|
@@ -0,0 +1,361 @@
|
|
|
|
+package math
|
|
|
|
+
|
|
|
|
+// The original C code and the long comment below are
|
|
|
|
+// from FreeBSD's /usr/src/lib/msun/src/e_lgamma_r.c and
|
|
|
|
+// came with this notice.
|
|
|
|
+//
|
|
|
|
+// ====================================================
|
|
|
|
+// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
|
|
|
+//
|
|
|
|
+// Developed at SunPro, a Sun Microsystems, Inc. business.
|
|
|
|
+// Permission to use, copy, modify, and distribute this
|
|
|
|
+// software is freely granted, provided that this notice
|
|
|
|
+// is preserved.
|
|
|
|
+// ====================================================
|
|
|
|
+//
|
|
|
|
+// __ieee754_lgamma_r(x, signgamp)
|
|
|
|
+// Reentrant version of the logarithm of the Gamma function
|
|
|
|
+// with user provided pointer for the sign of Gamma(x).
|
|
|
|
+//
|
|
|
|
+// Method:
|
|
|
|
+// 1. Argument Reduction for 0 < x <= 8
|
|
|
|
+// Since gamma(1+s)=s*gamma(s), for x in [0,8], we may
|
|
|
|
+// reduce x to a number in [1.5,2.5] by
|
|
|
|
+// lgamma(1+s) = log(s) + lgamma(s)
|
|
|
|
+// for example,
|
|
|
|
+// lgamma(7.3) = log(6.3) + lgamma(6.3)
|
|
|
|
+// = log(6.3*5.3) + lgamma(5.3)
|
|
|
|
+// = log(6.3*5.3*4.3*3.3*2.3) + lgamma(2.3)
|
|
|
|
+// 2. Polynomial approximation of lgamma around its
|
|
|
|
+// minimum (ymin=1.461632144968362245) to maintain monotonicity.
|
|
|
|
+// On [ymin-0.23, ymin+0.27] (i.e., [1.23164,1.73163]), use
|
|
|
|
+// Let z = x-ymin;
|
|
|
|
+// lgamma(x) = -1.214862905358496078218 + z**2*poly(z)
|
|
|
|
+// poly(z) is a 14 degree polynomial.
|
|
|
|
+// 2. Rational approximation in the primary interval [2,3]
|
|
|
|
+// We use the following approximation:
|
|
|
|
+// s = x-2.0;
|
|
|
|
+// lgamma(x) = 0.5*s + s*P(s)/Q(s)
|
|
|
|
+// with accuracy
|
|
|
|
+// |P/Q - (lgamma(x)-0.5s)| < 2**-61.71
|
|
|
|
+// Our algorithms are based on the following observation
|
|
|
|
+//
|
|
|
|
+// zeta(2)-1 2 zeta(3)-1 3
|
|
|
|
+// lgamma(2+s) = s*(1-Euler) + --------- * s - --------- * s + ...
|
|
|
|
+// 2 3
|
|
|
|
+//
|
|
|
|
+// where Euler = 0.5772156649... is the Euler constant, which
|
|
|
|
+// is very close to 0.5.
|
|
|
|
+//
|
|
|
|
+// 3. For x>=8, we have
|
|
|
|
+// lgamma(x)~(x-0.5)log(x)-x+0.5*log(2pi)+1/(12x)-1/(360x**3)+....
|
|
|
|
+// (better formula:
|
|
|
|
+// lgamma(x)~(x-0.5)*(log(x)-1)-.5*(log(2pi)-1) + ...)
|
|
|
|
+// Let z = 1/x, then we approximation
|
|
|
|
+// f(z) = lgamma(x) - (x-0.5)(log(x)-1)
|
|
|
|
+// by
|
|
|
|
+// 3 5 11
|
|
|
|
+// w = w0 + w1*z + w2*z + w3*z + ... + w6*z
|
|
|
|
+// where
|
|
|
|
+// |w - f(z)| < 2**-58.74
|
|
|
|
+//
|
|
|
|
+// 4. For negative x, since (G is gamma function)
|
|
|
|
+// -x*G(-x)*G(x) = pi/sin(pi*x),
|
|
|
|
+// we have
|
|
|
|
+// G(x) = pi/(sin(pi*x)*(-x)*G(-x))
|
|
|
|
+// since G(-x) is positive, sign(G(x)) = sign(sin(pi*x)) for x<0
|
|
|
|
+// Hence, for x<0, signgam = sign(sin(pi*x)) and
|
|
|
|
+// lgamma(x) = log(|Gamma(x)|)
|
|
|
|
+// = log(pi/(|x*sin(pi*x)|)) - lgamma(-x);
|
|
|
|
+// Note: one should avoid computing pi*(-x) directly in the
|
|
|
|
+// computation of sin(pi*(-x)).
|
|
|
|
+//
|
|
|
|
+// 5. Special Cases
|
|
|
|
+// lgamma(2+s) ~ s*(1-Euler) for tiny s
|
|
|
|
+// lgamma(1)=lgamma(2)=0
|
|
|
|
+// lgamma(x) ~ -log(x) for tiny x
|
|
|
|
+// lgamma(0) = lgamma(inf) = inf
|
|
|
|
+// lgamma(-integer) = +-inf
|
|
|
|
+//
|
|
|
|
+//
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+lgamma_f64 :: proc "contextless" (x: f64) -> (lgamma: f64, sign: int) {
|
|
|
|
+ sin_pi :: proc "contextless" (x: f64) -> f64 {
|
|
|
|
+ if x < 0.25 {
|
|
|
|
+ return -sin(PI * x)
|
|
|
|
+ }
|
|
|
|
+ x := x
|
|
|
|
+
|
|
|
|
+ // argument reduction
|
|
|
|
+ z := floor(x)
|
|
|
|
+ n: int
|
|
|
|
+ if z != x { // inexact
|
|
|
|
+ x = mod(x, 2)
|
|
|
|
+ n = int(x * 4)
|
|
|
|
+ } else {
|
|
|
|
+ if x >= TWO_53 { // x must be even
|
|
|
|
+ x = 0
|
|
|
|
+ n = 0
|
|
|
|
+ } else {
|
|
|
|
+ if x < TWO_52 {
|
|
|
|
+ z = x + TWO_52 // exact
|
|
|
|
+ }
|
|
|
|
+ n = int(1 & transmute(u64)z)
|
|
|
|
+ x = f64(n)
|
|
|
|
+ n <<= 2
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ switch n {
|
|
|
|
+ case 0:
|
|
|
|
+ x = sin(PI * x)
|
|
|
|
+ case 1, 2:
|
|
|
|
+ x = cos(PI * (0.5 - x))
|
|
|
|
+ case 3, 4:
|
|
|
|
+ x = sin(PI * (1 - x))
|
|
|
|
+ case 5, 6:
|
|
|
|
+ x = -cos(PI * (x - 1.5))
|
|
|
|
+ case:
|
|
|
|
+ x = sin(PI * (x - 2))
|
|
|
|
+ }
|
|
|
|
+ return -x
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ @static lgamA := [?]f64{
|
|
|
|
+ 0h3FB3C467E37DB0C8,
|
|
|
|
+ 0h3FD4A34CC4A60FAD,
|
|
|
|
+ 0h3FB13E001A5562A7,
|
|
|
|
+ 0h3F951322AC92547B,
|
|
|
|
+ 0h3F7E404FB68FEFE8,
|
|
|
|
+ 0h3F67ADD8CCB7926B,
|
|
|
|
+ 0h3F538A94116F3F5D,
|
|
|
|
+ 0h3F40B6C689B99C00,
|
|
|
|
+ 0h3F2CF2ECED10E54D,
|
|
|
|
+ 0h3F1C5088987DFB07,
|
|
|
|
+ 0h3EFA7074428CFA52,
|
|
|
|
+ 0h3F07858E90A45837,
|
|
|
|
+ }
|
|
|
|
+ @static lgamR := [?]f64{
|
|
|
|
+ 1.0,
|
|
|
|
+ 0h3FF645A762C4AB74,
|
|
|
|
+ 0h3FE71A1893D3DCDC,
|
|
|
|
+ 0h3FC601EDCCFBDF27,
|
|
|
|
+ 0h3F9317EA742ED475,
|
|
|
|
+ 0h3F497DDACA41A95B,
|
|
|
|
+ 0h3EDEBAF7A5B38140,
|
|
|
|
+ }
|
|
|
|
+ @static lgamS := [?]f64{
|
|
|
|
+ 0hBFB3C467E37DB0C8,
|
|
|
|
+ 0h3FCB848B36E20878,
|
|
|
|
+ 0h3FD4D98F4F139F59,
|
|
|
|
+ 0h3FC2BB9CBEE5F2F7,
|
|
|
|
+ 0h3F9B481C7E939961,
|
|
|
|
+ 0h3F5E26B67368F239,
|
|
|
|
+ 0h3F00BFECDD17E945,
|
|
|
|
+ }
|
|
|
|
+ @static lgamT := [?]f64{
|
|
|
|
+ 0h3FDEF72BC8EE38A2,
|
|
|
|
+ 0hBFC2E4278DC6C509,
|
|
|
|
+ 0h3FB08B4294D5419B,
|
|
|
|
+ 0hBFA0C9A8DF35B713,
|
|
|
|
+ 0h3F9266E7970AF9EC,
|
|
|
|
+ 0hBF851F9FBA91EC6A,
|
|
|
|
+ 0h3F78FCE0E370E344,
|
|
|
|
+ 0hBF6E2EFFB3E914D7,
|
|
|
|
+ 0h3F6282D32E15C915,
|
|
|
|
+ 0hBF56FE8EBF2D1AF1,
|
|
|
|
+ 0h3F4CDF0CEF61A8E9,
|
|
|
|
+ 0hBF41A6109C73E0EC,
|
|
|
|
+ 0h3F34AF6D6C0EBBF7,
|
|
|
|
+ 0hBF347F24ECC38C38,
|
|
|
|
+ 0h3F35FD3EE8C2D3F4,
|
|
|
|
+ }
|
|
|
|
+ @static lgamU := [?]f64{
|
|
|
|
+ 0hBFB3C467E37DB0C8,
|
|
|
|
+ 0h3FE4401E8B005DFF,
|
|
|
|
+ 0h3FF7475CD119BD6F,
|
|
|
|
+ 0h3FEF497644EA8450,
|
|
|
|
+ 0h3FCD4EAEF6010924,
|
|
|
|
+ 0h3F8B678BBF2BAB09,
|
|
|
|
+ }
|
|
|
|
+ @static lgamV := [?]f64{
|
|
|
|
+ 1.0,
|
|
|
|
+ 0h4003A5D7C2BD619C,
|
|
|
|
+ 0h40010725A42B18F5,
|
|
|
|
+ 0h3FE89DFBE45050AF,
|
|
|
|
+ 0h3FBAAE55D6537C88,
|
|
|
|
+ 0h3F6A5ABB57D0CF61,
|
|
|
|
+ }
|
|
|
|
+ @static lgamW := [?]f64{
|
|
|
|
+ 0h3FDACFE390C97D69,
|
|
|
|
+ 0h3FB555555555553B,
|
|
|
|
+ 0hBF66C16C16B02E5C,
|
|
|
|
+ 0h3F4A019F98CF38B6,
|
|
|
|
+ 0hBF4380CB8C0FE741,
|
|
|
|
+ 0h3F4B67BA4CDAD5D1,
|
|
|
|
+ 0hBF5AB89D0B9E43E4,
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+ Y_MIN :: 1.461632144968362245
|
|
|
|
+ TWO_52 :: 0h4330000000000000 // ~4.5036e+15
|
|
|
|
+ TWO_53 :: 0h4340000000000000 // ~9.0072e+15
|
|
|
|
+ TWO_58 :: 0h4390000000000000 // ~2.8823e+17
|
|
|
|
+ TINY :: 0h3b90000000000000 // ~8.47033e-22
|
|
|
|
+ Tc :: 0h3FF762D86356BE3F
|
|
|
|
+ Tf :: 0hBFBF19B9BCC38A42
|
|
|
|
+ Tt :: 0hBC50C7CAA48A971F
|
|
|
|
+
|
|
|
|
+ // special cases
|
|
|
|
+ sign = 1
|
|
|
|
+ switch {
|
|
|
|
+ case is_nan(x):
|
|
|
|
+ lgamma = x
|
|
|
|
+ return
|
|
|
|
+ case is_inf(x):
|
|
|
|
+ lgamma = x
|
|
|
|
+ return
|
|
|
|
+ case x == 0:
|
|
|
|
+ lgamma = inf_f64(1)
|
|
|
|
+ return
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ x := x
|
|
|
|
+ neg := false
|
|
|
|
+ if x < 0 {
|
|
|
|
+ x = -x
|
|
|
|
+ neg = true
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ if x < TINY { // if |x| < 2**-70, return -log(|x|)
|
|
|
|
+ if neg {
|
|
|
|
+ sign = -1
|
|
|
|
+ }
|
|
|
|
+ lgamma = -ln(x)
|
|
|
|
+ return
|
|
|
|
+ }
|
|
|
|
+ nadj: f64
|
|
|
|
+ if neg {
|
|
|
|
+ if x >= TWO_52 { // |x| >= 2**52, must be -integer
|
|
|
|
+ lgamma = inf_f64(1)
|
|
|
|
+ return
|
|
|
|
+ }
|
|
|
|
+ t := sin_pi(x)
|
|
|
|
+ if t == 0 {
|
|
|
|
+ lgamma = inf_f64(1) // -integer
|
|
|
|
+ return
|
|
|
|
+ }
|
|
|
|
+ nadj = ln(PI / abs(t*x))
|
|
|
|
+ if t < 0 {
|
|
|
|
+ sign = -1
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ switch {
|
|
|
|
+ case x == 1 || x == 2: // purge off 1 and 2
|
|
|
|
+ lgamma = 0
|
|
|
|
+ return
|
|
|
|
+ case x < 2: // use lgamma(x) = lgamma(x+1) - log(x)
|
|
|
|
+ y: f64
|
|
|
|
+ i: int
|
|
|
|
+ if x <= 0.9 {
|
|
|
|
+ lgamma = -ln(x)
|
|
|
|
+ switch {
|
|
|
|
+ case x >= (Y_MIN - 1 + 0.27): // 0.7316 <= x <= 0.9
|
|
|
|
+ y = 1 - x
|
|
|
|
+ i = 0
|
|
|
|
+ case x >= (Y_MIN - 1 - 0.27): // 0.2316 <= x < 0.7316
|
|
|
|
+ y = x - (Tc - 1)
|
|
|
|
+ i = 1
|
|
|
|
+ case: // 0 < x < 0.2316
|
|
|
|
+ y = x
|
|
|
|
+ i = 2
|
|
|
|
+ }
|
|
|
|
+ } else {
|
|
|
|
+ lgamma = 0
|
|
|
|
+ switch {
|
|
|
|
+ case x >= (Y_MIN + 0.27): // 1.7316 <= x < 2
|
|
|
|
+ y = 2 - x
|
|
|
|
+ i = 0
|
|
|
|
+ case x >= (Y_MIN - 0.27): // 1.2316 <= x < 1.7316
|
|
|
|
+ y = x - Tc
|
|
|
|
+ i = 1
|
|
|
|
+ case: // 0.9 < x < 1.2316
|
|
|
|
+ y = x - 1
|
|
|
|
+ i = 2
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ switch i {
|
|
|
|
+ case 0:
|
|
|
|
+ z := y * y
|
|
|
|
+ p1 := lgamA[0] + z*(lgamA[2]+z*(lgamA[4]+z*(lgamA[6]+z*(lgamA[8]+z*lgamA[10]))))
|
|
|
|
+ p2 := z * (lgamA[1] + z*(+lgamA[3]+z*(lgamA[5]+z*(lgamA[7]+z*(lgamA[9]+z*lgamA[11])))))
|
|
|
|
+ p := y*p1 + p2
|
|
|
|
+ lgamma += (p - 0.5*y)
|
|
|
|
+ case 1:
|
|
|
|
+ z := y * y
|
|
|
|
+ w := z * y
|
|
|
|
+ p1 := lgamT[0] + w*(lgamT[3]+w*(lgamT[6]+w*(lgamT[9]+w*lgamT[12]))) // parallel comp
|
|
|
|
+ p2 := lgamT[1] + w*(lgamT[4]+w*(lgamT[7]+w*(lgamT[10]+w*lgamT[13])))
|
|
|
|
+ p3 := lgamT[2] + w*(lgamT[5]+w*(lgamT[8]+w*(lgamT[11]+w*lgamT[14])))
|
|
|
|
+ p := z*p1 - (Tt - w*(p2+y*p3))
|
|
|
|
+ lgamma += (Tf + p)
|
|
|
|
+ case 2:
|
|
|
|
+ p1 := y * (lgamU[0] + y*(lgamU[1]+y*(lgamU[2]+y*(lgamU[3]+y*(lgamU[4]+y*lgamU[5])))))
|
|
|
|
+ p2 := 1 + y*(lgamV[1]+y*(lgamV[2]+y*(lgamV[3]+y*(lgamV[4]+y*lgamV[5]))))
|
|
|
|
+ lgamma += (-0.5*y + p1/p2)
|
|
|
|
+ }
|
|
|
|
+ case x < 8: // 2 <= x < 8
|
|
|
|
+ i := int(x)
|
|
|
|
+ y := x - f64(i)
|
|
|
|
+ p := y * (lgamS[0] + y*(lgamS[1]+y*(lgamS[2]+y*(lgamS[3]+y*(lgamS[4]+y*(lgamS[5]+y*lgamS[6]))))))
|
|
|
|
+ q := 1 + y*(lgamR[1]+y*(lgamR[2]+y*(lgamR[3]+y*(lgamR[4]+y*(lgamR[5]+y*lgamR[6])))))
|
|
|
|
+ lgamma = 0.5*y + p/q
|
|
|
|
+ z := 1.0 // lgamma(1+s) = ln(s) + lgamma(s)
|
|
|
|
+ switch i {
|
|
|
|
+ case 7:
|
|
|
|
+ z *= (y + 6)
|
|
|
|
+ fallthrough
|
|
|
|
+ case 6:
|
|
|
|
+ z *= (y + 5)
|
|
|
|
+ fallthrough
|
|
|
|
+ case 5:
|
|
|
|
+ z *= (y + 4)
|
|
|
|
+ fallthrough
|
|
|
|
+ case 4:
|
|
|
|
+ z *= (y + 3)
|
|
|
|
+ fallthrough
|
|
|
|
+ case 3:
|
|
|
|
+ z *= (y + 2)
|
|
|
|
+ lgamma += ln(z)
|
|
|
|
+ }
|
|
|
|
+ case x < TWO_58: // 8 <= x < 2**58
|
|
|
|
+ t := ln(x)
|
|
|
|
+ z := 1 / x
|
|
|
|
+ y := z * z
|
|
|
|
+ w := lgamW[0] + z*(lgamW[1]+y*(lgamW[2]+y*(lgamW[3]+y*(lgamW[4]+y*(lgamW[5]+y*lgamW[6])))))
|
|
|
|
+ lgamma = (x-0.5)*(t-1) + w
|
|
|
|
+ case: // 2**58 <= x <= Inf
|
|
|
|
+ lgamma = x * (ln(x) - 1)
|
|
|
|
+ }
|
|
|
|
+ if neg {
|
|
|
|
+ lgamma = nadj - lgamma
|
|
|
|
+ }
|
|
|
|
+ return
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+lgamma_f16 :: proc "contextless" (x: f16) -> (lgamma: f16, sign: int) { r, s := lgamma_f64(f64(x)); return f16(r), s }
|
|
|
|
+lgamma_f32 :: proc "contextless" (x: f32) -> (lgamma: f32, sign: int) { r, s := lgamma_f64(f64(x)); return f32(r), s }
|
|
|
|
+lgamma_f16le :: proc "contextless" (x: f16le) -> (lgamma: f16le, sign: int) { r, s := lgamma_f64(f64(x)); return f16le(r), s }
|
|
|
|
+lgamma_f16be :: proc "contextless" (x: f16be) -> (lgamma: f16be, sign: int) { r, s := lgamma_f64(f64(x)); return f16be(r), s }
|
|
|
|
+lgamma_f32le :: proc "contextless" (x: f32le) -> (lgamma: f32le, sign: int) { r, s := lgamma_f64(f64(x)); return f32le(r), s }
|
|
|
|
+lgamma_f32be :: proc "contextless" (x: f32be) -> (lgamma: f32be, sign: int) { r, s := lgamma_f64(f64(x)); return f32be(r), s }
|
|
|
|
+lgamma_f64le :: proc "contextless" (x: f64le) -> (lgamma: f64le, sign: int) { r, s := lgamma_f64(f64(x)); return f64le(r), s }
|
|
|
|
+lgamma_f64be :: proc "contextless" (x: f64be) -> (lgamma: f64be, sign: int) { r, s := lgamma_f64(f64(x)); return f64be(r), s }
|
|
|
|
+
|
|
|
|
+lgamma :: proc{
|
|
|
|
+ lgamma_f16, lgamma_f16le, lgamma_f16be,
|
|
|
|
+ lgamma_f32, lgamma_f32le, lgamma_f32be,
|
|
|
|
+ lgamma_f64, lgamma_f64le, lgamma_f64be,
|
|
|
|
+}
|