int_recursive_product(temp, start, stop); err != nil { return err; }
|
|
|
- if err = internal_mul(inner, inner, temp); err != nil { return err; }
|
|
|
- if err = internal_mul(outer, outer, inner); err != nil { return err; }
|
|
|
+ if err = _private_int_recursive_product(temp, start, stop, 0, allocator); err != nil { return err; }
|
|
|
+ if err = internal_mul(inner, inner, temp, allocator); err != nil { return err; }
|
|
|
+ if err = internal_mul(outer, outer, inner, allocator); err != nil { return err; }
|
|
|
}
|
|
|
shift := n - intrinsics.count_ones(n);
|
|
|
|
|
|
- return shl(res, outer, int(shift));
|
|
|
+ return internal_shl(res, outer, int(shift), allocator);
|
|
|
}
|
|
|
|
|
|
/*
|
|
|
Recursive product used by binary split factorial algorithm.
|
|
|
*/
|
|
|
-_private_int_recursive_product :: proc(res: ^Int, start, stop: int, level := int(0)) -> (err: Error) {
|
|
|
+_private_int_recursive_product :: proc(res: ^Int, start, stop: int, level := int(0), allocator := context.allocator) -> (err: Error) {
|
|
|
t1, t2 := &Int{}, &Int{};
|
|
|
- defer destroy(t1, t2);
|
|
|
+ defer internal_destroy(t1, t2);
|
|
|
|
|
|
if level > FACTORIAL_BINARY_SPLIT_MAX_RECURSIONS { return .Max_Iterations_Reached; }
|
|
|
|
|
|
num_factors := (stop - start) >> 1;
|
|
|
if num_factors == 2 {
|
|
|
- if err = set(t1, start); err != nil { return err; }
|
|
|
+ if err = internal_set(t1, start, false, allocator); err != nil { return err; }
|
|
|
when true {
|
|
|
- if err = grow(t2, t1.used + 1); err != nil { return err; }
|
|
|
- if err = internal_add(t2, t1, 2); err != nil { return err; }
|
|
|
+ if err = internal_grow(t2, t1.used + 1, false, allocator); err != nil { return err; }
|
|
|
+ if err = internal_add(t2, t1, 2, allocator); err != nil { return err; }
|
|
|
} else {
|
|
|
if err = add(t2, t1, 2); err != nil { return err; }
|
|
|
}
|
|
|
- return internal_mul(res, t1, t2);
|
|
|
+ return internal_mul(res, t1, t2, allocator);
|
|
|
}
|
|
|
|
|
|
if num_factors > 1 {
|
|
|
mid := (start + num_factors) | 1;
|
|
|
- if err = _private_int_recursive_product(t1, start, mid, level + 1); err != nil { return err; }
|
|
|
- if err = _private_int_recursive_product(t2, mid, stop, level + 1); err != nil { return err; }
|
|
|
- return internal_mul(res, t1, t2);
|
|
|
+ if err = _private_int_recursive_product(t1, start, mid, level + 1, allocator); err != nil { return err; }
|
|
|
+ if err = _private_int_recursive_product(t2, mid, stop, level + 1, allocator); err != nil { return err; }
|
|
|
+ return internal_mul(res, t1, t2, allocator);
|
|
|
}
|
|
|
|
|
|
- if num_factors == 1 { return #force_inline set(res, start); }
|
|
|
+ if num_factors == 1 { return #force_inline internal_set(res, start, true, allocator); }
|
|
|
|
|
|
- return #force_inline set(res, 1);
|
|
|
+ return #force_inline internal_one(res, true, allocator);
|
|
|
}
|
|
|
|
|
|
/*
|